
UDC 004.9

Detection and correction of database schema integrity violation
based on initialization scripts

O. Kondratiuk1, M. Kolomitsev1

1National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»,
Institute of Physics and Technology

Abstract
We present a new methodology for detecting and correcting database schema integrity violations. This technique uses
initialization scripts, their pre-processing to compare with the current database schema. The result of the work is a
prototype of the software product.

Keywords: database, database scheme, sql, initialization script

1. Introduction

One of the most important criteria for information
system reliability is system database security. Attacks
directed at it are in most cases critical, as they can
partially or completely disrupt the system. One of the
easiest and most common attacks is a code injection
attack. SQL injection accounts for a significant portion
(approximately 25 %) of all network attacks. There-
fore, there is a need for modern methods of protection
against this type of attacks, as well as, in the case of
unauthorized changes - detection methods and methods
for responding to changes in the database, so the work
is devoted to the analysis of the effects of attacks and
methods of detecting and responding to attack data.

2. Related Work

SQL injection is an attack that is a type of code injec-
tion attack. This exploit is performed by adding SQL
code to the user input to gain access to unauthorized
resources. SQLIAs can occur when a query is created
by combining user-entered data, such as data entered
into a web form, with unintentional data, including
URL data (Uniform Resource Locator), data obtained
from cookies, etc., without proper verification. The
members of Rain Forest Puppy, the black-hat commu-
nity, were the first to ever publish information about
SQLIA in their article NT Web Technology Vulnerabil-
ities [1]. SQL injection is one of the favorite attacks for
many cybercriminals because it can be remotely exe-
cuted. Commercially available vulnerability detection
tools are also available to attackers, and using these
resources, an attacker can find security and web vul-
nerabilities in a split second. SQL is a very flexible
language and these attacks can be extremely secretive
and can run through firewalls and intrusion prevention
systems without much effort [2].

2.1. Types of SQL injection attacks

The types of SQL injection attacks are described in
[3] and are listed below:
1) Classic SQL Injection

Classic SQL Injection is simple and easy to use.
Allows the attacker to attack the database and
immediately see the result of the attack. Lately, it
is rare. The ability to perform classic SQL injection
greatly simplifies the retrieval of useful information.
Attacking using the classic SQL Injection technique
takes place using a union statement or using a SQL
query (semicolon). But not always SQL Injection
vulnerabilities can be exploited in a similar way. In
such cases they resort to the technique of exploiting
the vulnerability by the "blind" method.

2) Blind SQL Injection
Blind SQL Injection - appears when a vulnerable
request is some logic of the program, but does
not allow any data to be returned to the returned
Web page by the application. Blind SQL injection
can be compared to the classic SQL statement
implementation technique. Similar to the classic
technique of exploiting such vulnerabilities, blind
SQL Injection allows you to write and read files,
retrieve data from a table, but only read in this case
is character. The classic technique of exploiting
such vulnerabilities is based on the use of true
/ false logical expressions. If the expression is
true, then the Web application will return one
content, and if the expression is false, the other.
Relying on the differences of output for true and
false constructions in the query, it becomes possible
to search by character any data in the table or in
the file.

3) Error-based SQL Injection
Error-based SQL Injection is a slightly more com-
plex and time consuming type of attack that al-
lows you to retrieve information about the entire
database and the data stored in the database based
on the DBMS errors. It is used if someone in

Detection and correction of database schema integrity violation based on initialization scripts

50



a hurry forgot to disable the error output. The
essence of Error-based is that we can extract the
information we need from the query by looking
at the errors of the functions being called. One
such feature in the MySQL database is extract-
value(). Error-based SQL Injection is the fastest
operating technique for blind SQL injection. The
essence of this technique is that different DBMS,
with certain incorrect SQL statements, can put
in the error message different requested data (for
example, database version). This technique can
be used when any SQL statement processing error
committed in the DBMS is returned back by a
vulnerable application.

4) Boolean-based SQL Injection
Boolean-based SQL Injection is one of the "blind"
injections. The essence of the attack is to add
a special subquery to the vulnerable parameter
that the database will respond to either True or,
unexpectedly, False. The attack does not allow the
attacker to display all database data immediately
to the attacker, but allows to get the contents of the
database by flipping through the parameters one
at a time, although this will require a time interval
comparable to the contents of the database.

5) Time-based SQL Injection
Time-based SQL Injection is the next "blind" in-
jection. In this case, the attacker adds a subquery,
which causes the database to slow down or pause
under some conditions. Thus, by comparing the re-
sponse time to True and False queries, the attacker
can retrieve the entire contents of the database
character by character, but it will take longer than
in the case of a Boolean-based attack.

