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Abstract
We study asymptotic behavior of heterogeneous differentials, i.e. pairs of S-box input and output differences when
«differences» are calculated with respect to non-equal Abelian operations. We prove that probabilities of any fixed
(+,⊕)-differential asymptotically follow Poisson distribution with parameter 1 or 1/2 dependent on the order of input
difference in corresponding group, when S-box is taken randomly and uniformly from a set of all possible 𝑛-bit bijective
mappings. These results generalize and complete the Hawkes and O‘Connor research about asymptotic distribution of
homogeneous differentials.
Besides, we examine the convergence of exact differential probabilities to their asymptotic estimations. Experimental
evaluations show that discrepancy is low even for small size 𝑛 of S-box; for 𝑛 ⩾ 6 it is less than 5 · 10−4.
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Introduction
Differential cryptanalysis is a powerful tool for it-

erative block cipher analysis. It was first published
by Biham and Shamir [1], and thereafter a lot of pa-
pers were dedicated to its extension. Detailed methods
and techniques were developed for security estimation
of various block cipher schemes. Analytical bounds
of provable and practical security against differential
cryptanalysis were obtained for Feistel-like ciphers and
SP-networks (see, for example, [2, 3, 4]). These bounds
are formulated in terms of parameters of particular ci-
pher elements, e.g. maximum differential probability of
used S-box. Thus studying of differential probabilities
of S-boxes is important for the purposes of secure cipher
development.

The distribution of differential probabilities of fixed or
random S-box is sufficient to find S-box with the best se-
curity parameters values (which is quite obvious usage).
But with this information one can also evaluate security
of ciphers with random or pseudo-random S-boxes or
even restore a hidden internal algebraic structure of
cryptographic mappings (like in [5, 6]). Differentials
with respect to XOR operation are widely used in differ-
ential cryptanalysis; O’Connor found exact combinato-
rial formulas for distribution of such differentials for ran-
dom S-box [7], but these formulas are very ponderous,
thus they are poorly applicable in practice. Hawkes and
O’Connor [8, 9] researched asymptotic behavior of dif-
ferential probabilities and proved that XOR-differential
probabilities asymptotically follow Poisson distribution
with parameter equals to 1/2, while probabilities of
differentials with respect to addition modulo 2𝑛 asymp-
totically follow Poisson distribution with parameter 1
(therefore XOR-differentials have bigger probabilities
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and are better suited for cryptanalysis with all other
things being equal). Besides maximum of S-box differ-
ential probability (MDP) plays a key role in security
estimation against differential cryptanalysis, and in [9]
analytical bounds were obtained for MDPs of random
S-box. The results of Hawkes and O’Connor research
are easily generalized on probabilities of differentials
with respect to arbitrary Abelian operation.

When we consider a cipher with various algebraic
operations used in encryption process, differentials with
respect to different algebraic operations appear (for ex-
ample, in SAFER [10, 11], GOST [12], Kalyna [13, 14]).
We name them heterogeneous differentials. In this pa-
per we generalize asymptotic results of Hawkes and
O’Connor research on heterogeneous differentials with
respect to XOR and modular addition. Besides we ex-
amine the convergence of exact differential probabilities
to their asymptotic estimations for both homogeneous
and heterogeneous differentials.

The rest of the paper is organized as follows. Section 1
provides all used terms and definitions. In Section 2 we
show that (+,⊕)-differential probabilities of random
S-box have asymptotic Poisson distribution with pa-
rameter 1 or 1

2 , and give complete proof of this claim.
Section 3 presents experimental evaluation results of
differential probabilities converge rate to asymptotic
values, and shows that for 𝑛-bit random S-box, 𝑛 ⩾ 6,
the discrepancy between exact probabilities and their
estimations is less than 5 · 10−4.

1. Terms and definitions

Let 𝑉𝑛 be 𝑛-bit vector space, ⊗ be Abelian group
operation on 𝑉𝑛, and 𝐼⊗ be a neutral element of this
group. Operations like ⊕ (exclusive-OR, XOR) and
+ (addition modulo 2𝑛) can be considered as exam-
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ples of ⊗. For the purpose of modular addition 𝑛-bit
vectors are naturally interpreted as unsigned integers
0, 1, . . . , 2𝑛 − 1 in binary from, so we will use “2𝑛−1”
instead of vector 100 . . . 0 and “0” instead of vector
00 . . . 0. Note that 0 is a neutral element for both ⊕
and + operations.

