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Abstract
In recent years, post-quantum (quantum-resistant) cryptography has been actively researched, in particu-
lar, due to the National Institute of Standards and Technology’s (NIST) Post-Quantum Cryptography
Competition (PQC), which has been running since 2017. One of the participants in the first round
of the competition is the Mersenne-756839 key encapsulation mechanism based on the AJPS-2 en-
cryption scheme. The arithmetic modulo Mersenne number is used to construct the cryptoprimitives
of the AJPS family. In this paper, we propose a forgery attack on the AJPS-2 cryptosystem using
an active eavesdropper, and two modifications of the post-quantum AJPS-2 cryptosystem, namely,
the modification of AJPS-2 using the arithmetic modulo generalized Mersenne number and Crandall
number. Moreover, new algebraic problems are defined, on the complexity of which the security of the
created modifications is based. The advantages of these modifications are the extension of the number
class used as a module in the cryptosystem and the security against the forgery attack with the active
eavesdropper, which was successful in the original AJPS-2.

Keywords: the AJPS cryptosystem, Mersenne numbers, generalized Mersenne numbers, Crandall num-
bers, Hamming weight, forgery attack, post-quantum (quantum-resistant) cryptographic primitives

1. Introduction

The main goal of post-quantum cryptography
is to develop cryptosystems that can be imple-
mented on a classical computer, but at the same
time, are secure even if an attacker uses a quan-
tum computer to perform an attack. Since it is
possible for most symmetric cryptosystems to de-
velop analogs that have a higher level of security
and are resistant to attacks using a quantum com-
puter, researchers are focusing their efforts on de-
veloping asymmetric cryptoprimitives, particularly
those that implement a digital signature scheme or
key encapsulation mechanism.

Since 2017, the National Institute of Standards
and Technology (NIST) has been hosting a com-
petition for asymmetric post-quantum cryptoprim-
itives [1], after which the first versions of post-
quantum cryptography standards will be published,
that complement or replace the standards currently
considered most vulnerable to quantum computer

adariya.yadukha@gmail.com

attacks, namely the FIPS 186-4 digital signature
standard and the NIST SP 800-56A and NIST SP
800-56B standards describing key encapsulation
mechanisms for asymmetric cryptosystems [1].

One of the participants in the first round of the
NIST competition is the Mersenne-756839 key
encapsulation mechanism based on the AJPS cryp-
tosystem [2]. The structure of the cryptosystem
uses arithmetic modulo Mersenne number, which
can be effectively implemented using algorithms
for fast computation of cumbersome operations
modulo Mersenne number, such as reduction, mul-
tiplication, modular multiplicative inverse calcu-
lation, bitwise addition and multiplication, etc
[3, 4, 5]. The AJPS cryptosystem has two versions:
for encrypting one bit of a message (AJPS-1) and
for encrypting a block of bits (AJPS-2).

In this paper, we continue the idea of construct-
ing modifications of the cryptographic primitives
of the AJPS family by changing the class of num-
bers used as a module, i.e. replacing the Mersenne
numbers with other classes of numbers. In our
previous paper [6], a modification of the AJPS-1
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cryptosystem was constructed using generalized
Mersenne numbers instead of Mersenne numbers,
and a comparative analysis of the original AJPS-1
cryptosystem and the constructed modification us-
ing generalized Mersenne numbers was performed.
In this work, two modifications of the AJPS-2
cryptosystem are developed: using generalized
Mersenne numbers and Crandall numbers.

2. Description of theAJPS-2 cryptosystem

The AJPS-2 cryptosystem allows encrypting
a block of bits with a length 𝜆, where 𝜆 – the
security parameter, which is specified during the
construction of the cryptosystem, i.e. the plain-
text is 𝑀 ∈ {0, 1}𝜆. Public parameters of the
cryptosystem are:

• Mersenne number 𝑀𝑛 = 2𝑛 − 1, 𝑛 ∈ N;
• integer ℎ ∈ N that satisfies the conditions
ℎ = 𝜆 and 10ℎ2 < 𝑛 ≤ 16ℎ2;

• encryption and decryption functions of the
error correction code:

ℰ : {0, 1}𝜆 → {0, 1}𝑛;

𝒟 : {0, 1}𝑛 → {0, 1}𝜆,
which are chosen according to the following
condition: in order for the cryptosystem to
be (1− 𝛿)-correct, where 𝛿 is the decryption
error probability, it is necessary that:

∀𝑀 ∈ {0, 1}𝜆 :

Pr{𝒟((𝐹 · 𝐶1)⊕ 𝐶2) = 𝑀} ≥ 1− 𝛿.

