
UDC 004.492.3

Model of rules for malicious input parameters detection

Oleksandr Korzhenevskyi
1
 and Mykola Graivoronskyi

1

1
 National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»,

Institute of Physics and Technologyersity, Peremohy ave. 37, Kyiv, 03056, Ukraine

__

Abstract
This article is devoted to detection of advanced techniques of malicious input parameter injections

and web application firewall (WAF) bypass. The authors have proposed a hierarchical model for

detection rules definition, which allows to edit different fragments separately. This model has been

implemented with the usage of Backus-Naur form and ANTLR4 (generator of parsers and lexers).

The solution has been tested using some popular web application scanners. The testing environment

has been created with Python3. The results of research have been compared with the corresponding

ones for the existing open source solution – libinjection. The main accent has been made to SQL

injcetions and Cross-Site Scripting attacks.

Keywords: Web application security, web application firewall, injection, attack detection, Backus-

Naur form, ANTLR4

__

Introduction

People’s lives have always been connected

with sharing information. This process is

probably the basis for the existence of people in

the form of society, not as individuals.

Communication has taken place throughout the

evolutionary path and has been a constant

component of it, but its form has changed and

evolved.

The rapid development of technologies of the

end of the XX – the beginning of the XXI century

has led to the fact that today new information

comes to each of us at every moment. At the

current stage of scientific progress, the most

powerful technology for data exchange is

certainly Internet. With all the comforts and

benefits that humanity has received along with

new technologies, information security pro-

fessionals have received new challenges.

Everyone knows for sure that the most

vulnerable place in any information system is a

person. It is obvious that more qualified users

make fewer mistakes and decrease all the risks

connected with human factor. Nevertheless, the

current situation is the following: anyone can

upload data to the network today. However, even

if only certain people were allowed to send

materials, it would not make the system

completely secure. The fact is that the interfaces

responsible for the download can be vulnerable.

These vulnerabilities often come down to the

injection of data of a certain format, which

changes the execution of the instructions in a

way necessary for the attacker. Most of such

vulnerabilities are well examined but researchers

always find new ways to exploit existing defense

mechanisms.

This article will focus on text parameter

injection type attacks, which are usually

constructions of a particular server-side

language. The authors propose a solution for

existing security issues.

1. Problem description
1.1. Attacks on input parameters of
web applications

If we look at the list of the most critical

security risks represented by so called OWASP

Top 10 Project [1], we will find some

vulnerabilities related to data input. These are

Injection, Cross-Site Scripting (XSS) and XML

External Entity. We will focus on the most

popular of them in our work: SQL injection and

XSS. They are well-known and greatly

investigated, therefore they will be great

examples to illustrate the purpose of this article.

Intelligent Data analysis methods in cybersecurity___

93

«SQL injection is an attack in which the SQL

code is inserted or appended into application/user

input parameters that are later passed to a back-

end SQL server for parsing and execution. Any

procedure that constructs SQL statements could

potentially be vulnerable, as the diverse nature of

SQL and the methods available for constructing

it provide a wealth of coding options» [2, page

22]. Security professionals define different types

of SQL injections. There are probably the most

popular ones:

 Boolean-based SQL injections (or 1=1;–

);

 Time-based SQL injections (and

SLEEP(30);–);

 Union-based SQL injections (1’ UNION

’1’, ’2’;–);

 Stacked queries (1; DROP TABLE

users;–).

«XSS is an attack technique that forces a Web

site to display malicious code, which then

executes in a user’s Web browser» [3, page 68].

Since developers usually use JavaScript on the

client side of an application, the features and

operators of this language are most commonly

used to exploit this kind of vulnerability.

The community of web researchers usually

distinguishes such types of Cross-Site Scripting

attacks:

 Reflected XSS;

 Stored XSS;

 DOM-based XSS.

1.2. Mechanisms of defense

The described attacks regard the 7th level of

the OSI model. This is mostly the area of

responsibility of web application firewalls. Other

tools like intrusion detection/prevention system,

Next Generation Firewalls or Unified Thread

Management products use the same approaches

for input data analysis.

There are some base techniques or methods

for malicious payload detection. They were

classified in the best way by Vladimir Ivanov,

professional of Positive Technologies, in his

investigation [4]. The following approaches were

represented:

 Usage of regular expressions;

 Tokenization;

 Score building;

 Anomaly detection;

 Reputation analysis.

Score building and reputation analysis are

mostly auxiliary methods that allow ranging risks

and threats and rejecting the requests from

suspicious sources. Anomaly detection is usually

based on Artificial Intelligence, especially

Machine Learning. This approach requires some

time for gathering large sets of valid and

malicious payloads and actually for learning on

those data.