6) Out-of-band SQL Injection
Out-of-band SQL Injection is a rare type. An at-
tack can only be successful in certain circumstances,
for example, if the database server can generate
infrequent DNS or HTTP requests. Like Blind
SQL, it allows you to collect character information
about the data stored there.

2.2. SQL injection attack vectors

SQL injection attacks have the following vectors: [4]:
1) SQL manipulations

In this attack, the expression following the word
"where" is manipulated to create behavior unex-
pected by the database programmer (for example,
constructing an expression where the union state-
ment can provide access to data that the user
should not have access to.)

2) Code implementation
In this attack, the new SQL statement integrates
with the previously presented SQL statement (for
example, by adding an execute statement at the
end of the general statement.) The limitation of
this type of SQLIA is that the database must sup-
port multiple SQL statements on request.

3) Function call injection

It is a secondary injection of attack in which an
attacker uses built-in database functions to invoke
SQLIA, which manipulates data according to the
needs of the attacker.

4) Buffer Overflow Attack
In this case, the data entered as input will greatly
exceed the memory limits of the planned storage
space. It will overwrite data pointers and can also
be used to point to an executable file, forcing the
system to execute any file that is intended by the
attacker.

3. Existing methods of protection
against database threats

There are many ways to defend against attacks, but
not one of them provides a 100% security guarantee.
After all, there is counteraction to every action, and a
particularly interested seasoned hacker will probably
find a way to access your database. However, let’s look
at the main ones: [5]
1) Creating a less privileged user

In most cases, visitors do not need to delete or
update information. Let’s imagine an online store.
The user can request (SELECT) or leave an order
(INSERT), unlike the administrator, who can take
any action. So, it’s better to create several different
users. Grant all privileges to the administrator,
and restricted to the ordinary user.

2) Disabling error messages
First of all, you must avoid the built-in MySQL
function mysql_error (). A smart attacker can
guess some of the database settings from the error
message and sometimes see the connection settings.
It is best to use mysql_error () only during devel-
opment, but to remove it when you run the site on
the server. As a result, the user does not recognize
from the error message any important information
such as database name, table name, user name
and others. Thus, we make it difficult for a hacker
to find out the structure of a SQL query using
different injections.

3) Using stored procedures
Using stored procedures can also help reduce the
risk of an attack.Using stored procedures can also
help reduce the risk of an attack.

4) Using locking features
You can use the mysql_real_escape_string () func-
tion to process external data. This is a very pow-
erful built-in PHP feature that can prevent SQL
injection in most cases. You can try to implement
SQL code after using mysql_real_escape_string ()
and test for vulnerability. This feature rejects many
of the clever attack methods used by attackers.

5) Use regular expressions
Regular expressions are used to bring the input
to one template. For example, here we check the
client’s email for validity and reject the SQL injec-
tion option. You can also use the built-in PHP func-
tions is_array(), is_bool (), is_double (), is_float

Algorithms and methods of cyber attacks prevention and counteraction

51



(), is_int (), is_integer () and others to verify user
data.

6) Input filtering
In some cases, the fields have a numeric type and
are often not quoted. Therefore, "quotation" and
the replacement of special characters in the escape
sequence does not work. In this case, type checking
helps; if the variable is not a number, the request
should not be run at all.

7) Shielding special characters
Character Shielding - Replacing the control char-
acters in the text with the appropriate text substi-
tutions. To implement the code (closing the line
beginning with the quotation mark, the other quo-
tation marks before the end of the current closing
quotation mark with quotation marks), it is impos-
sible for some DBMS, including MySQL, to quote
all the string parameters. In the parameter itself,
the quotes are replaced with
", the apostrophe with
’, the backslash with
(this is called" screen special characters ").