To simplify notation, we equate numbers mod-
ulo Mersenne number with binary strings from the
set {0, 1}𝑛 ∖ {1𝑛}.

Let us describe the main algorithms of the
AJPS-2 cryptosystem.

1) Key generation algorithm Gen.
a) Integers 𝐹 and 𝐺 are chosen randomly

and independently from the set

𝐻𝑀𝑛,ℎ =
{︀
𝑥 ∈ {0, 1}𝑛 : 𝐻𝑎𝑚(𝑥) = ℎ

}︀
,

where 𝐻𝑎𝑚(𝑥) denotes the Hamming weight
of 𝑥 (total amount of 1’s in the binary repre-
sentation of 𝑥).
Note that the set 𝐻𝑀𝑛,ℎ can also be rep-
resented as the set of residues modulo
Mersenne number 𝑀𝑛, which have Hamming
weight ℎ.

b) The number 𝐹 is the secret key, and
the value 𝐺 is a secret parameter of the
cryptosystem.

c) The value 𝑅 is chosen randomly from
all 𝑛-bit integers.

d) The number 𝑇 is calculated according
to the equation:

𝑇 = 𝐹 ·𝑅+𝐺 mod 𝑀𝑛.

e) The public key is a pair of integers
(𝑅, 𝑇 ).

2) Algorithm Enc for encrypting the mes-
sage 𝑀 .

a) Integers 𝐴,𝐵1 and 𝐵2 are chosen ran-
domly and independently from the set
𝐻𝑀𝑛,ℎ.

b) The ciphertext of the message 𝑀 is
a pair of numbers (𝐶1, 𝐶2), where 𝐶1

and 𝐶2 are calculated according to the
equations:

𝐶1 = 𝐴 ·𝑅+𝐵1 mod 𝑀𝑛;

𝐶2 = (𝐴 · 𝑇 +𝐵2 mod 𝑀𝑛)⊕ ℰ(𝑀).

c) The decryption algorithm Dec consists
in calculating the value

𝒟((𝐶1 · 𝐹 mod 𝑀𝑛)⊕ 𝐶2),

as a result, we get the value 𝑀 .
The correctness of the cryptosystem is deter-

mined according to Definition 1.
Definition 1. An asymmetric encryption

scheme (Gen, Enc, Dec) is called (1− 𝛿)-correct
if for all valid messages 𝑀 holds

𝑃𝑟[Dec(𝑠𝑘, Enc(𝑝𝑘,𝑚)) = 𝑀 ] ≥ 1− 𝛿.

Since the AJPS-2 cryptosystem uses an error
correction code in its structure, the correctness of
the cryptosystem depends on the specific values of
the parameters of the error correction code, used
in the AJPS-2 cryptosystem.

Claim 1 ([2]). The AJPS-2 cryptosystem is
(1− 𝛿)-correct if the error correction code (ℰ ,𝒟)
corrects to

(4ℎ2 + 2ℎ)(1 + 𝜀)

errors for some value 𝜀, 0 < 𝜀 < 1, which satisfies
the following condition:

2−
(2ℎ2−1)𝜀2

6 < 𝛿.

The proof of Claim 1 uses the relations for the
Hamming weight of integers modulo Mersenne
number, which are described in Lemma 1.
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Lemma 1. For integers 𝐴,𝐵 ∈ {0, 1}𝑛 and a
module 𝑀𝑛 the following properties hold:

1) 𝐻𝑎𝑚(𝐴+𝐵 mod 𝑀𝑛) ≤
≤ 𝐻𝑎𝑚(𝐴) +𝐻𝑎𝑚(𝐵);

2) 𝐻𝑎𝑚(𝐴 ·𝐵 mod 𝑀𝑛) ≤
≤ 𝐻𝑎𝑚(𝐴) ·𝐻𝑎𝑚(𝐵);

3) If 𝐴 ̸= 0𝑛, then

𝐻𝑎𝑚(−𝐴 mod 𝑀𝑛) = 𝑛−𝐻𝑎𝑚(𝐴).

