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Abstract
The Edwards curves of the form 𝑥2 + 𝑦2 = 1+ 𝑑𝑥2𝑦2 are investigated in this article. An exact formula for the quantity of
points on 𝑥2+𝑦2 = 1+𝑑𝑥2𝑦2 over a field 𝐹𝑝 is obtained for odd prime numbers 𝑝. The special attention is paid to the curves
with exactly 𝑝+ 1 points over the field 𝐹𝑝. These curves are called supersingular. They are not recommended for usage in
cryptography, because their structure is relatively simple. The supersingularity of the curve 𝑥2 + 𝑦2 ≡ 1 + 2𝑥2𝑦2 (mod 𝑝)
is proved for any prime 𝑝 = 4𝑚+ 3. Also some other values of 𝑑, for which 𝑥2 + 𝑦2 ≡ 1 + 𝑑𝑥2𝑦2 (mod 𝑝) is supersingular,
are found. For example, it is true for 𝑑 = 17± 12

√
2 and 𝑝 = 8𝑘 + 7, where

√
2 is an element of 𝐹𝑝 with the property

(
√
2)2 ≡ 2 (mod 𝑝).

Keywords: Edwards curve, elliptic curve, equation over a finite field, supersingularity.

Introduction

Determining the quantity of solutions of an equation
over a finite field is an interesting task of the number
theory. This task contains the independent mathemat-
ical interest, because its solution allows to study the
properties of certain Diophantine equations. Also, the
data about the quantity of the points on the curve
over a finite field help to reveal some algebraic proper-
ties of the mentioned curve. For example, some values
of the quantity of the points on a curve of the type
𝑅(𝑥, 𝑦) = 0, where 𝑅 is a polynomial, may tell about
the simple algebraic structure of that curve.

One more application of determining the quantity of
points of an algebraic curve has relation to the cryp-
tography. Some modern coding systems are based on
actions in certain algebraic group, which consists of
pairs (𝑥, 𝑦), where 𝑥 and 𝑦 are elements from a finite
field and 𝑥, 𝑦 satisfy certain equality in that field. A
well-known example of such systems is a system on some
elliptic curve of kind 𝑦2 ≡ 𝑥3 + 𝑎𝑥2 + 𝑏𝑥+ 𝑐 (mod 𝑝),
where 𝑝 is a sufficiently large prime number. Also we
may use the systems, which are based on biquadratic
curves 𝑥2+𝑦2 ≡ 1+𝑑𝑥2𝑦2 (mod 𝑝). [1] For the creating
and for the analysis of the systems, which are connected
with the mentioned curves, we need to determine the
quantity of points, which satisfy the equation of the
curve. It is important for this quantity to be not equal
to some values, for which the system is not reliable.

Let us remember some basic concepts. A field 𝐹𝑝 is
a set of residues from division by a prime number 𝑝,
where the actions of addition and multiplication are
defined. That is, the elements of this field are the
residues 0, 1, ..., 𝑝 − 1. The sum, the difference and
the product of the elements 𝑎 and 𝑏 are such 𝑐, 𝑑 and
𝑒 from the set 0, 1, ..., 𝑝− 1, that 𝑎+ 𝑏 ≡ 𝑐 (mod 𝑝),
𝑎−𝑏 ≡ 𝑑 (mod 𝑝) and 𝑎𝑏 ≡ 𝑒 (mod 𝑝) respectively. Also
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we may perform division in the field 𝐹𝑝. The notation
𝑎/𝑏 = 𝑓 (where 𝑏 ̸= 0) means, that 𝑓 is such an element
of the set 0, 1, ..., 𝑝− 1, that 𝑎 ≡ 𝑏𝑓 (mod 𝑝). For
example, the equality 2/3 = 4 is correct in the field 𝐹5,
because 2 ≡ 3 · 4 (mod 5).

The element 𝑎 from the field 𝐹𝑝 is a quadratic residue,
if there is such an element 𝑏 in 𝐹𝑝, for which 𝑏2 = 𝑎.
In the opposite case the element 𝑎 is called a quadratic
non-residue. For example, in the field 𝐹7 the quadratic
residues are 0, 1, 2 and 4, because 02 = 0, 12 = 1, 32 = 2
and 22 = 4. Let’s notice, that the equality 32 = 2 is
true in the field 𝐹7, because 32 = 9 ≡ 2 (mod 7).

Let us give an example of connection between the
quantity of the points on a curve and its structure.
Consider an equation 𝑥2 + 𝑦2 = 1 over 𝐹𝑝. One of
the solutions of this equation is 𝑥 = −1, 𝑦 = 0. Let’s
find other solutions in the form 𝑦 = 𝑎(𝑥+ 1). We may
understand the coefficient 𝑎 as the slope of the secant
line, which passes through the points (−1, 0) and (𝑥, 𝑦).
For each 𝑎 ∈ 𝐹𝑝 there is a unique solution, which is
different from (−1, 0), namely:

(︁
1−𝑎2

𝑎2+1 ,
2𝑎

𝑎2+1

)︁
.

If −1 is a quadratic non-residue respectively to the
modulo 𝑝, then the equation 𝑥2 + 𝑦2 = 1 has 𝑝 + 1
solutions in 𝐹𝑝. If −1 is a quadratic residue, then 𝑝− 1
solutions exist, because for those two 𝑎 ∈ 𝐹𝑝, which
satisfy the condition 𝑎2 = −1, there is division by zero
in the corresponding solution.