Obviously, 2 methods remain. They both

represent the signature-based approach. Most

modern protection tools use regular expressions

as a basic detection mechanism because of

simplicity of rules creation process. These rules

are special templates consisting of symbols and

metasymbols. The main advantage of this

approach is the fact that one rule often covers

only one definite construction or a group of

similar ones.

Tokenization is a process of detection a

signature as a sequence of tokens. This method

gives an opportunity to detect such attack as XSS

and SQL injections rapidly. The most famous

library using this method is libinjection that is

widely used in open source web application

firewalls, e.g. Modesecurity or Nginx Anti-XSS

& SQL Injection. The main disadvantage is

ability to paste «token breakers», which make a

whole construction unrecognized.

1.3. Existing issues

There is a large class of attacks that abuse the

breaches of the signature-based approach. We

provide the example of some malevolent payload

(1) for better understanding.

1000 AND SLEEP (30); −− (1)

Regular expressions approach will detect the

usage of the word "SLEEP" and mark this input

parameter as malicious. Tokenization method

will return a sequence of tokens as it is shown on

the illustration (figure 1).

Figure 1: Illustration of tokenization

In this case both methods are able to detect a

suspicious input parameter and protect against

SQL injections. However let the construction

Model of rules for malicious input parameters detection___

94

change its shape. Let us have a look at another

example (2).

1000 AND SLEsleepEP (30); −− (2)

Here is a logical question: what do we have

now? Regular expressions still allow us detect a

suspicious payload because «sleep» (lower case)

will be found. Tokenization in its pure form will

not give any result because «SLEEP» (upper

case) is broken by «sleep» (lower case). This

construction does not make any sense and does

not affect an application. However its usage can

be quite reasonable, when taking into

consideration some security mechanisms that

devices and software as WAF can have.

Sometimes malevolent requests are not rejected

but are filtered and forwarded further on the

network. Let us imagine that we use regular

expressions and then cut any matching

constructions from payload. In this case the

parameter (2) turns into (1), and a malicious

parameter is sent to a server.

There are some other examples (3) - (6)

below that illustrate another problem. We will

pay attention to JavaScript code inclusion, which

usually takes place while XSS attacks.

alert(“IPT attacks”); (3)

al\u0065rt(“IPT attacks”); (4)

al&x65rt(“IPT attacks”); (5)

al\145rt(“IPT attacks”); (6)

All the expressions (3) - (6) are different

representations of the well-known construction

alert(...) used by penetration testers for XSS

vulnerabilities detection. We used only some

encoding systems and manipulated only with one

letter e. This gives new ways for attackers to

disguise their payloads and makes much head

ache for defenders.

During our investigation we tried to improve

the tokenization approach and make it detect

advanced attacks with the usage of cuttable

(possibly cuttable) constructions and different

kinds of character representation.

Our goal was not only to protect applications

from real threats (which will do harm anyway)

but also to reveal attempts of WAF bypass (the

ones that will become harmful after filtration,

decoding etc).

2. Solution
2.1. Model description

As it is mentioned in the previous section, we

can define two main problems, which must be

solved, in order to detect some advanced attacks:

 Injection of cuttable constructions

 Usage of different encoding

Simple tokenization technique can be

represented in the following way (figure 2). We

propose another more flexible model to rules

description, which is based on several principles:

Figure 2: Illustration of tokenization

 Let us define the special token which

will represent any construction of the ones

that can be cut during the processing of input

data. Let us also call this token

«CUTTABLE».

 Let us build the rule by pasting

CUTTABLE* between each two tokens

(figure 3). «*» means that there can be any

number of these tokens, or they can be absent

at all.

Figure 3: New rule description

 Let us split each token to fragments and

paste CUTTABLE* between each two

fragments (figure 4).

 Let us define each fragment like token or

as alternative among different representation.

Intelligent Data analysis methods in cybersecurity___

95

We can see an example of token description

(«K») in the picture (figure 5).

Figure 4: Token description

Figure 5: Token description

The main difference between fragment and

token is that fragment is always used as a part of

token and never independently. As a result we

get some hierarchical model for detection rules

definition.

2.2. Implementation tools

To implement this model, we decided to use

Backus-Naur Form (BNF). BNF is a

metalanguage for Context-Free Grammars. It is

commonly used for syntax description of

programming, query and markup languages. As

our aim is to detect attacks like SQL injections

and XSS, which contain operators and elements

of the aforementioned languages, such kind of

notation as BNF becomes very useful in this

occasion. There are also some modifications of

BNF like EBNF (extended) or ABNF

(augmented). They provide some additional

features that make rule creation process easier

and faster.

To translate created rules into code of some

programming language for further

implementation in some programs we use such

tool as ANTLR4 (the detailed information is

available on the website
1
). This is a lexer and

parser generator. The result of parsing stage is a

special structure – Abstract Syntax Tree (AST).