The order of element 𝑥 in group ⟨𝑉𝑛,⊗⟩ is denoted
as ord⊗ 𝑥.

Let 𝜋 be 𝑛-bit permutation, i.e. bijective boolean
function of form

𝜋 : 𝑉𝑛 → 𝑉𝑛

⊗-differential of function 𝜋 (or simply differential if op-
eration is clear) is any pair of 𝑛-bit vectors (𝛼, 𝛽). These
vectors are treated as 𝜋 input and output differences
calculated with ⊗ operation:

𝑢⊗ 𝑣−1 = 𝛼 ⇒ 𝜋(𝑢)⊗ (𝜋(𝑣))−1 = 𝛽,

where 𝛼, 𝛽, 𝑢, 𝑣 ∈ 𝑉𝑛 and 𝑥−1 is an inversion for any
𝑥 ∈ 𝑉𝑛 with respect to ⊗. Do not confuse (𝜋(𝑣))−1 (an
inverse of element 𝜋(𝑣)) and 𝜋−1(𝑣) (a value of inverse
mapping 𝜋−1 on an input 𝑣).

The probability of ⊗-differential (𝛼, 𝛽), or simply
differential probability, is defined as

𝐷𝑃𝜋
⊗(𝛼, 𝛽) = Pr

𝑥∈𝑉𝑛

{𝜋(𝑥⊗ 𝛼) = 𝜋(𝑥)⊗ 𝛽} .

Further in the paper we will consider 𝐷𝑃𝜋
⊗(𝛼, 𝛽) as

a random variable for fixed vectors 𝛼, 𝛽. The distribu-
tion of 𝐷𝑃𝜋 is induced by uniformly selected random
permutation 𝜋.

It is often convenient to work with the cardinality of
the differential, i.e. differential probability multiplied
by the number of all possible differentials:

𝑁𝜋
⊗(𝛼, 𝛽) = 2𝑛 ·𝐷𝑃𝜋

⊗(𝛼, 𝛽).

Input difference 𝐼⊗ can cause only 𝐼⊗ as output dif-
ference for any function 𝜋, so 𝐷𝑃𝜋

⊗(𝐼⊗, 𝐼⊗) = 1 and
𝐷𝑃𝜋

⊗(𝐼⊗, 𝛽) = 0 for any 𝛽 ̸= 𝐼⊗. Differential (𝐼⊗, 𝐼⊗)
is called trivial. It does not carry any useful informa-
tion for differential cryptanalysis in general, so we will
further consider only non-trivial differentials.

In some cases we have to calculate input and output
differences with respect to different operations. Let ⊠
be another Abelian group operation on 𝑉𝑛.
(⊗,⊠)-differential of function 𝜋 is also any pair of

𝑛-bit vectors (𝛼, 𝛽). These vectors are interpreted as
input difference with respect to ⊗ and output difference
with respect to ⊠:

𝑢⊗ 𝑣−1 = 𝛼 ⇒ 𝜋(𝑢)⊠ (𝜋(𝑣))−1 = 𝛽,

where inverses are calculated with respect to correspond-
ing operations.

A (⊗,⊠)-differential probability is defined as

𝐷𝑃𝜋
⊗,⊠(𝛼, 𝛽) = Pr

𝑥∈𝑉𝑛

{𝜋(𝑥⊗ 𝛼) = 𝜋(𝑥)⊠ 𝛽} .

In this paper we mostly consider (+,⊕)-differentials
and (⊕,+)-differentials.

We will denote differentials with equal operations on
input and output as homogeneous and the ones with
different operations as heterogeneous. To simplify things
we will use notions 𝐷𝑃𝜋 and 𝑁𝜋 for both homogeneous

and heterogeneous differentials in case operations are
clear from context.

For the Abelian group ⟨𝑉𝑛,⊗⟩ we define additional
sets. Let 𝐸⊗

𝛿 be a set of pairs of elements with given
difference 𝛿:

𝐸⊗
𝛿 = {(𝑢, 𝑣) : 𝑢⊗ 𝑣−1 = 𝛿},

and let 𝐴𝛿
𝑢𝑣 be a set of permutations, mapping a pair

of elements (𝑢, 𝑣) to some pair from 𝐸⊗
𝛿 :

𝐴𝛿
𝑢𝑣 = {𝜋 : (𝜋(𝑢), 𝜋(𝑣)) ∈ 𝐸⊗

𝛿 }.
𝐸⊗

𝛿 can be considered as a set of edges of some directed
graph with 𝑉𝑛 as a set of vertices. It was proven in
[8, 9], that for every 𝛿 such graph consists of 2𝑛/ord⊗(𝛿)
disjoint cycles, so internal structure of 𝐸⊗

𝛿 depends only
on an order of 𝛿 in ⟨𝑉𝑛,⊗⟩, but not on particular choice
of 𝛿.