4. Statement of the problem

This paper deals with the problem of the integrity of
the database structure, that is, altering the database
schema due to unauthorized changes, one example being
SQL injection attacks. The prevalence of SQLIA and
the potential damage they can cause, including theft
of personal data and denial of service to a web server,
require productive solutions and quick response to the
presence of these attacks on the system. Therefore,
the main task is to analyze the existing methods for
detecting changes in the database schema and to analyze
methods for responding to the original database schema.
And actually, on the basis of this analysis, the proposal
of a new methodology that will both detect database
schema violations and offer options for their solution.
The object of the study is a database whose structure
changes unauthorized. The subject of the study is to
identify and correct the integrity of the database schema.
The purpose of the work is to develop a methodology
for detecting and correcting database schema integrity
violations based on initialization scripts. The scientific
novelty is that the developed methodology is a complete
solution, which allows not only to detect violations
of the database schema, but also to offer solutions
that do not exist in the scientific community. This
technique uses database schema initialization scripts
to compare with the current schema, which is also
not described or implemented. The practical value of
the results of the work can be used to implement a
corporate or open source product, which can be useful
for both leading IT companies and small businesses
using databases in business. Our goal is a technique that
will quickly detect that the database schema has been
modified in accordance with the initial initialization and
will offer a possible solution. To do this, we will use
database initialization scripts to represent the original
DB schema and compare it with the current DB schema.

In fact, a mismatch will indicate changes, most often
unauthorized ones, and a method that will, based on
the rules, prompt the database administrator to enter
commands to bring the system back to the original
scheme. In this section we will describe the general
scheme of the methodology, which will consist of the
following steps: the stage of presentation and analysis
of the initial scripts, the stage of analyzing the current
state of the schema database, the step of comparing
the schemas, the response and correction phase, which
will result in bringing the scheme to the initial scheme.

5. General scheme of the technique
This section will show a general outline of a new

methodology that aims at this work, a methodology
for identifying and correcting integrity violations of a
database schema, which consists of the following steps:
1) Stage of presentation and analysis of initial scripts.

This step is to analyze what the schema was em-
bedded in the initiation script of the database, to
bring the initial script of the database schema to
the general view, which will present the current
schema of the database, and to present its structure
for later use.

2) The step of analyzing and representing the current
state of the database schema.
The purpose at this stage is to analyze the cur-
rent state of the database schema and present the
current database schema in the same form as the
original database script, for later comparison.

3) Phase comparison scheme.
The comparison step consists in the fact that one
of the variants of the comparison algorithm of the
initial and current schema of the database for com-
pliance with the specified criteria should be offered.
This algorithm outputs matching results. If the
schemes do not match, which in most cases indi-
cates unauthorized changes, we proceed to the next
stage, namely the response and correction phase.

4) Stage of response and correction.
The last is a step which, if compared, shows that
the schematics did not match, will suggest a remedy.
If, however, the schemes match, then this stage
will not be used. This stage is complementary to
all work and final throughout the scheme.

5.1. Stage of presentation and analysis
of initial scripts

First, an integral part is the stage, which consists of
analyzing the original scripts and presenting them to a
specific kind that can be easily compared. The initial
DB script is a set of SQL commands at which to run a
relational database schema, so there are several options
for presenting the original script as an initial schema:
1) Execution of scripts
2) Analysis of text commands

The disadvantage of the first option is that the script
requires some custom environment, such as a test
database. In the case of Option 2, no additional

Detection and correction of database schema integrity violation based on initialization scripts

52



Fig. 1. Scheme of the algorithm of comparison of
schemes

environments are required, and this is an advantage.
SQL (structured query language) - a declarative pro-
gramming language for user interaction with databases,
used for querying, updating and managing relational
databases, creating a schema database and its modifi-
cation, a database access control system consisting of
[6]:
1) DDL (Data Definition Language) — working with

the base structure,
2) DML (Data Manipulation Language) — working

with strings,
3) DCL (Data Control Language) — work with rights,
4) TCL (Transaction Control Language) — working

with transactions.
Since we are interested in creating a base structure,

we will consider DDL. DDL is a family of computer
languages used in computer programs or database users
to describe data structures. DDLs have their own func-
tionality, organized by the initial word in the statement
(query), which is almost always a verb. In the case of
SQL:
1) Create
2) Alter
3) Drop
DDL as well as SQL are languages with strict static

typing and which are described in the following dialects:
SQL-86, SQL-89, SQL-92, SQL: 1999, SQL: 2003, SQL:
2006, SQL: 2008, SQL: 2011, SQL: 2016, so they are
often independent of the specific DBMS, which is an-
other benefit. Let’s consider the following example of a
SQL script [7]:

Fig. 2. An example of SQL command

This script creates a table named "pet" that will
contain the following columns: name that corresponds
to the name of the animal that has a VARCHAR data
type (20), that is, a text type, with a maximum length
of 20 owner that corresponds to the name of the host
whose data type is VARCHAR (20), that is, a text type,
with a maximum length of 20 species corresponding
to the host name in which the data type VARCHAR

(20), that is, the text type, with a maximum length of
20 After executing this command, you can check the
following command: DESCRIBE <table name>, where
<table name> is the name of the table, in our case
"pet".