Let’s show, how to build two more special solutions
of this equation in the case, when there is such 𝑏 ∈ 𝐹𝑝,
for which 𝑏2 = −1. Let 𝑣 = 1/𝑥 and 𝑤 = 𝑦/𝑥. The
equation will be rewritten as 1/𝑣2 + 𝑤2/𝑣2 = 1, or
1 + 𝑤2 = 𝑣2. Then the pairs (𝑣, 𝑤) = (0,−𝑏) and
(𝑣, 𝑤) = (0, 𝑏) are the solutions of the equation 1+𝑤2 =
𝑣2. If we would try to recover the pair (𝑥, 𝑦) by the
pair (𝑣, 𝑤), then for the solutions (0,−𝑏) and (0, 𝑏) we
would get division by zero. That’s why these solution
are special. They don’t belong to the field 𝐹𝑝, but
they could be placed in the space of values, which is
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analogous to the Riemann’s sphere for the complex
numbers. With taking such expansion into account we
have 𝑝+ 1 solutions.

The set of the points, whose coordinates are the
solutions of the equation 𝑥2 + 𝑦2 = 1 over the field 𝐹𝑝,
is organized rather simply. And this set contains 𝑝+ 1
points, taking into account the special ones. It was
revealed, that the curves of higher order, which contain
𝑝+ 1 points, are relatively simple too, so they don’t fit
well for coding. [3] Such curves are called supersingular.

Farther we shall regard the equation 𝑥2 + 𝑦2 = 1 +
𝑑𝑥2𝑦2 over the field 𝐹𝑝, where 𝑝 is an odd prime number,
𝑑 ∈ 𝐹𝑝, 𝑑 ̸= 0 and 𝑑 ≠ 1. The set of the solutions of
this equation is called an Edwards curve. The curves
of such form are studied, for example, in [1], where
the connection between them and the elliptic curves of
the form 𝑦2 = 𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 is shown. Also the
properties of the Edwards curves are analysed in the
works of Ukrainian authors in [2], [3] and [4].

A method of counting the points on an Ed-
wards curve

An important tool for the next researches is the
Legendre’s symbol

(︁
𝑎
𝑝

)︁
. If 𝑎 is a quadratic residue in

the field 𝐹𝑝 and is not divisible by 𝑝, then
(︁

𝑎
𝑝

)︁
= 1. If

𝑎 is a quadratic non-residue in the field 𝐹𝑝 and is not
divisible by 𝑝, then

(︁
𝑎
𝑝

)︁
= −1. If 𝑎 is divisible by 𝑝,

then
(︁

𝑎
𝑝

)︁
= 0. For the Legendre’s symbol the following

formula is true.

Euler’s formula. For all integers 𝑎 and odd primes 𝑝

the formula
(︁

𝑎
𝑝

)︁
≡ 𝑎

𝑝−1
2 (mod 𝑝) is correct.

The proof of this formula may be found, for example,
in [5]. Due to Euler’s formula it is easy to see the
multiplicativity of the Legendre’s symbol: for arbitrary
integer 𝑎, 𝑏 the equality

(︁
𝑎𝑏
𝑝

)︁
=
(︁

𝑎
𝑝

)︁(︁
𝑎
𝑝

)︁
is fulfilled.

For determining the quantity of points, which are
situated on a certain curve, we shall need the following
lemma.

Lemma about powers. For an arbitrary natural 𝑛 and

any prime 𝑝 there is a relation
𝑝−1∑︀
𝑘=0

𝑘𝑛 ≡ −1 (mod 𝑝), if

𝑛
...(𝑝− 1), and

𝑝−1∑︀
𝑘=0

𝑘𝑛 ≡ 0 (mod 𝑝), if 𝑛 ̸
...(𝑝− 1).

Proof. Let’s notice, that
𝑝−1∑︀
𝑘=0

𝑘𝑛 =
𝑝−1∑︀
𝑘=1

𝑘𝑛. That’s

why it is sufficient to prove, that
𝑝−1∑︀
𝑘=1

𝑘𝑛 ≡ −1 (mod 𝑝)

for 𝑛
...𝑝−1, and

𝑝−1∑︀
𝑘=1

𝑘𝑛 ≡ 0 (mod 𝑝) for 𝑛 ̸
...𝑝−1. Let 𝑚

and 𝑟 are such integer numbers, that 𝑛 = 𝑚(𝑝− 1) + 𝑟
and 0 ≤ 𝑟 ≤ 𝑝− 2.

Firstly let’s consider the case 𝑛
...𝑝−1. Then 𝑛 = 𝑚(𝑝−

1). If 1 ≤ 𝑘 ≤ 𝑝−1, then Fermat’s little theorem implies:

𝑘𝑛 ≡ (𝑘𝑝−1)𝑚 ≡ 1𝑚 ≡ 1 (mod 𝑝). So,
𝑝−1∑︀
𝑘=1

𝑘𝑛 ≡ (𝑝 −

1) · 1 ≡ −1 (mod 𝑝).

Let’s 𝑛 ̸
...𝑝 − 1 now. In this case 1 ≤ 𝑟 ≤ 𝑝 − 2.

