
UDC 681.3.06

Parameters of the Fastest Cryptographically Strong Twisted
Edwards Curves

A. Bessalov1, a, V. Dykyi1, b, A. Malyshko1, c, O. Tsygankova1, d, D. Yadukha1, e

1National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»,
Institute of Physics and Technology

Abstract
An overview of twisted Edwards curves is given. The complexity of group operations for twisted Edwards curves is
estimated. A computation minimization method using curve parameters minimum values selection is proposed. The
tables of system-wide parameters for the 25 fastest crypto-strong twisted Edwards curves with field modulus lengths of
192, 224, 256, 384 and 521 bits are given.
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Introduction
The term «twisted Edwards curves» was defined by

Bernstein Daniel J. and others [1]. In this paper, adding
the second parameter into the curve equation was in
fact only a generalization of the original modified form
of the Edwards-Bernstein curve [2], named in [1] as
complete Edwards curve. Since in our papers [3, 4, 5,
6, 7, 8] we justify and narrow the notion of «twisted
Edwards curves» down to a separate class of curves in
the generalized Edwards form with properties unique
for this class, in Section 1 we give a brief overview
of the properties of this class. It will help to avoid
misunderstandings in terminology, ambiguous in world
literature.

Section 2 dwells upon the possible techniques for
searching crypto-strong twisted Edwards curves with
minimal complexity of group operations. In this paper,
we fix 𝑎 = 2, which is its minimum possible value, and
then gradually increase the second parameter 𝑑 until
we find curves of almost prime order. The results of
the calculation of system-wide parameters of 25 curves
with standard values of the field modulus are given. A
comparative analysis of the results of this and previous
paper [5] is given.

1. Definition and properties of twisted
Edwards curves

In [1], twisted Edwards curves were defined as a
generalization of curves [2] with one parameter 𝑑 by
adding a new parameter 𝑎 into the equation

𝑎𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2, where 𝑎, 𝑑 ∈ 𝐹 *
𝑝 ,

𝑑(𝑎− 𝑑) ̸= 0, 𝑑 ̸= 1, 𝑝 ̸= 2.
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Such curve with 𝑎 = 1 in [1] is called Edwards curve,
but if 𝑑 is quadratic nonresidue (𝒳 (𝑑) = −1), it is
called complete Edwards curve. This term is associated
with the completeness of curve point addition law [2].
Thus, class of complete curves is a subclass of Edwards
curves, and the latter is a subclass of twisted curves.
This leads to confusion while calculating the number
of isomorphisms or isogenies of different intersecting
classes of curves and to the necessity of their separation
to non-overlapping classes with specific properties. This
problem was solved in [3, 7]. Let’s define the curve in
the generalized Edwards form by the equation

𝐸𝑎,𝑑 : 𝑥2 + 𝑎𝑦2 = 1 + 𝑑𝑥2𝑦2, where 𝑎, 𝑑 ∈ 𝐹 *
𝑝 ,

𝑑(𝑎− 𝑑) ̸= 0, 𝑑 ̸= 1, 𝑝 ̸= 2. (1)

Now modified point addition law has the form

(𝑥1, 𝑦1) + (𝑥2, 𝑦2) =

=
(︁ 𝑥1𝑥2 − 𝑎𝑦1𝑦2
1− 𝑑𝑥1𝑥2𝑦1𝑦2

,
𝑥1𝑦2 + 𝑥2𝑦1

1 + 𝑑𝑥1𝑥2𝑦1𝑦2

)︁
. (2)

Doubling of a point according to (2) takes the form

2(𝑥1, 𝑦1) =
(︁ 𝑥2

1 − 𝑎𝑦21
1− 𝑑𝑥2

1𝑦
2
1

,
2𝑥1𝑦1

1 + 𝑑𝑥2
1𝑦

2
1

)︁
. (3)

The usage of modified laws (2) and (3) allows us to
keep horizontal symmetry (relative to the 𝑥 axis) of the
inverse points, conventional in theory of elliptic curves,
instead of vertical symmetry [1, 2]. Now, if we define
inverse point as −𝑃 = (𝑥1,−𝑦1), according to (1) we
get coordinates of the group’s neutral element:

𝑂 = (𝑥1, 𝑦1) + (𝑥1,−𝑦1) = (1, 0).