For any real number 𝑥 and any natural 𝑘 a falling
factorial 𝑥𝑘 is defined as:

𝑥𝑘 = 𝑥(𝑥− 1)(𝑥− 2) . . . (𝑥− 𝑘 + 1).

It is known that 𝑥𝑘 ∼ 𝑥𝑘 for any fixed 𝑘 when 𝑥 → ∞.

2. Asymptotic distributions of heterogeneous
differential probabilities

Consider (+,⊕)-differential (𝛼, 𝛽). We have
ord⊕ 𝛽 = 2 for any 𝛽 ≠ 0, ord+ 𝛼 = 2𝑟, 0 ⩽ 𝑟 ⩽ 𝑛
and ord+ 𝛼 = 0 iff 𝛼 = 0. Futher we consider only
𝛼 ̸= 0 and 𝛽 ̸= 0.

Hawkes and O’Connor showed [9] that distribution
of 𝐷𝑃𝜋

⊗(𝛼, 𝛽) is completely determined by orders of
elements 𝛼 and 𝛽 in ⟨𝑉𝑛,⊗⟩; this is also true for
𝐷𝑃𝜋

+,⊕(𝛼, 𝛽) (and, in general, for any 𝐷𝑃𝜋
⊗,⊠(𝛼, 𝛽)).

Indeed, the probability Pr𝜋
{︀
𝑁𝜋

+,⊕(𝛼, 𝛽) = 𝑡
}︀

can be
expressed as 𝑃𝑡/(2

𝑛)!, where 𝑃𝑡 is a number of permu-
tations, mapping exactly 𝑡 elements from 𝐸+

𝛼 to 𝐸⊕
𝛽 .

As it was shown in [9], the value of 𝑃𝑡 can be expressed
as

𝑃𝑡 =

2𝑛−𝑡∑︁
𝑖=0

(−1)𝑖𝐶𝑖
𝑡+𝑖𝑆𝑡+𝑖,

where 𝑆𝑘 is determined by

𝑆𝑘 =
∑︁

𝑌⊆𝐸+
𝛼 ,|𝑌 |=𝑘

⃒⃒⃒⃒
⃒⃒ ⋂︁
(𝑢,𝑣)∈𝑌

𝐴𝛽
𝑢𝑣

⃒⃒⃒⃒
⃒⃒ .

Thus 𝑃𝑡 is fully defined by the structure of 𝐸+
𝛼 and 𝐸⊕

𝛽 ,
and it does not depend on particular choice of element
𝛼 of order 𝑎 (or even of particular choice of Abelian
operation to form 𝐸⊗

𝛼 ).
Respectively, the distribution of 𝐷𝑃𝜋

+,⊕(𝛼, 𝛽) (or,
equivalently, 𝑁𝜋

+,⊕(𝛼, 𝛽)) for given (𝛼, 𝛽) is described
by values

𝑝𝑡(𝑎) = Pr
𝜋

{︀
𝑁𝜋

+,⊕(𝛼, 𝛽) = 𝑡
}︀
,

where ord𝛼 = 𝑎 = 2𝑟, 1 ⩽ 𝑟 ⩽ 𝑛, 0 ⩽ 𝑡 ⩽ 2𝑛, and 𝜋 is
selected uniformly from a set of all 𝑛-bit permutations.

Note that the case of 𝑎 = 2 actually was properly
studied in [8, 9] for (⊕,⊕)-differential, and it was proved
that such cardinalities follow 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(1/2). This proof
can be fully transferred to (+,⊕) differentials (𝛼, 𝛽)
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with ord+(𝛼) = 2, so we can claim that

𝑝𝑡(2) ∼
𝑒−1/2

2𝑡 · 𝑡!
.

Notice, that ⟨𝑉𝑛,+⟩ is a cyclic group. It is well
known that any cyclic group has 𝜙(𝑑) elements of order
𝑑, where 𝜙 is Euler totient function, so we have only one
element of order 2: 𝛼 = 2𝑛−1. Thereby differentials of
form (2𝑛−1, 𝑏) are a special class of (+,⊕)-differentials
with possibly higher probabilities.