By Fermat’s little theorem,
𝑝−1∑︀
𝑘=1

𝑘𝑛 ≡
𝑝−1∑︀
𝑘=1

(𝑘𝑝−1)𝑚𝑘𝑟 ≡
𝑝−1∑︀
𝑘=1

𝑘𝑟 (mod 𝑝). Consider an arbitrary integer 𝑎, which

is not divisible by 𝑝. For all integer 𝑘 (1 ≤ 𝑘 ≤ 𝑝− 1)
the number 𝑘𝑎 is not divisible by 𝑝, because 𝑝 is a prime
number. Also for all integer 𝑗, 𝑘 (1 ≤ 𝑗 < 𝑘 ≤ 𝑝−1) the
numbers 𝑗𝑎 and 𝑘𝑎 give distinct residues from division
by 𝑝. Otherwise 𝑎(𝑘 − 𝑗) would be divisible by 𝑝, but
it is impossible due to the inequality 1 ≤ 𝑘 − 𝑗 ≤ 𝑝− 2.
So, if we consider the set {𝑎, 2𝑎, ..., (𝑝− 1)𝑎} as the
set of elements of the field 𝐹𝑝, then this set would
contain 𝑝 − 1 distinct elements, which are not equal
to zero. Hence {𝑎, 2𝑎, ..., (𝑝 − 1)𝑎} coincides with

{1, 2, ..., 𝑝− 1}. Then the sums
𝑝−1∑︀
𝑘=1

𝑘𝑛 and
𝑝−1∑︀
𝑘=1

(𝑘𝑎)𝑛

coincide in the field 𝐹𝑝. So, the relation
𝑝−1∑︀
𝑘=1

𝑘𝑟 ≡
𝑝−1∑︀
𝑘=1

(𝑘𝑎)𝑟 ≡ 𝑎𝑟
𝑝−1∑︀
𝑘=1

𝑘𝑟 (mod 𝑝) is correct. Let’s choose

such 𝑎, that 1 ≤ 𝑎 ≤ 𝑝 − 1 and 𝑎𝑟 ̸≡ 1 (mod 𝑝).
The mentioned number 𝑎 always exists: otherwise the
polynomial 𝑥𝑟−1 would have 𝑝−1 roots in the field 𝐹𝑝,
what is impossible, because 𝑟 < 𝑝−1. From the relation
𝑝−1∑︀
𝑘=1

𝑘𝑟 ≡ 𝑎𝑟
𝑝−1∑︀
𝑘=1

𝑘𝑟 (mod 𝑝) we get (𝑎𝑟 − 1)
𝑝−1∑︀
𝑘=1

𝑘𝑟 ≡

0 (mod 𝑝). By the choice of 𝑎, the condition 𝑎𝑟 − 1 ̸≡

0 (mod 𝑝) is true. So,
𝑝−1∑︀
𝑘=1

𝑘𝑟 ≡ 0 (mod 𝑝). That’s

why the relation
𝑝−1∑︀
𝑘=1

𝑘𝑛 ≡ 0 (mod 𝑝) is true, what was

needed to prove.
The lemma about powers is proved.

Now let’s prove the theorem, which gives us the
possibility of counting the points on the curve 𝑥2+𝑦2 =
1 + 𝑑𝑥2𝑦2.

Theorem 1. Let 𝑝 be an odd prime number, and
let 𝑑 be an element of the field 𝐹𝑝. Let 𝑑 be different
from 0 and 1. Let’s denote by 𝑁𝑑 the quantity of pairs
(𝑥, 𝑦), for which 𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2 and 𝑥, 𝑦 ∈ 𝐹𝑝.
Also let 𝑞 be such a number, that 𝑝 = 2𝑞 + 1. Then

𝑁𝑑 ≡ (−1)𝑞+1
𝑞∑︀

𝑘=0

(𝐶𝑘
𝑞 )

2𝑑𝑘 − 1− 2
(︁

𝑑
𝑝

)︁
(mod 𝑝).

Proof. Let’s transform the equation of the curve to
𝑦2(1− 𝑑𝑥2) = 1− 𝑥2 and let’s multiply both parts by
1− 𝑑𝑥2. We shall get 𝑦2(1− 𝑑𝑥2)2 = (1− 𝑥2)(1− 𝑑𝑥2).
Let’s perform the substitution 𝑧 = 𝑦(1 − 𝑑𝑥2), after
which the equation will transform to 𝑧2 = (1− 𝑥2)(1−
𝑑𝑥2). For each pair (𝑥, 𝑧), which is the solution of
this equation and for which 1 − 𝑑𝑥2 ̸= 0, there is a
pair (𝑥, 𝑦) with 𝑦 = 𝑧/(1− 𝑑𝑥2), which is a solution of
𝑦2(1− 𝑑𝑥2) = 1− 𝑥2. If 1− 𝑑𝑥2 = 0, then there is no
corresponding solution of the equation 𝑦2(1− 𝑑𝑥2) =
1− 𝑥2, because in the case 𝑑 ≠ 1 the elements 1− 𝑑𝑥2
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and 1− 𝑥2 cannot be equal to 0 at the same time. So,
if we

denote the quantity of the solutions of the equation
𝑧2 = (1−𝑥2)(1−𝑑𝑥2) by 𝑀𝑑, then the difference 𝑀𝑑−
𝑁𝑑 is equal to the quantity of such 𝑥, that 1− 𝑑𝑥2 = 0.
Hence 𝑀𝑑−𝑁𝑑 = 1+

(︁
𝑑
𝑝

)︁
, which could be transformed

to 𝑁𝑑 = 𝑀𝑑 − 1−
(︁

𝑑
𝑝

)︁
.

For determining 𝑀𝑑 let’s use the following method.
Let 𝑆(𝑥) be a polynomial with integer coefficients. Let’s
assume, that an equation 𝑧2 = 𝑆(𝑥) is defined over the
field 𝐹𝑝. Then for a fixed element 𝑥 the quantity of
such 𝑧 ∈ 𝐹𝑝, that satisfy the given relation, is equal to(︁

𝑆(𝑥)
𝑝

)︁
+1. Let’s apply this observation to the equation

𝑧2 = (1− 𝑥2)(1− 𝑑𝑥2). Regarding all 𝑥 ∈ 𝐹𝑝, we shall
add the quantities of such meanings of 𝑧, which satisfy
the condition 𝑧2 = (1 − 𝑥2)(1 − 𝑑𝑥2) for the given 𝑥.