Security of the AJPS-2 cryptosystem is based
on the complexity of the Mersenne Low Hamming
Combination Search Problem (MLHCSP).

Definition 2 (MLHCSP) ([2]). Given a
Mersenne number 𝑀𝑛, an integer ℎ and a pair
of integers (𝑅, 𝑇 ), where 𝑅 is a randomly chosen
number from all 𝑛-bit integers, 𝑇 is calculated ac-
cording to the equation 𝑇 = 𝐹 ·𝑅+𝐺 mod 𝑀𝑛,
and 𝐹 and 𝐺 are chosen randomly and indepen-
dently from the set 𝐻𝑀𝑛,ℎ, find the numbers 𝐹
and 𝐺.

It is considered that MLHCSP is hard to solve.
This problem is resistant to many known attacks,
namely Meet-in-the-middle attacks, Guess and
Win, Lattice-based attacks, etc [7, 8, 9, 10].

3. Construction of a forgery attack on the
AJPS-2 cryptosystem using an active
eavesdropper

According to the G. Simmons theory, a forgery
attack is an attack in which a cryptanalyst inter-
cepts the true ciphertext from the sender, forms a
false ciphertext, and sends it to the recipient [11].
The attack is considered successful if the recipient
accepted the received message as veritable.

To construct a forgery attack on the AJPS-2
cryptosystem using the model of an active attacker,
the property of arithmetic modulo Mersenne num-
ber is used, which is described in the following
lemma.

Lemma 2. For any numbers 𝐴,𝐵 ∈ {0, 1}𝑛,
the Mersenne number 𝑀𝑛 and an natural number
𝑟 such that 𝑟 < 𝑛, the relation holds:

←−−−−−−−−−−−
𝐴+𝐵 mod 𝑀𝑛 =

←−
𝐴 +

←−
𝐵 mod 𝑀𝑛,

where
←−
𝑋 is the operation of cyclic shift of 𝑋 by 𝑟

positions to the left.
Proof. Since the cyclic shift by 𝑟 positions

modulo Mersenne number is equivalent to the mul-

tiplication by 2𝑟 [12], we have:
←−−−−−−−−−−−
𝐴+𝐵 mod 𝑀𝑛 = (𝐴+𝐵) · 2𝑟 mod 𝑀𝑛 =

= (𝐴·2𝑟)+(𝐵 ·2𝑟) mod 𝑀𝑛 =
←−
𝐴+
←−
𝐵 mod 𝑀𝑛,

which had to be proved.
□

Claim 2. The forgery attack with modified
plaintext is successful for the AJPS-2 cryptosystem:
given the pair (𝐶1, 𝐶2), the attacker can calculate
the ciphertexts (𝐶*

1 , 𝐶2), where the value of
←−
𝐶1 is

the result of the cyclic shift of 𝐶1 by 𝑟 positions to
the left, while the value of 𝑟 is any natural number
less than 𝑛.

Proof. The result of the encryption algorithm
of the AJPS-2 cryptosystem is a pair of numbers
(𝐶1, 𝐶2):

𝐶1 = 𝐴 ·𝑅+𝐵1 mod 𝑀𝑛;

𝐶2 = (𝐴 · 𝑇 +𝐵2 mod 𝑀𝑛)⊕ ℰ(𝑀).

Performing a cyclic shift of the number 𝐶1, ac-
cording to Lemma 2, we have:

←−
𝐶1 =

←−−−
𝐴 ·𝑅+

←−
𝐵1 mod 𝑀𝑛.

Since 𝐵1 was chosen randomly from the set
𝐻𝑀𝑛,ℎ during the encryption procedure and is
used once when calculating the value of 𝐶1, then
using the value

←−
𝐵1 instead of 𝐵1 when calculat-

ing 𝐶1 does not change the message 𝑚 that will
be received during decryption, because the Ham-
ming weight does not change when the number is
cyclically shifted, i.e.

←−
𝐵1 ∈ 𝐻𝑀𝑛,ℎ.

However, using
←−−−
𝐴 ·𝑅 instead of 𝐴 ·𝑅 affects

the decrypted message, because 𝑅 is a public key,
that is, the value is known to the attacker, and
the number 𝐴 is chosen randomly from the set
𝐻𝑀𝑛,ℎ at each encryption procedure. If we as-
sume that the number 𝑅 remains unchanged dur-
ing the calculation of the cyclic shift operation
to 𝐴 · 𝑅, then we have

←−−−
𝐴 ·𝑅 = 𝑌 · 𝑅, where

𝑌 is some 𝑛-bit number that satisfies the given
condition.