Other cases are described by the following theorem.

Theorem 1. For any fixed 𝑎 = 2𝑟, 2 ⩽ 𝑟 ⩽ 𝑛,

𝑝𝑡(𝑎) ∼ 𝑒−1/𝑡!

as 𝑛 → ∞ and 𝑡 = 𝑜(2𝑛).

Thus for all 𝑎 ⩾ 4 the distribution of (+,⊕)-
differential probabilities asymptotically tends to Poisson
distribution with parameter 1 similarly to the case of
(+,+)-differentials.

Proof of theorem. The proof is similar to Theorem 7
of [9]; we try to use same notation for consistency.

Consider expression of 𝑆𝑘, defined not in terms of
pairs of elements but in terms of distinct elements. For
any 𝒴 ⊆ 𝐸+

𝛼 denote 𝑝(𝒴) a number of distinct elements
of 𝑉𝑛 from all pairs of 𝒴 . If |𝒴| = 𝑘, then 𝑘 ⩽ 𝑝(𝒴) ⩽ 2𝑘.
Define

𝜙(𝑘, 𝑗) =
∑︁

𝒴⊆𝐸+
𝛼 ,|𝒴|=𝑘,𝑝(𝒴)=𝑗

|{𝜋 : 𝜋(𝒴) ⊆ 𝐸⊕
𝛽 }|.

Then 𝑆𝑘 can be expressed as 𝑆𝑘 =
∑︀2𝑘

𝑗=𝑘 𝜙(𝑘, 𝑗).
Consider 𝑝(𝒴) = 𝑗 < 2𝑘. This is possible only when

at least two pairs of 𝒴 have common elements, so there
are (𝑥, 𝑦), (𝑦, 𝑧) ∈ 𝐸+

𝛼 , and 𝑥 ̸= 𝑧, otherwise we have
𝑦 = 𝑥+ 𝛼, 𝑧 = 𝑦 + 𝛼 = 𝑥+ 2𝛼, thus ord+ 𝛼 = 2. From
the other side, we have

𝜋(𝑥)⊕ 𝜋(𝑦) = 𝜋(𝑦)⊕ 𝜋(𝑧) = 𝛽,

and, as a result, 𝜋(𝑥)⊕𝜋(𝑧) = 0, which is only possible
when 𝑥 = 𝑧. This contradiction shows that such pairs
cannot belong to 𝐸+

𝛼 . Consequently, for all 𝑗 < 2𝑘 we
have 𝜙(𝑘, 𝑗) = 0.1

Let’s evaluate 𝜙(𝑘, 2𝑘). In combinatorial manner, for
any 𝒴 ⊆ 𝐸+

𝛼 we can describe a set {𝜋 : 𝜋(𝒴) ⊆ 𝐸⊕
𝛽 }

as follows. When we map a pair (𝑥, 𝑦), the image of
𝑦 = 𝑥 + 𝛼 is uniquely chosen after the mapping of 𝑥:
𝜋(𝑦) = 𝜋(𝑥) ⊕ 𝛽. Possible varieties are defined only
by the ways of mapping the first element of the pair.
Besides, 𝑝(𝒴) = 2𝑘 iff all pairs of 𝒴 are disjointed. So
there are 2𝑛 ways to map first pair of 𝒴, only 2𝑛 − 2
ways to map second pair, and so on until we map all 𝑘
pairs of 𝒴. Remaining elements of 𝑉𝑛 can be mapped
in (2𝑛 − 2𝑘)! ways. Thus the number of permutations
𝜋 with property 𝜋(𝒴) ⊆ 𝐸⊕

𝛽 is equal to
𝑘−1∏︁
𝑖=0

(2𝑛 − 2𝑖)(2𝑛 − 2𝑘)! =
(︀
2𝑛−1

)︀𝑘
2𝑘(2𝑛 − 2𝑘)!.

1Note that values 𝜙(𝑘, 𝑗) may be non-zero if we consider
output differences with respect to non-XOR operations, but the
term 𝜙(𝑘, 2𝑘) is whatever dominating over all of them ([9]).