We get 𝑀𝑑 =
𝑝−1∑︀
𝑥=0

(︁
1 +

(︁
(1−𝑥2)(1−𝑑𝑥2)

𝑝

)︁)︁
. So, by Euler’s

formula: 𝑀𝑑 ≡
𝑝−1∑︀
𝑥=0

(1− 𝑥2)
𝑝−1
2 (1− 𝑑𝑥2)

𝑝−1
2 (mod 𝑝).

The polynomial (1 − 𝑥2)
𝑝−1
2 (1 − 𝑑𝑥2)

𝑝−1
2 is equal

to 1 + 𝑎1𝑥 + 𝑎2𝑥
2 + ... + 𝑎2𝑝−2𝑥

2𝑝−2 for some in-
teger coefficients 𝑎1, 𝑎2, ..., 𝑎2𝑝−2. So, 𝑀𝑑 ≡
𝑝−1∑︀
𝑥=0

(︂
1 +

2𝑝−2∑︀
𝑘=1

𝑎𝑘𝑥
𝑘

)︂
≡ 𝑝 +

2𝑝−2∑︀
𝑘=1

𝑝−1∑︀
𝑥=0

𝑎𝑘𝑥
𝑘 (mod 𝑝),

whence 𝑀𝑑 ≡
2𝑝−2∑︀
𝑘=1

(︂
𝑎𝑘

𝑝−1∑︀
𝑥=0

𝑥𝑘

)︂
(mod 𝑝). By the

lemma about powers, only 𝑘 = 𝑝 − 1 and 𝑘 = 2𝑝 − 2
make a non-zero input to the last expression. That
is, 𝑀𝑑 ≡ −𝑎𝑝−1 − 𝑎2𝑝−2 (mod 𝑝). Let’s determine
𝑎𝑝−1 and 𝑎2𝑝−2. Let’s remember, that 𝑞 = 𝑝−1

2 .
The product (1 − 𝑥2)

𝑝−1
2 (1 − 𝑑𝑥2)

𝑝−1
2 is equal to(︂

𝑞∑︀
𝑘=0

𝐶𝑘
𝑞 (−1)𝑘𝑥2𝑘

)︂
·
(︂

𝑞∑︀
𝑘=0

𝐶𝑘
𝑞 (−1)𝑘𝑑𝑘𝑥2𝑘

)︂
.

The monomials with the multiplier 𝑥𝑝−1 are ob-
tained, when the summands 𝐶𝑞−𝑘

𝑞 (−1)𝑞−𝑘𝑥2𝑞−2𝑘 and
𝐶𝑘

𝑞 (−1)𝑘𝑥2𝑘 multiply between each other. That

is, 𝑎𝑝−1 = (−1)𝑞
𝑞∑︀

𝑘=0

𝐶𝑞−𝑘
𝑞 𝐶𝑘

𝑞 𝑑
𝑘. So, 𝑎𝑝−1 =

(−1)𝑞
𝑞∑︀

𝑘=0

(𝐶𝑘
𝑞 )

2𝑑𝑘. We obtain the monomial with the

multiplier 𝑥2𝑝−2, only when we multiply the summands
with the maximal powers of 𝑥. So, 𝑎2𝑝−2 = (−1)2𝑞𝑑𝑞 =

𝑑
𝑝−1
2 ≡

(︁
𝑑
𝑝

)︁
(mod 𝑝).

From the expressions for 𝑎𝑝−1 and 𝑎2𝑝−2 we obtain
the equality

𝑀𝑑 ≡ (−1)𝑞+1

𝑞∑︁
𝑘=0

(𝐶𝑘
𝑞 )

2𝑑𝑘 −
(︂
𝑑

𝑝

)︂
(mod 𝑝).

Because of 𝑁𝑑 = 𝑀𝑑 − 1−
(︁

𝑑
𝑝

)︁
, we get

𝑁𝑑 ≡ (−1)𝑞+1

𝑞∑︁
𝑘=0

(𝐶𝑘
𝑞 )

2𝑑𝑘 − 1− 2

(︂
𝑑

𝑝

)︂
(mod 𝑝).

The theorem 1 is proved.

Let’s show, that for any odd prime number 𝑝 the
quantity of the points of the curve 𝑥2 + 𝑦2 = 1+ 𝑑𝑥2𝑦2

over the field 𝐹𝑝 is divisible by 4. Among the points
(𝑥, 𝑦), for which 𝑥 = 0 or 𝑦 = 0, only the points (0, 1),
(0,−1), (−1, 0) and (1, 0) get onto our curve. If a point
(𝑥1, 𝑦1) belongs to our curve and both its coordinates
are distinct from zero, then (𝑥1, 𝑦1), (−𝑥1, 𝑦1), (𝑥1,−𝑦1)
and (−𝑥1,−𝑦1) satisfy the equation of the curve. For
an odd 𝑝 all such four points are distinct. So, the points
of the curve split into the groups of 4 points. That’s
why the quantity of the points is divisible by 4.

Let’s rewrite the equation 𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2 as
𝑦2(𝑑𝑥2−1) = 𝑥2−1. If 𝑑 ̸= 1, then the elements 𝑑𝑥2−1
and 𝑥2 − 1 cannot be equal to zero simultaneously.
That’s why for every meaning of 𝑥 there are no more
than two such meanings of 𝑦, that the point (𝑥, 𝑦)
belongs to the curve. So, the quantity of the points of
the curve 𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2 over the field 𝐹𝑝 lies on
the segment [4, 2𝑝].