Except for neutral element 𝑂, there always exists a
second-order point 𝐷0 = (−1, 0) on the axis 𝑥, for
which according to (3), 2𝐷0 = (1, 0) = 𝑂. Depending
on the properties of parameters 𝑎 and 𝑑 it is possible
to acquire two exceptional second-order points and
two or four fourth-order points. As we can see from
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(1), the fourth-order points ±𝐹0 =
(︁
0,± 1√

𝑎

)︁
can be

found on the axis 𝑦, for which ±2𝐹0 = 𝐷0 = (−1, 0).
These points exist over the field 𝐹𝑝 if the parameter
𝑎 is a square (quadratic residue). We emphasize right
away that, in accordance with the new classification
[3], we determine the twisted Edwards curve (1) with
𝒳 (𝑎) = 𝒳 (𝑑) = −1. The 4th-order points ±𝐹0, which
belong to the curve, do not exist over a prime field
(they appear in the extension 𝐹𝑝2).

From equation (1) we determine the squares:

𝑥2 =
1− 𝑎𝑦2

1− 𝑑𝑦2
, 𝑦2 =

1− 𝑥2

𝑎− 𝑑𝑥2
,

that in some cases generate exceptional points at infinity
(we put the sign ∞ when divided by 0):

𝐷1,2 =
(︁
±

√︂
𝑎

𝑑
,∞

)︁
; ±𝐹1 =

(︁
∞,± 1√

𝑑

)︁
. (4)

They occur in cases 𝒳 (𝑎𝑑) = 1 and 𝒳 (𝑑) = 1 respec-
tively. According to the rules of passage to the limit
and the doubling law (3), we can verify that 2𝐷1,2 = 𝑂
and ±2𝐹1 = 𝐷0 = (−1, 0). In other words, under the
conditions of their existence the exceptional points 𝐷1,2

have the 2nd order, and the exceptional points ±𝐹1 are
4th-order points.

In addition, points of the 4th order may exist as
non-exceptional with non-zero 𝑥 and 𝑦 coordinates.

The substantiation of the new classification of curves
in the generalized Edwards form is given in [3, 7]. The
definitions of the 3 classes of these curves and the list
of their fundamental properties are given below.

Depending on the properties of the parameters 𝑎 and
𝑑, the curves in the generalized Edwards form (1) are
divided into 3 non-intersecting classes:

• Complete Edwards curves with condition 𝐶1:

𝒳 (𝑎𝑑) = −1;

• Twisted Edwards curves with conditions 𝐶2.1:

𝒳 (𝑎) = 𝒳 (𝑑) = −1;

• Quadratic Edwards with conditions 𝐶2.2:

𝒳 (𝑎) = 𝒳 (𝑑) = 1.

The main properties of these classes of curves [6, 7, 8]:
1) Regarding 2nd-order points, the first class of com-

plete Edwards curves over a prime field is a class of
cyclic curves (with an exceptional 2nd-order point),
while the twisted and quadratic Edwards curves
form classes of non-cyclic curves (3 points of the
2nd order). The maximum order of points of the
curves of the last classes do not exceed 𝑁𝐸

2 .
2) The class of complete Edwards curves does not

contain exceptional points.
3) Twisted Edwards curves only contain two excep-

tional 2nd-order points 𝐷1,2 =
(︁
±

√︀
𝑎
𝑑 ,∞

)︁
, and

the quadratic Edwards curves, besides them, con-
tain two more exceptional 4th-order points ±𝐹1 =(︁
∞,± 1√

𝑑

)︁
.

4) Edwards’ twisted and quadratic curves form
quadratic twist pairs based on the transformation
of the parameters: 𝑎′ = 𝑐𝑎, 𝑑′ = 𝑐𝑑, 𝒳 (𝑐) = −1.