To investigate this tree, a developer can use

Visitor or Listener. The interfaces for these

objects are also generated by ANTLR4.

There are 2 main factors that made impact on

our decision to choose exactly this tool:

 Programming languages: there are

opportunities to generate code for C++, Java,

Python, C#, Go, JavaScript and Swift, which

are widely used for web application

development and server creation.

 Velocity: although the theoretical time

complexity of ANTLR4 is O(n
4
), the

developers of this tool claim that it is much

faster than GLR-parsers, which complexity is

O(n
3
). This was approved in their article [5].

2.3. Examples of rules

We provide some examples of created rules in

this subsection. ANTLR4 notation should be

composed regarding the following points:

 If one deals with mixed grammar, he or

she should define parser rules before lexer

rules.

 The most specific constructions must be

determined before most common.

 The order of search for rule matching is

from left to right, from top to down.

Considering these points, we begin with

parser rule for time-based SQL injection with

usage of SLEEP function (7).

sleep_sqli : SLEEP (SEPARATOR|CUTTABLE)*

L_PAREN (SEPARATOR|CUTTABLE)*
NUMBER

(SEPARATOR|CUTTABLE)* R_PAREN

(7)

Token SLEEP is described in the following

way (8).

fragment EP : E (CUTTABLE)* P ;
fragment EEP : E (CUTTABLE)* EP ;

fragment LEEP : L (CUTTABLE)* EEP ;
SLEEP : S (CUTTABLE)* LEEP ;

(8)

1 https://www.antlr.org/

Model of rules for malicious input parameters detection___

96

Token CUTTABLE is defined as an

alternative among different constructions like

comments, keywords, hashtags, tabulations etc

(9).

 CUTTABLE : (COMMENT | HASHTAG
 | NULL_BYTE | HOR_TAB
 | VER_TAB | LINE_FEED
 | CAR_RET | QUOTE
 | KEYWORD);

(9)

KEYWORD also represents an alternative

among different keywords. COMMENT is

defined as anything between /**/ or after # or //

with LINE_FEED in the end. Other tokens are

determined like HASHTAG (10). Here we can

see hexadecimal, Unicode, HTML, URL and of

course ASCII encoding. This list can be

supplemented.

HASHTAG : ‘#’|‘%23’|‘\\043’|‘\\x23’|‘\\u0023’
 | ‘&#’ ‘0’? ‘0’? ‘0’? ‘0’? ‘0’? ‘35’ ‘;’
 | ‘&#’ [Xx]‘0’? ‘0’? ‘0’? ‘0’? ‘0’? ‘23’ ‘;’
 | ‘&’ [Nn][Uu][Mm] ‘;’ ?

(10)

Token SEPARATOR is defined as white space

in different representations and symbol «+»,

which is used in URL. L_PAREN and R_PAREN

correspond to «(» and «)» and are determined

like (10). Token NUMBER is defined as

following (11). POINT represents «.» and

HEX_DIGIT is used for digits from 0 to F.

NUMBER : ‘-’ [1 – 9][0 – 9]* | [0 – 9]+
 | ‘-’ [1 – 9][0 – 9]* POINT [0 – 9]*
 | [0 – 9] + POINT [0 – 9]*
 | ‘0b’ [01] + | ‘0o’ [0 – 7]+
 | ‘0x’ HEX_DIGIT +

(11)

Similarly, the rules for some other

constructions used for mentioned in the first

section types of SQL injections are described.

Regarding XSS attacks, we have a look at

something extraordinary. For example, the

construction [“XSS”].find(alert) can be used by

attackers to find security breaches of JavaScript

processing in the web application. We have

defined a rule (12) to detect such attempts of

exploitation.

find_statement : L_BRACK .*? R_BRACK
 CUTTABLE * FIND
 CUTTABLE * L_PAREN
 .*? R_PAREN

(12)

L_BRACK and R_BRACK correspond to «[»

«]» and are defined like (10). The other tokens

have already been described before.

We have distinguished the following

constructions and written rules for each of them:

 script-tag statement: statement

containing <script> or </script> or both of

them;

 script statement: construction like

javascript:alert(1);

 console statement: console object

manipulation;

 popup statement: usage of functions

invoking popup windows, e.g.,

prompt(«XSS»);

 DOM objects injection: usage as input

parameter of such constructions as

top[«alert»](«IPT»);

 toString usage: usage of function

toString(), which allows to disguise

malevolent payload, for example

«8680439..toString(30)» is equal to «alert»;

 usage of JS functions: injection of some

functions like eval, setInterval etc.;

 find statements: another way to disguise

input parameters by using specifics of work

with arrays in JS; example and the detection

rule have been already mentioned above (12).