It follows from the theorem 1, that the quantity of
the points on the mentioned Edwards curve is equal to

𝑚𝑝− 1− 2
(︁

𝑑
𝑝

)︁
+ (−1)𝑞+1

𝑞∑︀
𝑘=0

(𝐶𝑘
𝑞 )

2𝑑𝑘, where 𝑞 = 𝑝−1
2

and 𝑚 is some integer number. There are at most two
numbers of such kind on the segment [4, 2𝑝]. Among
them only one number can be even. Due to this it is
possible to compute the unique appropriate meaning of
the number 𝑚, and together with it – the quantity of
the points of the curve.

Detection of the supersingular curves

If
(︁

𝑑
𝑝

)︁
= 1 and the Edwards curve contains 𝑝− 1−

2
(︁

𝑑
𝑝

)︁
points, whose coordinates belong to the field 𝐹𝑝,

then we may add special solutions to this curve. For this
let’s do the substitutions 𝑣 = 1/𝑥 and 𝑤 = 1/𝑦. The
equation will transform into 1/𝑣2+1/𝑤2 = 1+𝑑/(𝑣2𝑤2),
that is 𝑤2+𝑣2 = 𝑣2𝑤2+𝑑. Among its solutions there are
(0, 𝑐), (0,−𝑐), (𝑐, 0) and (−𝑐, 0), where 𝑐2 ≡ 𝑑 (mod 𝑝).
The shown variants don’t correspond to any pair (𝑥, 𝑦),
where 𝑥, 𝑦 ∈ 𝐹𝑝. So, together with these solutions the
Edwards curve contains exactly 𝑝+ 1 point.

It was noticed experimentally, that the curve 𝑥2 +
𝑦2 = 1+2𝑥2𝑦2 demonstrates the described property for
prime numbers of the type 𝑝 = 4𝑚+ 3. The quantity
of its points is equal to 𝑝 + 1 for 𝑝 ≡ 3 (mod 8) and
is equal to 𝑝 − 3 for 𝑝 ≡ 7 (mod 8). Let’s prove the
theorem, which confirms these observations.

Theorem 2. For an arbitrary prime 𝑝 of the type

4𝑚 + 3 and for 𝑞 = 𝑝−1
2 the relation

𝑞∑︀
𝑘=0

(𝐶𝑘
𝑞 )

22𝑘 ≡

0 (mod 𝑝) holds.

Proof. Let’s prove, that (𝑞!)2 ·
𝑞∑︀

𝑘=0

(𝐶𝑘
𝑞 )

22𝑘 ≡

0 (mod 𝑝). The number (𝑞!)2 is relatively prime with

𝑝, from where we shall get
𝑞∑︀

𝑘=0

(𝐶𝑘
𝑞 )

22𝑘 ≡ 0 (mod 𝑝).

Let’s remember, that 𝐶𝑘
𝑞 = 𝑞!

𝑘!(𝑞−𝑘)! . Hence 𝑞! · 𝐶𝑘
𝑞 =

𝑞!
𝑘! ·

𝑞!
(𝑞−𝑘)! =

(︃
𝑞∏︀

𝑚=𝑘+1

𝑚

)︃
·
(︂

𝑘∏︀
𝑚=1

(𝑞 − 𝑘 +𝑚)

)︂
. Because

of 𝑝 = 2𝑞 + 1, for arbitrary 𝑘 and 𝑚 the relation
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𝑞−𝑘+𝑚 ≡ −(𝑞+𝑘−𝑚+1) (mod 𝑝) is correct. Applying

this fact to the product
𝑘∏︀

𝑚=1
(𝑞−𝑘+𝑚), we have 𝑞!·𝐶𝑘

𝑞 ≡(︃
𝑞∏︀

𝑚=𝑘+1

𝑚

)︃
·
(︂

𝑘∏︀
𝑚=1

(−(𝑞 + 𝑘 −𝑚+ 1))

)︂
(mod 𝑝).

This gives 𝑞! · 𝐶𝑘
𝑞 ≡ (−1)𝑘 ·

(︃
𝑞∏︀

𝑚=𝑘+1

𝑚

)︃
·(︂

𝑘∏︀
𝑚=1

(𝑞 + 𝑘 −𝑚+ 1)

)︂
(mod 𝑝). Let’s make a sub-

stitution 𝑗 = 𝑞 + 𝑘 −𝑚+ 1 in the second product and

get 𝑞! ·𝐶𝑘
𝑞 ≡ (−1)𝑘 ·

(︃
𝑞∏︀

𝑚=𝑘+1

𝑚

)︃
·

(︃
𝑞+𝑘∏︀

𝑗=𝑞+1

𝑗

)︃
(mod 𝑝),

that is 𝑞! ·𝐶𝑘
𝑞 ≡ (−1)𝑘 ·(𝑘+1)(𝑘+2) · ... ·(𝑘+𝑞) (mod 𝑝).

Taking squares of the both parts, we get

(𝑞!)2 · (𝐶𝑘
𝑞 )

2 ≡ (𝑘 + 1)2(𝑘 + 2)2 · ... · (𝑘 + 𝑞)2 (mod 𝑝).

Let 𝑅(𝑥) =
𝑞∑︀

𝑘=0

(𝑘 + 1)2(𝑘 + 2)2 · ... · (𝑘 + 𝑞)2𝑥𝑘. We

need to prove, that 𝑅(2) ≡ 0 (mod 𝑝). Let’s consider a
polynomial

𝐵(𝑥) =
𝑑𝑞

𝑑𝑥𝑞

(︂
𝑥𝑞 · 𝑑𝑞

𝑑𝑥𝑞

(︀
𝑥𝑞 · (𝑥𝑝−1 + 𝑥𝑝+2 + ...+ 1)

)︀)︂
.