5) In Edwards’ classes of twisted and quadratic curves,
the replacement 𝑎 ↔ 𝑑 leads to isomorphism
𝐸𝑎,𝑑 ∼ 𝐸𝑑,𝑎.

6) The complete and quadratic Edwards curves are
isomorphic to the curves with parameter 𝑎 = 1:
𝐸𝑎,𝑑 ∼ 𝐸1, 𝑑𝑎

. The introduction of a new parameter
𝑎 into the equation of the curve (1) is justified only
for the class of twisted Edwards curves.

7) Twisted Edwards curves with 𝑝 ≡ 1 mod 4 do not
contain 4th-order points.

8) For the odd-order points, the points addition law
(2) is always complete (that is, the sum of any pair
of points does not give an exceptional point).

Let us analyze some new properties of the 4th-order
points.

Theorem 1. Non-exceptional 4th-order points

±𝐹2 =
(︁

4

√︂
1

𝑑
,±

√︃
−1√
𝑎𝑑

)︁
of a curve in the form (1) with nonzero 𝑥 exist if and
only if one of the following conditions is satisfied:

i) 𝑝 ≡ 3 mod 4: 𝒳 (𝑎) = 𝒳 (𝑑) = −1;
ii) 𝑝 ≡ 1 mod 4: 𝒳 (𝑎) = 𝒳 (𝑑) = 1, 𝑎𝑑 = 𝑐4.
Proof.

1) Necessity. Exceptional points ±𝐹1 =
(︁
∞,± 1√

𝑑

)︁
according to formulas (4) arise when 𝒳 (𝑑) = 1 are
excluded from consideration in accordance with
the theorem. The points ±𝐹0 =

(︁
0,± 1√

𝑎

)︁
at 𝑥 =

0 are also not considered. Let 𝐹2 = (𝑥1, 𝑦1) be
a 4th-order point of the curve (1), then 2𝐹2 =
2(𝑥1, 𝑦1) = 𝐷1. According to (3) and (4), we have
two equations:

𝑥2
1 − 𝑎𝑦21

1− 𝑑𝑥2
1𝑦

2
1

=

√︂
𝑎

𝑑
,

2𝑥1𝑦1
1 + 𝑑𝑥2

1𝑦
2
1

= ∞.

Hence 1 + 𝑑𝑥2
1𝑦

2
1 = 0, i.e. 𝑥2

1 + 𝑎𝑦21 = 0, then
𝑥2
1 = −𝑎𝑦21 . Since 𝑥1 ̸= 0, it follows that 𝑦1 ̸= 0.

Here the second equality is based on equation (1)
of the curve. According to the first equation and
equality 𝑥2

1 = −𝑎𝑦21 we have

2𝑥2
1

1 + 𝑑
𝑎𝑥

4
1

=

√︂
𝑎

𝑑
;

𝑑𝑥4
1 − 2

√
𝑎𝑑𝑥2

1 + 𝑎 = 0;

𝑥2
1 =

𝑎

𝑑
, 𝑦21 =

−1√
𝑎𝑑

.

Thus, we get 4 points with coordinates:

±𝐹2,3 =
(︁
± 4

√︂
1

𝑑
,±

√︃
−1√
𝑎𝑑

)︁
, (5)

which are defined in the formulation of the theorem.
When 𝑝 ≡ 3 mod 4 the element (−1) is a quadratic
nonresidue [3], then (−𝑎) is a quadratic residue
under conditions (i) and the equality 𝑥2

1 = −𝑎𝑦21
correctly links the squares of the coordinates of
the point 𝐹2. Let 𝛽 be a primitive element of a
multiplicative group 𝐹 *

𝑝 , and 𝛽2 be the square of
this group, then under condition (i) we have

𝛽2 = 𝛽2𝛽𝑝−1 = 𝛽2+4𝑘+2 = 𝛽4(𝑘+1).
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Then any square has square roots and 4th-order
roots at 𝑝 ≡ 3 mod 4. The necessity of the exis-
tence of the first coordinates in (5) while consider-
ing conditions (i) is proved. Taking into account
conditions (i) and taking the value 𝒳 (−