If the number 𝑌 has the Hamming weight ℎ
(although the probability of this event is relatively
small), then the value 𝐶*

1 will correspond to the
correct message. But even in this case the forgery
attack will be successful, because the integer 𝐴 is
used not only in the calculation of 𝐶1, but also in
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the calculation of 𝐶2. Thus, we have:

(𝐶*
1 , 𝐶2) = (𝑌 ·𝑅+𝐵1, (𝐴 · 𝑇 +𝐵2)⊕ ℰ(𝑀)),

that is, upon decryption of (𝐶*
1 , 𝐶2), the message

𝑀*, 𝑀* ̸= 𝑀 will be received.
□

Therefore, the AJPS-2 cryptosystem is not re-
sistant to a forgery attack using the active attacker
model.

4. Modification of AJPS-2 by using other
classes of numbers

As mentioned earlier, the arithmetic modulo
Mersenne number has many advantages for use in
cryptography, since there are efficient algorithms
for calculating time-consuming operations. Such
algorithms are often generalized to the case of
larger classes of numbers, in particular to the gen-
eralized Mersenne numbers [4, 5].

Let us concentrate on two classes of numbers
that are generalizations of Mersenne numbers:

• Crandall numbers 𝐶𝑅𝑛,𝑐 = 2𝑛 − 𝑐, where
𝑛, 𝑐 ∈ N and log2 𝑐 ≤ 𝑛

2 ;
• generalized Mersenne numbers of the type
𝐺𝑀𝑛,𝑚 = 2𝑛 − 2𝑚 − 1, where 𝑛,𝑚 ∈ N,
𝑛 > 𝑚.

Let us consider modifications of the AJPS-2
cryptosystem using arithmetic modulo 𝐺𝑀𝑛,𝑚

and 𝐶𝑅𝑛,𝑐. Algorithms for key generation, en-
cryption and decryption in the modifications are
the same as in the AJPS-2 cryptosystem, except
that all operations are performed modulo gener-
alized Mersenne number or the Crandall number.
Parameters 𝐹 and 𝐺 of the key generation algo-
rithm Gen and parameters 𝐴,𝐵1 and 𝐵2 of the
encryption algorithm Enc are chosen from the set

𝐻𝐺𝑛,𝑚,ℎ =
{︀
𝑥 ∈ {0, 1}𝑛 : 𝑥 < 𝐺𝑀𝑛,𝑚 and

𝐻𝑎𝑚(𝑥) = ℎ
}︀

in a modification using arithmetic modulo gen-
eralized Mersenne number 𝐺𝑀𝑛,𝑚 and from the
set

𝐻𝐶𝑛,𝑐,ℎ =
{︀
𝑥 ∈ {0, 1}𝑛 : 𝑥 < 𝐶𝑅𝑛,𝑐 and

𝐻𝑎𝑚(𝑥) = ℎ
}︀

in a modification using arithmetic modulo Cran-
dall number 𝐶𝑅𝑛,𝑐.

In addition, in order to construct modifications
of AJPS-2 by changing the class of numbers used
as a module, it is necessary to define conditions
on the characteristics of the error correction code
used in the AJPS-2 encryption and decryption al-
gorithms. The following theorems are used to
determine the necessary conditions for error cor-
rection code parameters.

Theorem 1 ([2]). Let 𝑋 be any 𝑛-bit num-
ber, then for any 𝑛-bit number 𝑌 having Hamming
weight 𝑘 and any value 𝜀, 𝜀 > 0 holds:

Pr
{︀
𝐻𝑎𝑚𝑑𝑖𝑠𝑡(𝑋,𝑋 + 𝑌 ) ≥ 2𝑘(1 + 𝜀)

}︀
≤

≤ 2−2𝑘(𝜀−ln(1+𝜀)),

where 𝐻𝑎𝑚𝑑𝑖𝑠𝑡 – a function for calculating the
Hamming distance between two binary strings of
the same length.