That is, 𝐵(𝑥) =
𝑝−1∑︀
𝑘=0

(𝑘 + 1)2(𝑘 + 2)2 · ... · (𝑘 + 𝑞)2𝑥𝑘.

For 𝑞 < 𝑘 ≤ 𝑝 − 1 the product (𝑘 + 1)2(𝑘 + 2)2 · ... ·
(𝑘 + 𝑞)2 contains a multiplier, which is equal to 𝑝. So,

𝐵(𝑥) ≡
𝑞∑︀

𝑘=0

(𝑘 + 1)2(𝑘 + 2)2 · ... · (𝑘 + 𝑞)2𝑥𝑘 (mod 𝑝),

whence 𝐵(𝑥) ≡ 𝑅(𝑥) (mod 𝑝). Let’s remark: under
the notation 𝐵(𝑥) ≡ 𝑅(𝑥) (mod 𝑝) is meant, that all
respective coefficients of 𝐵(𝑥) and 𝑅(𝑥) coincide modulo
𝑝.

Let’s show, that 𝑥𝑝−1 + 𝑥𝑝−2 + ... + 1 ≡ (𝑥 −
1)𝑝−1 (mod 𝑝). According to Newton’s binomial,

(𝑥 − 1)𝑝−1 =
𝑝−1∑︀
𝑘=0

𝐶𝑘
𝑝−1(−1)𝑘𝑥𝑝−1−𝑘. Let’s remember,

that 𝐶0
𝑝−1 = 1. For transformation of the other co-

efficients let’s use the equality 𝐶𝑘
𝑝−1 = 𝐶𝑘

𝑝 − 𝐶𝑘−1
𝑝−1

(1 ≤ 𝑘 ≤ 𝑝 − 1). Applying it to 𝑘 from 1 to 𝑝 − 1

consequently, we get 𝐶𝑘
𝑝−1 =

𝑘∑︀
𝑖=0

(−1)𝑖𝐶𝑘−𝑖
𝑝 . Because of

primeness of the number 𝑝, for all 𝑘 = 1, 2, ..., 𝑝− 1
the number 𝐶𝑘

𝑝 = 𝑝!
𝑘!(𝑝−𝑘)! is divisible by 𝑝. The divisi-

bility has place, because the numerator 𝑝! is divisible
by 𝑝, and the denominator 𝑘!(𝑝 − 𝑘)! is not. Also
𝐶0

𝑝 = 𝐶𝑝
𝑝 = 1. So, for natural 𝑘 from 1 to 𝑝− 2 we get:

𝐶𝑘
𝑝−1 ≡

𝑘∑︀
𝑖=0

(−1)𝑖𝐶𝑘−𝑖
𝑝 (mod 𝑝), from where we have

𝐶𝑘
𝑝−1 ≡

𝑘−1∑︀
𝑖=0

(−1)𝑖𝐶𝑘−𝑖
𝑝 +(−1)𝑘𝐶0

𝑝 ≡ (−1)𝑘 (mod 𝑝). So,

(𝑥− 1)𝑝−1 ≡
𝑝−1∑︀
𝑘=0

(−1)𝑘𝐶𝑘
𝑝−1𝑥

𝑘 ≡
𝑝−1∑︀
𝑘=0

(−1)2𝑘𝑥𝑘 (mod 𝑝).

That is,

(𝑥− 1)𝑝−1 ≡ 𝑥𝑝−1 + 𝑥𝑝−2 + ...+ 1 (mod 𝑝).

For arbitrary polynomials 𝐹 (𝑥) and 𝐺(𝑥) from
𝐹 (𝑥) ≡ 𝐺(𝑥) (mod 𝑝) the equivalence 𝑑

𝑑𝑥𝐹 (𝑥) ≡

𝑑
𝑑𝑥𝐺(𝑥) (mod 𝑝) follows. That’s why we get:

𝐵(𝑥) ≡ 𝑑𝑞

𝑑𝑥𝑞

(︂
𝑥𝑞 · 𝑑𝑞

𝑑𝑥𝑞
(𝑥𝑞 · (𝑥− 1)𝑝−1)

)︂
(mod 𝑝).

Let 𝑥 = 𝑦 + 1. Then 𝐵(𝑥) may be presented in
the form 𝐵(𝑦 + 1). Because of 𝑑𝑥

𝑑𝑦 = 𝑑(𝑦+1)
𝑑𝑦 = 1, for

an arbitrary polynomial 𝐹 (𝑥) we have 𝑑
𝑑𝑦𝐹 (𝑦 + 1) =

𝑑
𝑑𝑥𝐹 (𝑥) · 𝑑𝑥

𝑑𝑦 = 𝑑
𝑑𝑥𝐹 (𝑥). So, the derivative by 𝑥

could be replaced with the derivative by 𝑦: 𝐵(𝑥) ≡
𝑑𝑞

𝑑𝑦𝑞

(︁
(𝑦 + 1)𝑞 · 𝑑𝑞

𝑑𝑦𝑞 ((𝑦 + 1)𝑞 · 𝑦𝑝−1)
)︁

(mod 𝑝). In the

polynomial (𝑦+1)𝑞𝑦𝑝−1 =
𝑞∑︀

𝑘=0

𝐶𝑘
𝑞 𝑦

𝑘+𝑝−1 all monomials,

except 𝑦𝑝−1, will get a coefficient with a multiplier 𝑝 af-
ter the 𝑞-th derivation. That’s why 𝑑𝑞

𝑑𝑦𝑞 ((𝑦+1)𝑞 ·𝑦𝑝−1) ≡
(𝑝−1)!