√
𝑎𝑑) = 1

(i.e. as a quadratic residue,
√
𝑎𝑑 is a quadratic

nonresidue), we get two solutions for the second co-
ordinates for each point from (5). Since the squares
𝑎𝑑 and 𝑎

𝑑 have 4th-order roots, such points exist
under the conditions of the theorem. The necessity
of conditions (i) of the theorem is proved.
If 𝑝 ≡ 1 mod 4 (condition (ii) of the theorem),
(−1) is a quadratic nonresidue. Then equality
𝑥2
1 = −𝑎𝑦21 holds if 𝒳 (𝑎) = 1. For a square of the

element of multiplicative group,

𝛽2 = 𝛽2𝛽𝑝−1 = 𝛽2+4𝑘 = 𝛽2(2𝑘+1).

In this case, if 𝛽 = 𝑐2, number of elements 𝑐4 is 𝑝−1
4

for all nonzero 𝑐. Both coordinates of ±𝐹2,3 exist if
𝒳 (𝑎) = 𝒳 (𝑑) = 1 and 𝑎𝑑 = 𝑐4 (or 𝑎

𝑑 = 𝑐4 if 𝑐 ∈ 𝐹𝑝).
Then also for second coordinate 1

𝑎𝑑 = 𝑐4

𝑎2 = 𝑒4. So,
the necessity of condition (ii) is proved.

2) Sufficiency. Let condition (i) or (ii) be fulfilled.
Then there exist 4 points

±𝐹2,3 =
(︁
± 4

√︂
1

𝑑
,±

√︃
−1√
𝑎𝑑

)︁
,

for which according to (3) we get ±2𝐹2,3 = 𝐷1,2.
We know that doubling 4th-order points gives 2nd-
order points, so defined ±𝐹2,3 are the points of 4th
order. This proves the sufficiency of this theorem.

We can interpret points ±𝐹2,3 as results of the divi-
sion of 2nd-order points by two: 𝐷1,2

2 [3, 6].
Example 1. Consider the curve

𝑥2 + 2𝑦2 = (1− 2𝑥2𝑦2) mod 13

in condition (i) of the theorem 1. According to the
theorem, this curve does not contain 4th-order points.
This curve order is 𝑁𝐸 = 20. In addition to the
neutral element 𝑂 = (1, 0) it has 2nd-order points
𝐷0 = (−1, 0), 𝐷1,2 = (±5,∞), four 5th-order points
and twelve 10th-order points.

Proposition 1. All Edwards curves (1) with con-
straints 𝒳 (𝑎) = 𝒳 (𝑑) = −1 have order 𝑁𝐸 = 4𝑛 (𝑛 is
odd) if 𝑝 ≡ 1 mod 4.

Proof. In conditions 𝒳 (𝑎) = 𝒳 (𝑑) = −1 of the
theorem 1, provided that 𝑝 ≡ 1 mod 4, the curve does
not contain 4th-order points, but it contains non-cyclic
4th-order subgroup 𝐺 = {𝑂,𝐷0, 𝐷1, 𝐷2} of 2nd-order
points. Thus, the orders of all other points can be 𝑛
and 2𝑛 (along with possible odd factors on 𝑛). So, the
subgroup 𝐺4 of the curve has the least possible even
order of 4, and the order of the curve is 𝑁𝐸 = 4𝑛. The
proposition is proved.

Complexities of twisted Edwards curves group op-
erations are given in the paper [5]. Let 𝑀 be the
multiplication complexity in a field, 𝑆 – squaring com-
plexity, 𝑈 – the complexity of multiplying by a curve’s
parameter. Then complexity of points addition in pro-
jective coordinates is 𝑉𝐸 = 10𝑀 +1𝑆 +2𝑈 , and points
doubling complexity is 𝑇𝐸 = 3𝑀 + 4𝑆 + 1𝑈 . One can

minimize computations and get the fastest curves by
looking for strong curves with minimal values of the
parameters 𝑎 and 𝑑. Thus, one can disregard the com-
plexity 𝑈 in group operations’ complexity estimation.
Paper [8] demonstrates that in such way one reaches the
highest possible 1.6 times exponentiation acceleration
compared to a curve in the canonical Weierstrass form.