Fig. 3. An example of program execution

As we can see in the figure, a table with three columns
and the following data types was created. Therefore,
it was decided to create a JSON file that would fit the
database schema according to the original script and
the current database. The following JSON file structure
is proposed:

Fig. 4. An example of a JSON file

This is possible due to strict static typing. For exam-
ple, the words CREATE TABLE are always followed
by the name of the table being created. Following the
name of the table, the column name and its type of
comma-separated data are given in parentheses, so it is
possible to create a software implementation that will
convert an SQL script to a JSON file type that will
be implemented in PYTHON3 using plain text, and
embedded the JSON library.

5.2. Description of the step of analyzing
and presenting the current state of
the database schema

This step is the next step after submitting and ana-
lyzing the initial scripts. At this point, it is necessary
to analyze the current state of the database schema
and present the current database schema in the same
form as the original script will be presented for further
comparison. Of all the existing and analyzed methods
for obtaining the current schema, it can be concluded
that there are many ways to obtain the current state
of the database schema. Some options have a graphical
interface, some have console applications. Based on our
needs, it was decided that we would be comfortable

Algorithms and methods of cyber attacks prevention and counteraction

53



with getting the current database schema either from
the command line or through the SQL command DE-
SCRIBE, as it would be easy to do through the Python3
programming language and easy to connect with other
modules of our methodology. Of all the options listed,
the following remain:
1) Mysqldump;
2) pg_dump;
3) SQL command describe;
4) sp_columns
Analyzing the properties of each, it was highlighted

that the SQL commands DESCRIBE and sp_columns
require additional actions to analyze the current
state from the output field, and the Mysqldump and
pg_dump commands formulate an SQL script similar
to the initialization script, which leads to the script
the initialization and the current SQL script, the same
steps are required, namely the actions suggested in sec-
tion 5.1. Because Mysqldump works with MySQL, and
pg_dump with PostgreSQL, so you need to keep track
of which database you want to work with and invoke
one application or another, but work is scientific and
its purpose is to come up with an idea so let’s just
focus on using pg_dump and the PostgreSQL database.
The result of all actions will be: getting a script of the
current state -> using the method of analyzing and pre-
senting scripts (p.5.1) -> we get JSON with the current
structure, which can be easily compared and conclude
about the integrity of the database structure, so you
can proceed to the next stage , namely: comparing
schemas.

5.3. Phase comparison scheme

The stage of comparison of schemes is important,
because it can be used to draw conclusions about the
existence of unauthorized changes and further actions
in the methodology. The essence of this step is that it
is necessary to offer one of the variants of the algorithm
of comparison of the initial and the current scheme of
the database for compliance with the specified criteria.
After the comparison, the algorithm outputs the results
about the matches. If the schemes do not match, which
in most cases indicates unauthorized changes, we move
on to the next step, namely the response and correction
method. The comparison algorithm in our case will be
as follows:
1) Read a JSON file that matches the database

schema according to the original script in the list.
2) Read a JSON file that matches the current

database schema to the list.
3) Compare lists by subtracting the current schema

list from the original schema list.
4) Receive the result and output it to the console as

a message about the compliance or inconsistency
of the schema data:

a) If the schematics are the same, a message is
displayed in the console that no discrepancies
were detected.

b) If the schematics do not match, the console
displays messages that found inconsistencies
in the form:

– Extra column <column name>;
– Extra table <table name>;
– Column types <column name> does not

match.
Let’s present this algorithm in the form of the scheme

shown below:
Therefore, if no schema changes are detected, the

database is in the same state as the initialization script.
It follows that no action is needed to correct the DB
schema. If the schematics do not match and the algo-
rithm produces discrepancies in them, then we go to
the response and correction phase.

5.4. Stage of response and correction

This stage is the last step in the development of the
methodology and is based on the results of the previous
stage. It only applies if, when comparing the circuits, it
turns out that they did not match. Its main idea is to
respond to the inconsistency of database schemas and
to offer a correction for this violation, which in most
cases indicates unauthorized changes. Section 1 reviews
and analyzes existing approaches to database recovery,
and since each contains some drawbacks, this paper will
propose a new method that will offer commands to the
database administrator to restore the database schema
to its original state. The principle of operation is as
follows: after comparing the schemas, we get which
tables / columns / data types do not match the original
schema, and we propose commands based on a set of
rules. An example is the following discrepancy:

Fig. 5. Example of database schema mismatch

So, in the difference obtained, you can see that Table1
—- Column4 —- Data type2 exists, which does not exist
in the original schema, so the method will offer the
following command: ALTER TABLE “Table1” DROP
“Column4”. Therefore, after executing this command,
the database schema will change to the original schema
according to the initialization script.