𝑞! 𝑦𝑞 (mod 𝑝). Taking this relation into account, we

get 𝐵(𝑥) ≡ 𝑑𝑞

𝑑𝑦𝑞

(︁
(𝑦 + 1)𝑞 · (𝑝−1)!

𝑞! 𝑦𝑞
)︁

(mod 𝑝). That is,

𝐵(𝑥) ≡ (𝑝−1)!
𝑞! · 𝑑𝑞

𝑑𝑦𝑞 ((𝑦 + 1)𝑞𝑦𝑞) (mod 𝑝). By Newton’s

binomial: 𝑑𝑞

𝑑𝑦𝑞 (𝑦 + 1)𝑞𝑦𝑞 =
𝑞∑︀

𝑘=0

(𝑘 + 1) · ... · (𝑘 + 𝑞)𝐶𝑘
𝑞 𝑦

𝑘.

So,

𝐵(𝑥) ≡ (𝑝− 1)!

𝑞!
·

𝑞∑︁
𝑘=0

(𝑘+ 1) · ... · (𝑘+ 𝑞)𝐶𝑘
𝑞 𝑦

𝑘 (mod 𝑝).

Let’s show, that for 𝑝 = 4𝑚 + 3 and 𝑦 = 1 the
relation 𝐵(𝑦 + 1) ≡ 0 (mod 𝑝) holds. Let 𝑏𝑘 = (𝑘 + 1) ·
... · (𝑘 + 𝑞)𝐶𝑘

𝑞 for all 𝑘 = 0, ..., 𝑞. Then 𝐵(𝑦 + 1) ≡
(𝑝−1)!

𝑞! ·
𝑞∑︀

𝑘=0

𝑏𝑘𝑦
𝑘 (mod 𝑝). For every 𝑠 the relation 𝑘+𝑠 ≡

−((𝑞−𝑘)+𝑞+1−𝑠) (mod 𝑝) is correct, because the right
side of this relation is equal to 𝑘+𝑠+2𝑞+1, that is 𝑘+𝑠+

𝑝. So,
𝑞∏︀

𝑠=1
(𝑘+𝑠) ≡ (−1)𝑞 ·

𝑞∏︀
𝑠=1

((𝑞−𝑘)+𝑞+1−𝑠) (mod 𝑝).

Taking into account, that 𝑞 = 𝑝−1
2 = 2𝑚+ 1 is an odd

number, from the previous relation of the products we

get
𝑞∏︀

𝑠=1
(𝑘 + 𝑠) ≡ −

𝑞∏︀
𝑠=1

((𝑞 − 𝑘) + 𝑞 + 1 − 𝑠) (mod 𝑝).

If the substitution 𝑗 = 𝑞 + 1 − 𝑠 is performed in the

product
𝑞∏︀

𝑠=1
((𝑞 − 𝑘) + 𝑞 + 1 − 𝑠), then this product

will turn into
𝑞∏︀

𝑗=1

((𝑞 − 𝑘) + 𝑗), because while 𝑠 changes

its values from 1 to 𝑞, the variable 𝑗 = 𝑞 + 1 − 𝑠 also
changes the values from 1 to 𝑞 in the reversed order. So,
𝑞∏︀

𝑠=1
(𝑘+𝑠) ≡ −

𝑞∏︀
𝑗=1

((𝑞−𝑘)+𝑗) (mod 𝑝). Let’s remember,

that 𝐶𝑘
𝑞 = 𝐶𝑞−𝑘

𝑞 . If 𝑗 is replaced by 𝑠 in the second

product, then
𝑞∏︀

𝑠=1
(𝑘+𝑠) ≡ −

𝑞∏︀
𝑠=1

((𝑞−𝑘)+𝑠) (mod 𝑝) will

be obtained. Let’s remember, that 𝐶𝑘
𝑞 = 𝐶𝑞−𝑘

𝑞 . That’s

why 𝐶𝑘
𝑞 ·

𝑞∏︀
𝑠=1

(𝑘+ 𝑠) ≡ −𝐶𝑞−𝑘
𝑞 ·

𝑞∏︀
𝑠=1

((𝑞− 𝑘)+ 𝑠) (mod 𝑝).

That is, 𝑏𝑞−𝑘 ≡ −𝑏𝑘 (mod 𝑝). Substituting 𝑦 = 1 into

the expression 𝐵(𝑦+1) ≡ (𝑝−1)!
𝑞! ·

𝑞∑︀
𝑘=0

𝑏𝑘𝑦
𝑘 (mod 𝑝), we

obtain 𝐵(1 + 1) ≡ (𝑝−1)!
𝑞! ·

𝑞∑︀
𝑘=0

𝑦𝑘 (mod 𝑝). So, 𝐵(2) ≡
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(𝑝−1)!
𝑞! ·

(︃
(𝑞−1)/2∑︀
𝑘=0

𝑏𝑘 +
𝑞∑︀

𝑙=(𝑞+1)/2

𝑏𝑙

)︃
(mod 𝑝). Let’s do a

substitution 𝑙 = 𝑞 − 𝑘 in the second sum. The result
of this transformation is the formula 𝐵(2) ≡ (𝑝−1)!