2. Results of system-wide parameters calcula-
tion with minimal effort for secure twisted
Edwards curves

In this section, we consider the prime fields with
modulus length 192, 224, 256, 384 and 512 bit, which
are recommended by FIPS-186-4-2013 standard, and
we give a list of parameters of Edwards twisted curves
with almost prime order 𝑁𝐸 = 4𝑛 (𝑛 – prime) over
each of the fields. The results of system-wide parame-
ters calculations in the hexadecimal numeric system are
presented in tables 1, 2. Here modulus of length 𝐿 are
defined as 𝑝𝐿. Fields modulus 𝑝 ≡ 5 mod 8 were cho-
sen as prime numbers, where element 2 is a quadratic
nonresidue and also with small Hamming’s weight (3, 4
or 5). For these fields, value 𝑎 = 2 is fixed as minimal
nonresidue. After that by successive incrementation we
determine the minimum value of parameter 𝑑, for which
co-factor 𝑛 of curves order is a prime number. This al-
gorithm is more time-consuming, than in previous work
[5], but provides a real minimization of computational
complexity and, accordingly, a maximum speed of a
point exponentiation. Particularly, value 𝑎 = 2 corre-
sponds to one addition in the field, and this operation
usually considered as free and ignored when evaluating
computational complexity. The values of 𝑝, 𝑎 and 𝑑,
orders 𝑛 = 𝑁𝐸

4 of the generators of the cryptosystem
and it’s coordinates 𝐺 = (𝑥𝐺, 𝑦𝐺) are given for every
curve.

Note that the parameter 𝑎 = 2 is a quadratic residue
only if 𝑝 ≡ 3 mod 8. It means that binary notation of
𝑝 ends with three least significant bits of 101 = 510 or
011 = 310. Other more significant bits are 0 mod 8. In
paper [5], only one 𝑝 = 2255 + 238 + 22 + 1 from the
table 5 meets these requirements (in this case 𝑎 = 2), so
almost all curves in [5] have minimal parameter 𝑎 = 3, 4
or 5. Also, in [5] curves’ characteristics 𝑝 varied, so
parameters 𝑑 have lower values for some modules.

For primality testing of 𝑝 and 𝑛 we used Miller–Rabin
and Lucas–Lehmer algorithms. To get elliptic curves
orders we used SEA algorithm implemented in PAR-
I/GP. Points 𝐺 as cryptosystem’s generators were found
by doubling a random point that satisfies equality (1)
(points on the non-cyclic twisted curve of order 4𝑛 have
maximum order of 2𝑛).

Each of the tables below contains the parameters of
five Edwards twisted curves with the minimum value
of the parameter 𝑎 = 2. Next, the parameter 𝑑 was
chosen as the smallest of values for which the order of
the curve 4𝑛 is almost a prime number (𝑛 is a prime).
The order of the curves by length is comparable to the
length of the field.
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Table 1. Twisted Edwards curves of almost simple order over a field with a 𝑝192 module