Respectively, the number of the sets 𝒴 ⊆ 𝐸+
𝛼 , |𝒴| = 𝑘,

can be calculated in the same manner as number of
ways to choose 𝑘 disjoint pairs from given 2𝑛, and this
number is equal to

2𝑛(2𝑛 − 2) . . . (2𝑛 − 2(𝑘 − 1)

𝑘!
=

(︀
2𝑛−1

)︀𝑘
2𝑘

𝑘!
.

Therefore, the expression for 𝜙(𝑘, 2𝑘) becomes

𝜙(𝑘, 2𝑘) =

(︀
2𝑛−1

)︀𝑘
2𝑘(2𝑛 − 2𝑘)!

(︀
2𝑛−1

)︀𝑘
2𝑘

𝑘!
=

=
2𝑛!

𝑘!
·
4𝑘

(︀
2𝑛−1

)︀𝑘 (︀
2𝑛−1

)︀𝑘
(2𝑛)

2𝑘
∼ 2𝑛!

𝑘!
.

By applying this to 𝑆𝑘, and after that to 𝑃𝑡, we finally
get:

𝑃𝑡 ∼
2𝑛−𝑡∑︁
𝑖=0

(−1)𝑖𝐶𝑖
𝑡+𝑖

2𝑛!

(𝑡+ 𝑖)!
=

=
2𝑛−𝑡∑︁
𝑖=0

(−1)𝑖
2𝑛!(𝑡+ 𝑖)!

𝑖!𝑡!(𝑡+ 𝑖)!
=

=
2𝑛!

𝑡!

2𝑛−𝑡∑︁
𝑖=0

(−1)𝑖

𝑖!
∼ 2𝑛!

𝑡!
𝑒−1.

Correctness of such asymptotic substitution follows
from Bender’s theorem (we refer to [8]). This completes
the proof.

From the lemma below follows that the similar results
are correct for (⊕,+)-differential probabilities.

Lemma 1. For any bijective mapping 𝜋 : 𝑉𝑛 → 𝑉𝑛, any
vectors 𝛼, 𝛽 ∈ 𝑉𝑛 and any Abelian group operations ⊗,⊠

𝐷𝑃𝜋
⊗,⊠(𝛼, 𝛽) = 𝐷𝑃𝜋−1

⊠,⊗ (𝛽, 𝛼).

The proof of lemma comes from definition of 𝐷𝑃 and
is quite obvious, so lemma’s statement can be considered
as common knowledge.

We see, that if 𝜋 runs through all possible bijec-
tive mappings, so 𝜋−1 does, which implies the equality
of probability distribution for both (⊗,⊠)-differential
(𝛼, 𝛽) and (⊠,⊗)-differential (𝛽, 𝛼).

Obtained results show that heterogeneous differen-
tial probabilities over a random S-box are lesser than
XOR-differential probabilities in general. Consequently,
applying different operations to a cipher should increase
security against differential cryptanalysis.

3. Experimental Results
In this section we study the convergence of differential

probabilities to their asymptotic values. The results
of [9] for (⊕,⊕)- and (+,+)-differentials and results
of previous section for (+,⊕)- and (⊕,+)-differentials
describe the convergence in terms of little-o or asymp-
totic equivalence, while a rate of convergence remains
unclear. We evaluated this rate experimentally.

During the experiment we considered 𝑛-bit permu-
tations for 𝑛 = 4, 5, . . . , 10. For every value of 𝑛 we
generated 1000000 random permutations and calcu-
lated values of 𝑁𝜋(𝛼, 𝛽) for any pair (⊕,⊕), (+,+),
and (+,⊕) operations. This gave us the number of
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permutations which have particular value of 𝑁𝜋 for
each differential of each type; obtained numbers must
follow Poisson distribution in theory. Thus for each non-
trivial differential we calculated the Euclidean distance
between sample distribution and theoretical Poisson
distribution as a discrepancy measure.

For all (⊕,⊕)-differentials and for all (+,⊕)-
differential of form (2𝑛−1, 𝑏) we calculated distance to
𝑃𝑜𝑖𝑠𝑠𝑜𝑛(1/2), while for all (+,+)-differential and for
all remaining (+,⊕)-differential we calculated distance
to 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(1). For the sake of simplicity we included
only the maximal value of distance (denoted as “max”)
and the average value of distance (denoted as “avg”)
over all differentials for each of mentioned four classes.
These values are given in Tables 1-4. Figures 1-4 show
the behavior of maximal distance depending on 𝑛.