Theorem 2 ([13]). Let 𝐺𝑀𝑛,𝑚,𝑘 be a gener-
alized Mersenne number of the form 𝐺𝑀𝑛,𝑚,𝑘 =
2𝑛 − 2𝑚 − 1 − 𝑘, where 𝑛,𝑚, 𝑘 ∈ N, 𝑛 > 𝑚
and 𝑘 < 2𝑛 − 2𝑚 − 1, let there also be two 𝑛-
bit numbers 𝐴,𝐵 such that 𝐴 < 𝐺𝑀𝑛,𝑚,𝑘 and
𝐵 < 𝐺𝑀𝑛,𝑚,𝑘. Then the following relations for
the Hamming weight are fulfilled:

1) 𝐻𝑎𝑚(𝐴+𝐵 mod 𝐺𝑀𝑛,𝑚,𝑘) ≤
≤ 𝐻𝑎𝑚(𝐴) +𝐻𝑎𝑚(𝐵) + 𝑘;

2) 𝐻𝑎𝑚(𝐴 ·𝐵 mod 𝐺𝑀𝑛,𝑚,𝑘) ≤
≤ (𝑘 + 1) ·𝐻𝑎𝑚(𝐴) ·𝐻𝑎𝑚(𝐵)+

+(𝑚+ 𝑘 − 1) ·min(𝐻𝑎𝑚(𝐴), 𝐻𝑎𝑚(𝐵)).

Remark. It is obvious that the numbers
𝐺𝑀𝑛,𝑚,𝑘 are a generalization of the numbers
𝐺𝑀𝑛,𝑚, because the numbers 𝐺𝑀𝑛,𝑚 – these
are the numbers 𝐺𝑀𝑛,𝑚,𝑘 when 𝑘 = 0. In partic-
ular, the numbers 𝐺𝑀𝑛,𝑚,𝑘 can be considered as
Crandall numbers 𝐶𝑅𝑛,𝑐 for 𝑐 = 2𝑚 + 1 + 𝑘 for
the parameters 𝑘,𝑚 ∈ N, 𝑘 < 2𝑛−2𝑚−1, 𝑚 < 𝑛.
Thus, the relations described in Theorem 2 can be
generalized to the cases of the numbers 𝐺𝑀𝑛,𝑚

and 𝐶𝑅𝑛,𝑐.
Using Theorems 1 and 2, we determine the con-

ditions for the error correction code for modifica-
tions of the AJPS-2 cryptosystem using arithmetic
modulo generalized Mersenne numbers.

Claim 3. A modification of the AJPS-2 cryp-
tosystem using arithmetic modulo generalized
Mersenne number 𝐺𝑀𝑛,𝑚 is (1− 𝛿)-correct if the
error correction code (ℰ ,𝒟) corrects to

(4ℎ2 + 4𝑚ℎ− 2ℎ)(1 + 𝜀)
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errors for some value 𝜀, 0 < 𝜀 < 1, which satisfies
the following condition:

2−2(ℎ2+(𝑚−1)ℎ) 𝜀
2

3

(︂
1 + 2−

2ℎ𝜀2

3

)︂
< 𝛿.

Proof. To decrypt the message, the following
value is calculated:

𝒟((𝐶1 · 𝐹 mod 𝐺𝑀𝑛,𝑚)⊕ 𝐶2),

where (ℰ ,𝒟) is an error correction code, (𝐶1, 𝐶2)
is a pair of ciphertexts, 𝐹 is a secret key. Herewith
we have:

𝐶1 = 𝐴 ·𝑅+𝐵1 mod 𝐺𝑀𝑛,𝑚;

𝐶2 = (𝐴·(𝐹 ·𝑅+𝐺)+𝐵2 mod 𝐺𝑀𝑛,𝑚)⊕ℰ(𝑀).

For correct decryption, it is necessary that the
values 𝐶1 · 𝐹 mod 𝐺𝑀𝑛,𝑚 and 𝐶2 have a small
Hamming distance (the specific value of the Ham-
ming distance depends on the determined value of
the probability that the initial message 𝑀 will be
received as a result of decryption). Therefore, it
is necessary to determine the dependence of the
parameter 𝛿 and the Hamming distance of such
values

𝐶1 · 𝐹 = 𝐴 · 𝐹 ·𝑅+𝐵1 · 𝐹 mod 𝐺𝑀𝑛,𝑚;

𝐶2 = 𝐴 · 𝐹 ·𝑅+𝐴 ·𝐺+𝐵2 mod 𝐺𝑀𝑛,𝑚.