𝑝 = 2191 + 27 + 22 + 1

𝑎 = 2
𝑑 = 75
𝑛 = 3𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴5𝐸98𝐷264𝐴3247𝐶2080279𝐷𝐵
𝐺 = (9𝐷𝐴𝐷8642𝐵𝐵8512𝐶𝐷04𝐷60027𝐵𝐸9493𝐷𝐸1640463𝐴58𝐷𝐸59𝐴𝐵,
418𝐸𝐹23𝐸77465969𝐷162144845𝐶𝐵𝐹44𝐹56𝐷83𝐵𝐵𝐹115𝐹𝐴360)
𝑎 = 2
𝑑 = 403
𝑛 = 3𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴4921𝐸1363𝐸𝐶97477𝐶𝐸976𝐴5
𝐺 = (98𝐵𝐸568𝐵𝐴5729𝐴219𝐸776803𝐷𝐵9𝐹69𝐶290𝐴𝐵59𝐹4𝐸𝐹6𝐹7𝐸𝐹4,
2𝐸85304𝐶𝐸𝐴7𝐴𝐵5𝐵8842𝐷90445𝐷1𝐷𝐴𝐷93895𝐸2𝐷𝐵882𝐵𝐴𝐸03𝐶)
𝑎 = 2
𝑑 = 444
𝑛 = 3𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐵𝐶𝐹8𝐶3𝐹3𝐴9427𝐸41498𝐷1𝐹𝐷7
𝐺 = (4510134781𝐷78𝐶52243𝐷05163𝐸𝐶96𝐸1305𝐴𝐵7𝐵𝐵5259𝐷8𝐵78,
𝐷0𝐹4𝐴5𝐹9𝐴𝐷𝐸𝐹𝐹𝐶𝐵4𝐷2𝐶6593922𝐷7𝐶8𝐴1𝐴𝐵𝐹𝐶2𝐴𝐹172094𝐸𝐹 )
𝑎 = 2
𝑑 = 701
𝑛 = 3𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐶𝐶301𝐸7𝐵𝐶46𝐵1𝐵6268218𝐶5𝐵
𝐺 = (5𝐷𝐴𝐶𝐸51991𝐹3072𝐸8𝐷𝐷1𝐶43135𝐵𝐷𝐴689253𝐴3414𝐴𝐶6𝐸𝐵𝐷0,
𝐶72𝐷𝐶9542𝐷77078112𝐴9𝐸5𝐴3𝐵8𝐴𝐷479𝐸6756𝐸𝐴390𝐷0𝐶9𝐶00)
𝑎 = 2
𝑑 = 843
𝑛 = 4000000000000000000000001𝐵𝐵72𝐷3747512𝐶1541𝐸𝐹15𝐹𝐷
𝐺 = (𝐵𝐷𝐸8𝐷𝐶𝐷𝐷5𝐷89𝐸41598𝐴𝐷4398𝐵889𝐹𝐶𝐶45139𝐸𝐴67𝐶𝐷0736𝐸3,
182𝐵341𝐷𝐵3801311853𝐸37𝐴512𝐴𝐵80663𝐴𝐹2𝐴𝐴𝐵𝐴26𝐷𝐸𝐹6)

Table 2. Twisted Edwards curves of almost simple order over a field with a 𝑝224 module
𝑝 = 2224 + 29 + 28 + 25 + 23 + 22 + 1