6. Results of work
The result of the work is a prototype that will be

able to correct some changes to the database schema.
The following correction vectors are considered at this
stage:
1) Find extra tables
2) Find the columns in which the data type was

changed
3) Find deleted columns
4) Finding extra columns
An example would be the following situation:

Detection and correction of database schema integrity violation based on initialization scripts

54



Fig. 6. An example of an initiation script for a combi-
nation of cases

Fig. 7. An example of a current DB scheme for a
combination of cases

As we can see from 6 and 7, in the current schema
there is a new fake table_table and there are also two
new columns, namely username VARCHAR(50) and
new_malicious_column VARCHAR (50) and deleted
column last_login TIMESTAMP. The launch of our
program produced the following results:

Fig. 8. The result of the program is a combination of
cases

As we can see from 8, he detected all the database
schema changes and suggested the following SQL com-
mands: DROP TABLE fake_table; ALTER TABLE
account ADD COLUMN last_login TIMESTAMP; AL-
TER TABLE account DROP new_malicious_column;
ALTER TABLE account DROP username;

All of these commands will bring the current database
schema to the original one.

7. Conclusions
This paper presents a technique for detecting and

correcting database schema integrity violations based

on initialization scripts. The problem of the integrity of
the database structure, that is, changing the database
schema is due to unauthorized changes, one example
being SQL injection attacks. During the work, database
types, existing threats to OWASP databases, code injec-
tion attacks were reviewed and analyzed, and SQL injec-
tion attacks, their implications for relational databases,
and existing methods of database security threats were
addressed. The study also analyzed existing methods for
detecting and correcting database breaches and, based
on their shortcomings, proposed a new methodology.
This technique consists of the following steps: the step
of presenting and analyzing the initial scripts, the step
of analyzing the current state of the schema database,
the step of comparing the schemas, the response and cor-
rection phase, which will result in bringing the schema
to the initial schema. The software implementation of
the methodology was implemented in Python3 program-
ming language. The developed methodology is a com-
plete solution that allows not only to detect database
schema violations, but also to offer solutions that do
not exist in the scientific community. This technique
uses database schema initialization scripts to compare
with the current schema, which is also not described
or implemented. The proposed methodology can be
used to implement a corporate or open source product,
which can be useful to both leading IT companies and
small businesses using databases in business.

References

[1] “Rain forest puppy. nt web technology vulnerabili-
ties,” Phrack Magazine, vol. 8, no. 54, 1998.

[2] “Naive algorithm for pattern searching.”
http://www.geeksforgeeks.org/searching-for-
patterns-set-1-naive- pattern-searching/. Accessed:
2019-10-02.

[3] “Why is sql injection the most dangerous kind of
vulnerability?.” https://acribia.ru/articles/
why_sql_injection_is_the_most_dangerous_
type_of_vulnerability. Accessed: 2019-10-02.

[4] S. Kost, “An introduction to sql injection attacks
for oracle developers,” Integrity Corporation, 2007.

[5] “Sql injection protection.” http://www.
securityscripts.ru/articles/sql-injection.
html. Accessed: 2019-10-02.

[6] “Sql.” https://uk.wikipedia.org/wiki/SQL. Ac-
cessed: 2019-10-02.

[7] “Creating a table.” https://dev.mysql.com/
doc/refman/8.0/en/creating-tables.html. Ac-
cessed: 2019-10-02.

Algorithms and methods of cyber attacks prevention and counteraction

55

http://www.geeksforgeeks.org/searching-for-patterns-set-1-naive-pattern-searching/
http://www.geeksforgeeks.org/searching-for-patterns-set-1-naive-pattern-searching/
https://acribia.ru/articles/why_sql_injection_is_the_most_dangerous_type_of_vulnerability
https://acribia.ru/articles/why_sql_injection_is_the_most_dangerous_type_of_vulnerability
https://acribia.ru/articles/why_sql_injection_is_the_most_dangerous_type_of_vulnerability
http://www.securityscripts.ru/articles/sql-injection.html
http://www.securityscripts.ru/articles/sql-injection.html
http://www.securityscripts.ru/articles/sql-injection.html
https://uk.wikipedia.org/wiki/SQL
https://dev.mysql.com/doc/refman/8.0/en/creating-tables.html
https://dev.mysql.com/doc/refman/8.0/en/creating-tables.html