1) Let us consider values 𝐴 · 𝐹 · 𝑅 + 𝐵1 · 𝐹
and 𝐴 · 𝐹 ·𝑅. Given that all calculations are per-
formed modulo 𝐺𝑀𝑛,𝑚, according to Theorem 2,
the Hamming weight of the number 𝐵1 ·𝐹 can be
estimated as follows:

𝐻𝑎𝑚(𝐵1 · 𝐹 mod 𝐺𝑀𝑛,𝑚) ≤ ℎ2 + (𝑚− 1)ℎ.

Let us denote the value 𝐻𝑎𝑚𝑑𝑖𝑠𝑡(𝐴𝐹𝑅,𝐴𝐹𝑅 +
+𝐵1𝐹 ) as 𝐻1. Then, applying Theorem 1, we
have:

Pr
{︀
𝐻1 ≥ 2(ℎ2 + (𝑚− 1)ℎ)(1 + 𝜀)

}︀
≤

≤ 2−2(ℎ2+(𝑚−1)ℎ)(𝜀−ln(1+𝜀)).

2) Now consider the values 𝐴 · 𝐹 · 𝑅 and
𝐴 · 𝐹 ·𝑅+𝐴 ·𝐺+𝐵2. Similarly, using Theo-
rem 2, we have:

𝐻𝑎𝑚(𝐴 ·𝐺+𝐵2 mod 𝑀𝑛) ≤ ℎ2 +𝑚 · ℎ.
Let us denote 𝐻𝑎𝑚𝑑𝑖𝑠𝑡(𝐴𝐹𝑅,𝐴𝐹𝑅+𝐴𝐺+𝐵2)
as 𝐻2. Then, applying Theorem 1, we have:

Pr
{︀
𝐻2 ≥ 2(ℎ2 +𝑚ℎ)(1 + 𝜀)

}︀
≤

≤ 2−2(ℎ2+𝑚ℎ)(𝜀−ln(1+𝜀)).

Then the combined probability of the considered
events is as follows:

Pr
{︀
𝐻1 ≥ 2(ℎ2 + (𝑚− 1)ℎ)(1 + 𝜀),

𝐻2 ≥ 2(ℎ2 +𝑚ℎ)(1 + 𝜀)
}︀
.

Using the Boole’s inequality, we have:

Pr
{︀
𝐻1 ≥ 2(ℎ2 + (𝑚− 1)ℎ)(1 + 𝜀),

𝐻2 ≥ 2(ℎ2 +𝑚ℎ)(1 + 𝜀)
}︀
≤

≤ Pr
{︀
𝐻1 ≥ 2(ℎ2 + (𝑚− 1)ℎ)(1 + 𝜀)

}︀
+

+ Pr
{︀
𝐻2 ≥ 2(ℎ2 +𝑚ℎ)(1 + 𝜀)

}︀
≤

≤ 2−2(ℎ2+(𝑚−1)ℎ)(𝜀−ln(1+𝜀))+

+2−2(ℎ2+𝑚ℎ)(𝜀−ln(1+𝜀)) =

= 2−2(ℎ2+(𝑚−1)ℎ)(𝜀−ln(1+𝜀))
(︁
1 + 2−2ℎ(𝜀−ln(1+𝜀))

)︁
.

Let us consider the value 𝜀− ln(1 + 𝜀). Using the
expansion of ln(1 + 𝜀) into the Taylor series, we
obtain:

𝜀−
(︂
𝜀− 𝜀2

2
+

𝜀3

6
− . . .

)︂
≥ 𝜀− 𝜀+

𝜀2

2
− 𝜀3

6
=

=
𝜀2

2
− 𝜀3

6
=

3 · 𝜀2 − 2 · 𝜀3

6
.

Since 0 < 𝜀 < 1, then 𝜀3 ≤ 𝜀2, therefore, we
have:

𝜀− ln(1 + 𝜀) ≥ 3 · 𝜀2 − 2 · 𝜀2

6
=

𝜀2

6
.

According to the decryption algorithm of the
AJPS-2 cryptosystem, it is necessary to obtain an
estimate for the following value of the Hamming
distance:

𝐻𝑎𝑚𝑑𝑖𝑠𝑡(𝐴𝐹𝑅+𝐵1𝐹, 𝐴𝐹𝑅+𝐴𝐺+𝐵2).