𝑎 = 2
𝑑 = 655
𝑛 = 3𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐶𝐴𝐵454858600𝐷4𝐴86945𝐸8𝐶39067
𝐺 = (95𝐶9314𝐷92𝐷4𝐷2𝐴405𝐶𝐸𝐷7232𝐴11𝐵6𝐸71𝐸𝐶6𝐸𝐷88𝐶𝐹47𝐶7𝐴71𝐷𝐹73𝐷7𝐴,
𝐵𝐴5𝐴𝐴0𝐵63361𝐵𝐴004𝐸89926𝐹𝐴72𝐷4𝐶54𝐸838𝐹6𝐵𝐸𝐶0123𝐷1𝐹15𝐴89266)
𝑎 = 2
𝑑 = 670
𝑛 = 400000000000000000000000000034𝐶80𝐷4𝐴988𝐷5𝐶𝐷6𝐸64𝐶903566𝐹9
𝐺 = (27000𝐴0𝐸𝐹𝐹81𝐶𝐷5309𝐶702𝐴0𝐸𝐸7𝐹2744𝐴2𝐶𝐴𝐸17𝐶33033292𝐶𝐷1791𝐴𝐸,
60175𝐸973𝐷3𝐵107318𝐷9𝐶310𝐹𝐶𝐹𝐶603241𝐴719𝐸𝐵015𝐴𝐷4𝐵5𝐹3𝐹𝐷33𝐴7)
𝑎 = 2
𝑑 = 685
𝑛 = 400000000000000000000000000036𝐸𝐹𝐷5552𝐴12746𝐸859𝐸𝐴27957𝐸5
𝐺 = (9𝐸8𝐷7𝐵𝐷75𝐹8748𝐵2𝐹𝐵93𝐹506𝐷679𝐶𝐹8869𝐵498𝐶𝐸7𝐴5488𝐷3𝐹9𝐷3093𝐴,
𝐴𝐷7542271𝐴𝐴𝐸175𝐸2𝐷11𝐴045𝐸52𝐹𝐶5𝐶6𝐶40571917643𝐷01481𝐵8𝐶067)
𝑎 = 2
𝑑 = 762
𝑛 = 3𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹903𝐷2500𝐵1𝐸3𝐶𝐹𝐵910𝐸06𝐸7𝐷𝐶𝐷87
𝐺 = (𝐹𝐶𝐴3𝐹𝐸7𝐹𝐴003𝐹14𝐵757960258532𝐷𝐷𝐸𝐹𝐴132140𝐴4𝐶𝐴0384355007761,
3𝐵859287𝐵870𝐷𝐶𝐹𝐸2𝐶𝐷164𝐵11544𝐹0081𝐵764091𝐹8𝐹5𝐹𝐹𝐷8𝐶4𝐸37175)
𝑎 = 2
𝑑 = 821
𝑛 = 3𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐸7𝐷952𝐸7062𝐶084𝐹854𝐸76880𝐵1𝐹
𝐺 = (2𝐹𝐵5347𝐸𝐵9639𝐹𝐵5𝐵𝐷6929642245𝐹8𝐴𝐶𝐴647𝐷4𝐸𝐷6𝐷3059𝐷41𝐸1𝐶200𝐴,
𝐸6𝐶8𝐹06𝐴𝐷𝐹𝐵6𝐶86𝐷0𝐹𝐷3217𝐸𝐶𝐵𝐷2𝐷344𝐵10𝐶26844584𝐵9𝐷3𝐸52𝐵𝐶6𝐷)
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Let us compare these results with the calculated
parameters of curves in [5]. For 192-bit and 521-bit
modules, the best parameters (𝑑 = 75 and 𝑑 = 77
respectively) were calculated in this paper. But for
the other three modules, the least parameters 𝑑 are
less than ones from tables 1, 2: 𝑑 = 38 if 𝐿 = 224,
𝑑 = 108 if 𝐿 = 256, and 𝑑 = 236 if 𝐿 = 384. It
is understandable because varying 𝑝 create additional
curve variants. Thus, while selecting an appropriate
curve, one should also consider the results of the paper
[5].

Conclusions
In this paper, we describe twisted Edwards curves and

propose the method for minimization of computations
by selecting the minimum values of the curve’s parame-
ters. We present tables of system-wide parameters for
the fastest crypto-strong twisted Edwards curves.

We note that suggested for standardization and
implementation of twisted Edwards curves have the
fastest point exponentiation speed. All calculated
curves along with minimal 𝑎 = 2 most often con-
sist of only two or three decimal digits, so on prac-
tice calculation complexity of 1𝑈 and 2𝑈 are negli-
gible for twisted curves. Estimations of point addi-
tion complexity 𝑉𝐸 = 10𝑀 + 1𝑆 + 2𝑈 and point dou-
bling 𝑇𝐸 = 3𝑀 + 4𝑆 + 1𝑈 reach their lower bounds
𝑉𝐸 = 10𝑀 + 1𝑆 = 32

3 𝑀 and 𝑇𝐸 = 3𝑀 + 4𝑆 = 17
3 𝑀

if 𝑆 = 2
3𝑀 [2]. Analogous results for the complete Ed-

wards curve [3] are inferior to the results of this paper,
because they have parameters 𝑑 comparable to the sizes
of modules, and 1𝑈 ∼= 1𝑀 . Also, in this paper, unlike
in [3], the curves for the highest standard module 𝑝521
were calculated.
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