Table 1. Maximal and average distances between theo-
retical and sample distributions of (⊕,⊕)-differentials
for 𝑛-bit random S-box

n max avg
4 2, 17 · 10−3 5, 71 · 10−4

5 5, 76 · 10−4 1, 45 · 10−4

6 1, 7 · 10−4 4, 15 · 10−5

7 7, 8 · 10−5 1, 43 · 10−5

8 5, 24 · 10−5 6, 74 · 10−6

9 4, 93 · 10−5 4, 94 · 10−6

10 5, 36 · 10−5 3, 73 · 10−6

Table 2. Maximal and average distances between theo-
retical and sample distributions of (+,+)-differentials
for 𝑛-bit random S-box

n max avg
4 7 · 10−3 1, 29 · 10−3

5 1, 9 · 10−3 2, 58 · 10−4

6 5 · 10−4 6, 69 · 10−5

7 1, 58 · 10−4 2, 22 · 10−5

8 6, 89 · 10−5 1, 08 · 10−5

9 4, 24 · 10−5 7, 49 · 10−6

10 44, 77 · 10−5 6, 38 · 10−6

Table 3. Maximal and average distances between theo-
retical and sample distributions of (+,⊕)-differentials
of general form for 𝑛-bit random S-box

n max avg
4 4, 2 · 10−3 1, 86 · 10−3

5 1, 1 · 10−3 4, 5 · 10−4

6 2, 7 · 10−4 1, 18 · 10−4

7 1, 29 · 10−4 3, 56 · 10−5

8 5, 52 · 10−5 1, 4 · 10−5

9 5, 48 · 10−5 8, 21 · 10−6

10 4, 5 · 10−5 6, 52 · 10−6

As we can see from the tables, the discrepancy of
asymptotic estimations decreases with growth of 𝑛, and
is sufficiently low for 𝑛 ⩾ 6 (less than 5 · 10−4 in worst
case).

Fig. 1. Maximal distance between theoretical and sam-
ple distributions of (⊕,⊕)-differentials

Fig. 2. Maximal distance between theoretical and sam-
ple distributions of (+,+)-differentials

Fig. 3. Maximal distance between theoretical and sam-
ple distributions of (+,⊕)-differentials with 𝛼 ̸= 2𝑛−1

Fig. 4. Maximal distance between theoretical and sam-
ple distributions of (+,⊕)-differentials of form (2𝑛−1, 𝛽)
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Table 4. Maximal and average distances between theo-
retical and sample distributions of (⊕,⊕)-differentials
of form (2𝑛−1, 𝛽) for 𝑛-bit random S-box

n max avg
4 2 · 10−3 5, 4 · 10−4

5 4, 5 · 10−3 1, 44 · 10−4

6 1, 6 · 10−4 4, 32 · 10−5

7 5, 97 · 10−5 1, 47 · 10−5

8 3, 16 · 10−5 6, 93 · 10−6

9 2, 19 · 10−5 4, 36 · 10−6

10 2, 67 · 10−5 3, 73 · 10−6

Conclusions
In this paper we considered heterogeneous differen-

tials of random bijective S-box and studied their distri-
bution. We proved that (+,⊕)-differential probabilities
of 𝑛-bit permutation asymptotically follow Poisson dis-
tribution with parameter 1 or 1/2, in dependence on
the order of input difference with respect to addition
modulo 2𝑛. This is very similar to behavior of distribu-
tion of homogeneous differential probabilities such as
(⊕,⊕)-differentials and (+,+)-differentials. Resembling
results are true for (⊕,+)-differentials due to bijectivity
of S-boxes and symmetry. This claims also can be gen-
eralized for heterogeneous differentials with respect to
any two Abelian operations, so such differential proba-
bilities asymptotically follow Poisson distribution with
parameter 1 except the case when both input and out-
put differences are of order 2 in corresponding groups –
in this case parameter is equal to 1/2.

Besides we studied the convergence of differential
probabilities to their asymptotic values. For every value
of nontrivial (⊕,⊕)-, (+,+)- and (+,⊕)-differential we
calculated the distance between asymptotic and sample
distributions over sample of one million random S-boxes,
and found this distance very low: for 6-bit S-boxes it is
less than 5 · 10−4. So we can conclude that asymptotic
estimations of S-box differential probabilities are fairly
accurate for practical usage.

The results of this work may be useful for security
evaluation of ciphers with (pseudo)random S-boxes and
mixed algebraic operations.
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