For this, we use the triangle inequality with the
𝐻𝑎𝑚𝑑𝑖𝑠𝑡 metric. Thus, we get the following:

𝐻𝑎𝑚𝑑𝑖𝑠𝑡

(︀
𝐴𝐹𝑅+𝐴𝐺+𝐵2, 𝐴𝐹𝑅+𝐵1𝐹

)︀
≥

≥ 𝐻𝑎𝑚𝑑𝑖𝑠𝑡(𝐴𝐹𝑅,𝐴𝐹 ·𝑅+𝐵1𝐹 )+

+𝐻𝑎𝑚𝑑𝑖𝑠𝑡(𝐴𝐹𝑅,𝐴𝐹𝑅+𝐴𝐺+𝐵2) =

= 𝐻1 +𝐻2 ≥
≥ 2(ℎ2 + (𝑚− 1)ℎ)(1 + 𝜀) + 2(ℎ2 +𝑚ℎ)(1 + 𝜀) =

= (4ℎ2 + 4𝑚ℎ− 2ℎ)(1 + 𝜀).

Then the probability of fulfilling this will be as
follows:

Pr
{︀
𝐻𝑎𝑚𝑑𝑖𝑠𝑡(𝐴𝐹𝑅+𝐵1𝐹,𝐴𝐹𝑅+𝐴𝐺+𝐵2) ≥

≥ (4ℎ2 + 4𝑚ℎ− 2ℎ)(1 + 𝜀)
}︀
≤
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≤ 2−2(ℎ2+(𝑚−1)ℎ) 𝜀
2

3

(︂
1 + 2−

2ℎ𝜀2

3

)︂
.

Thus, to ensure the (1− 𝛿)-correctness of the
modification of the AJPS-2 cryptosystem using
arithmetic modulo generalized Mersenne number,
it is necessary that the error correction code (ℰ ,𝒟)
corrects to

(4ℎ2 + 4𝑚ℎ− 2ℎ)(1 + 𝜀)

errors for some 𝜀, 0 < 𝜀 < 1, which satisfying the
condition:

2−2(ℎ2+(𝑚−1)ℎ) 𝜀
2

3

(︂
1 + 2−

2ℎ𝜀2

3

)︂
< 𝛿.

□

The security of the modification of the AJPS-2
cryptosystem using arithmetic modulo 𝐺𝑀𝑛,𝑚

is based on the complexity of the Generalized
Mersenne Low Hamming Combination Search
Problem (GMLHCSP).

Definition 3 (GMLHCSP). Given a generalized
Mersenne number 𝐺𝑀𝑛,𝑚, an integer ℎ and a pair
of numbers (𝑅, 𝑇 ), where 𝑅 is a random 𝑛-bit
number such that 𝑅 ≤ 𝐺𝑀𝑛,𝑚, and the integer 𝑇
is calculated according to the relation

𝑇 = 𝐹 ·𝑅+𝐺 mod 𝐺𝑀𝑛,𝑚,

and 𝐹 and 𝐺 are chosen independently and ran-
domly from the set 𝐻𝐺𝑛,𝑚,ℎ, find 𝐹 and 𝐺.

We also determine the conditions for the error
correction code’s parameters for the modification
of the AJPS-2 cryptosystem using arithmetic mod-
ulo Crandall number 𝐶𝑅𝑛,𝑐.

Claim 4. A modification of the AJPS-2 cryp-
tosystem using arithmetic modulo Crandall number
𝐶𝑅𝑛,𝑐 is (1−𝛿)-correct if the error correction code
(ℰ ,𝒟) corrects to

(4(𝑐− 2𝑚)ℎ2 + 2ℎ(2𝑚+ 2𝑐+ 2𝑚+1 − 3)+

+2(𝑐− 2𝑚 − 1))(1 + 𝜀)

errors, where 𝑐 = 2𝑚 + 1 + 𝑘, 𝑚, 𝑘 ∈ N, and 𝜀,
0 < 𝜀 < 1, which satisfies the following condition:

2−2((𝑐−2𝑚)ℎ2+(𝑚+𝑐−2𝑚−2)ℎ)· 𝜀
2

3 ×

×
(︂
1 + 2−(ℎ+𝑐−2𝑚−1)· 𝜀

2

3

)︂
< 𝛿.

Proof. The proof is similar to the proof of
Claim 3.