3. Solution assessment
3.1. Testing environment

The developers of ANTLR4 have created it

using Java. They also provide some ready tools

for parsing strings from files and visualizing

results. Therefore we can evaluate some

parameters without creation of any additional

programs. You can see the abstract syntax tree

(figure 6) for some time-based SQL injection

using PG_SLEEP() function (PostgreSQL) and

hiding it with injection of cuttable constructions

and representation of characters in other

encodings.

However our aim was to test our solution in

the conditions, closest to the real ones. We have

decided to choose Python as we have wanted to

make a tool like host-based web application

firewall. It means that our solution would be a

part of a website back-end. Python provides a lot

of different frameworks for web development.

We have chosen Flask (i.e. Python3) because of

simplicity and high speed of application creation.

Intelligent Data analysis methods in cybersecurity___

97

javascript:alert(1)

Figure 6: Abstract syntax tree for SQL injection
with usage of PG_SLEEP

We have created a simple website with

advertisements and a search form. That search

form is an entry point, which can be exploited,

and which must be protected. Therefore we apply

our solution to it.

We have used for testing the following tools:

 sqlmap;

 OWASP ZAP;

 Netsparker;

 Acunetix.

The created application logs any requests into

one file and detected attacks into another one.

Than we compare these two files to assess the

quality of our solution. We have not developed

any web application to implement libinjection.

We have had log file containing all the requests

from scanner. We have used this file as input to

console application, written in C/C++. When

attack is detected, a message with the

corresponding request is written to the output

file. We can assess the efficiency of this product

by comparing the number of detected attacks

with the number of all requests then.

3.2. Analysis of results

We have tested our solution and the

libinjection implementation as well. The

obtained results are provided in the table 1. The

field «Type» stands for type of attack: advanced

means that the payload was modified by pasting

some cuttable constructions or using encoding.

The following 2 columns represent the number

of requests, which have been detected as

malicious. The last column shows the total

amount of made requests.

Obviously, the results are practically identical

for unmodified payload of scanners: libinjection

detected 81.21% of SQL injections and 22.17%

of XSS attempts; our solution detected 81.16%

and 23.15%, respectively.

Table 1
Results of testing

Type libinjection
Our

solution
Total

SQLi 10422 10416 12833

SQLi
advanced

2060 6783 12035

XSS 45 47 203

XSS
advanced

110 150 209

Such low results for XSS are caused by some

strange data provided, for example, by

Netsparker: it sends «netsparker(1)» instead of

«alert(1)» for some reasons. This is also fair for

Acunetix. The larger number of instances and

usage of sqlmap have provoked such a

considerable advantage in the amount of test

cases for SQL injections.

We can observe the significant difference in

results for advanced attacks: libinjection has

52.63% for XSS and 17.12% for SQLi detection.

Our solution was able to find 71.77% and

56.36% attacks respectively. We obtained this

«advanced» payload by using the examples from

OWASP pages, masking the payload from the

scanners with the usage of previously described

techniques and filtering it from useless requests

(like the one with «netsparker(1)» in the previous

paragraph). However to get the most objective

results, both solutions should be tested in real

systems with a larger number of requests.

Conclusions

The model we suggest and its implementation

have demonstrated quite good results for

detection of web application scanners activities

and its excellence for some advanced payload in

comparison with the existing solution. There are

some advantages such as simplicity of

modifications of existing rules (all rule

components can be edited apart) and large set of

implementation (once created rules can be

translated to 7 languages). The main

disadvantage is probably the possibility of

REDOS attack due to unlimited usage of token

CUTTABLE.

Model of rules for malicious input parameters detection___

98

The proposed solution can be used as a

component of different tools for web and

network security such as Web Application

Firewalls, Intrusion Prevention/Detection

Systems etc. The current implementation allows

to detect malevolent payload and block further

query processing. In future it can be modified to

filter input parameters by removing suspicious

constructions.

The created solution can be used not only for

real-time defense but also for forensics purposes,

mostly for logs analysis.

References

[1] “Owasp top ten project,” The OWASP

foundation, 2017.

[2] J. Clark, SQL Injection Attacks and Defense

2nd Edition. 225 Wyman Street, Waltham,

MA 02451, USA: Syngress, 2 ed., 2012.

[3] J. Grossman, Cross Site Scripting Attacks:

XSS Exploits and Defense. 30 Corporate

Drive Burlington,MA 01803: Syngress,

2007.

[4] V. Ivanov, “Web application firewalls:

Attacking detection logic mechanisms,”

Positive Techologies, Black Hat USA 2016,

2016.

[5] T. Parr, S. Harwell, and K. Fisher,

“Adaptive ll(*) parsing: The power of

dynamic analysis,” 2014. Technical report.

Intelligent Data analysis methods in cybersecurity___

99