Using Theorem 2, we have:

𝐻𝑎𝑚(𝐹 ·𝐵1 mod 𝐶𝑅𝑛,𝑐) ≤
≤ (𝑐− 2𝑚)ℎ2 + (𝑚+ 𝑐− 2𝑚 − 2)ℎ;

𝐻𝑎𝑚(𝐴 ·𝐺+𝐵2 mod 𝐶𝑅𝑛,𝑐) ≤
≤ (𝑐− 2𝑚)ℎ2 + (𝑚+ 𝑐− 2𝑚 − 1)ℎ+ 𝑐− 2𝑚 − 1.

We obtain the following estimate of the com-
bined probability:

2−2((𝑐−2𝑚)ℎ2+(𝑚+𝑐−2𝑚−2)ℎ) 𝜀2

3 +

+2−2((𝑐−2𝑚)ℎ2+(𝑚+𝑐−2𝑚−1)ℎ+𝑐−2𝑚−1) 𝜀2

3 =

= 2−2((𝑐−2𝑚)ℎ2+(𝑚+𝑐−2𝑚−2)ℎ)· 𝜀
2

3 ×

×
(︂
1 + 2−2(ℎ+𝑐−2𝑚−1)· 𝜀

2

3

)︂
.

Applying the triangle inequality, we have:

2((𝑐− 2𝑚)ℎ2 + (𝑚+ 𝑐− 2𝑚 − 1)ℎ+ 𝑐− 2𝑚 − 1)+

+2
(︀
(𝑐− 2𝑚)ℎ2 + (𝑚+ 𝑐− 2𝑚 − 2)ℎ

)︀
=

= 4(𝑐− 2𝑚)ℎ2 + 2ℎ(2𝑚+ 2𝑐− 2𝑚+1 − 3)+

+2(𝑐− 2𝑚 − 1).

□

The security of the modification of AJPS-2,
which uses operations modulo Crandall number
𝐶𝑅𝑛,𝑐, relies on the assumption that it is hard
to solve the CRLHCSP (Crandall Low Hamming
Combination Search Problem).

Definition 4 (CRLHCSP). Given a Crandall
number 𝐶𝑅𝑛,𝑐, an integer ℎ and a pair of numbers
(𝑅, 𝑇 ), where 𝑅 is a random 𝑛-bit number such
that 𝑅 ≤ 𝐶𝑅𝑛,𝑐, and 𝑇 is calculated according to
the relation

𝑇 = 𝐹 ·𝑅+𝐺 mod 𝐶𝑅𝑛,𝑐,

and 𝐹 and 𝐺 are chosen independently and
randomly from the set 𝐻𝐶𝑛,𝑐,ℎ, find the numbers
𝐹 and 𝐺.

Thus, we have described two modifications of
AJPS-2 that use classes of numbers other than the
class of Mersenne numbers. The advantage of the
constructed modifications of AJPS-2 using arith-
metic modulo generalized Mersenne number and
arithmetic modulo Crandall number is a significant
increase in the class of numbers used as a module
in the cryptosystem. Also, the forgery attack us-
ing the active attacker model, which is described
in Claim 2 for the original AJPS-2 cryptosystem,
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is unsuccessful for the constructed modifications
of AJPS-2, since the attack is based on the prop-
erty of the cyclic shift operation modulo Mersenne
number described in Lemma 2, while for gener-
alized Mersenne numbers and Crandall numbers
this property is not fulfilled.

5. Conclusion

In this paper, we presented the results of
the analysis of the post-quantum cryptosystem
AJPS-2. We have constructed a forgery attack
using the active attacker model for AJPS-2 and
described two modifications of AJPS-2 by using
number classes other than the class of Mersenne
numbers. The class of generalized Mersenne num-
bers and the class of Crandall numbers were used
to construct the modifications.

New algebraic problems are defined which
are modifications of the MLHCSP problem: the
GMLHCSP problem (using arithmetic modulo
generalized Mersenne number) and the CRLHCSP
(using arithmetic modulo Crandall number), where
the security of the respective modifications is
based on the complexity of these problems.

The advantage of created modifications of the
AJPS-2 cryptosystem using arithmetic modulo
generalized Mersenne number and arithmetic
modulo Crandall number is a significant increase
in the class of numbers used as a module in
the cryptosystem, as well as security against a
described forgery attack.
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