𝑞! ·(︃
(𝑞−1)/2∑︀
𝑘=0

𝑏𝑘 +
(𝑞−1)/2∑︀
𝑘=0

𝑏𝑞−𝑘

)︃
(mod 𝑝). That is, 𝐵(2) ≡

(𝑝−1)!
𝑞! ·

(︃
(𝑞−1)/2∑︀
𝑘=0

𝑏𝑘 +
(𝑞−1)/2∑︀
𝑘=0

(−𝑏𝑘)

)︃
≡ 0 (mod 𝑝), what

was needed to show.

And then (𝑞!)2 ·
𝑞∑︀

𝑘=0

(𝐶𝑘
𝑞 )

22𝑘 ≡ 𝑅(2) ≡ 𝐵(2) ≡

0 (mod 𝑝), what implies
𝑞∑︀

𝑘=0

(𝐶𝑘
𝑞 )

22𝑘 ≡ 0 (mod 𝑝).

The theorem 2 is proved.

From theorem 2 follows, that in the case 𝑝 ≡
3 (mod 4) the curve 𝑥2 + 𝑦2 = 1 + 2𝑥2𝑦2 contains
𝑝− 1− 2

(︁
2
𝑝

)︁
points over the field 𝐹𝑝. The cases, when

the quantity of the points is equal to −1 − 2
(︁

2
𝑝

)︁
or

2𝑝− 1− 2
(︁

2
𝑝

)︁
, are impossible, because these numbers

are odd. Other variants of the form 𝑚𝑝 − 1 − 2
(︁

2
𝑝

)︁
don’t get onto the segment [4, 2𝑝].

As it is known,
(︁

2
𝑝

)︁
= (−1)[

𝑝+1
4 ]. [5] In particular,

the equalities
(︁

2
𝑝

)︁
= −1 for 𝑝 ≡ 3 (mod 8) and

(︁
2
𝑝

)︁
=

1 for 𝑝 ≡ 7 (mod 8) hold. That’s why for a prime
𝑝 = 8𝑚 + 3 the curve 𝑥2 + 𝑦2 = 1 + 2𝑥2𝑦2 contains
𝑝 + 1 points over the field 𝐹𝑝, and for 𝑝 = 8𝑚 + 7 it
contains 𝑝 − 3 points. In the case 𝑝 = 8𝑚 + 7 it is
possible to add 4 virtual points to the mentioned curve
by the substitutions 𝑣 = 1/𝑥 and 𝑤 = 1/𝑦, as was
shown earlier.

So, in the cases 𝑝 = 8𝑚+3 and 𝑝 = 8𝑚+7 the curve
𝑥2+𝑦2 = 1+2𝑥2𝑦2 contains exactly 𝑝+1 points together
with special ones. That is, for 𝑝 ≡ 3 (mod 4) the curve
𝑥2 + 𝑦2 = 1 + 2𝑥2𝑦2 over the field 𝐹𝑝 is supersingular.

It is interesting to explore, for which other values
of 𝑑 the curve 𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2 demonstrates su-
persingularity for some series of prime numbers. From
theorem 1 we get, that it will be observed for those and

only those 𝑑, for which
𝑞∑︀

𝑘=0

(𝐶𝑘
𝑞 )

2𝑑𝑘 ≡ 0 (mod 𝑝), where

𝑞 = 𝑝−1
2 .

For example, let’s note, that together with an arbi-
trary 𝑑 ̸= 0 this condition will be satisfied by 𝑑−1 –
the element, which is equal to 1/𝑑 in the field 𝐹𝑝. Re-

ally,
𝑞∑︀

𝑘=0

(𝐶𝑘
𝑞 )

2𝑑−𝑘 ≡ 𝑑−𝑞 ·
𝑞∑︀

𝑘=0

(𝐶𝑘
𝑞 )

2𝑑𝑞−𝑘 (mod 𝑝). Due

to the equality 𝐶𝑘
𝑞 = 𝐶𝑞−𝑘

𝑞 we have
𝑞∑︀

𝑘=0

(𝐶𝑘
𝑞 )

2𝑑−𝑘 ≡

𝑑−𝑞 ·
𝑞∑︀

𝑘=0

(𝐶𝑞−𝑘
𝑞 )2𝑑𝑞−𝑘 (mod 𝑝). This gives

𝑞∑︁
𝑘=0

(𝐶𝑘
𝑞 )

2𝑑−𝑘 ≡ 𝑑−𝑞 ·
𝑞∑︁

𝑠=0

(𝐶𝑠
𝑞 )

2𝑑𝑠 (mod 𝑝),

after the substitution 𝑠 = 𝑞 − 𝑘 in the right part.

So, from
𝑞∑︀

𝑘=0

(𝐶𝑘
𝑞 )

2𝑑𝑘 ≡ 0 (mod 𝑝) the relation
𝑞∑︀

𝑘=0

(𝐶𝑘
𝑞 )

2(𝑑−1)𝑘 ≡ 0 (mod 𝑝) follows.

One more similar result is stated as a theorem.

Theorem 3. Let 𝑑 ≠ 1 be a quadratic residue by
the prime modulo 𝑝 = 2𝑞 + 1. Let

√
𝑑 denote an

arbitrary element 𝑐 ∈ 𝐹𝑝, for which 𝑐2 = 𝑑. Then from

the relation
𝑞∑︀

𝑘=0

(𝐶𝑘
𝑞 )

2𝑑𝑘 ≡ 0 (mod 𝑝) the equivalence
𝑞∑︀

𝑘=0

(𝐶𝑘
𝑞 )

2𝑔𝑘 ≡ 0 (mod 𝑝) follows for 𝑔 =
(︁√

𝑑−1√
𝑑+1

)︁2
.

Proof. By the theorem 1, if the condition
𝑞∑︀

𝑘=0

(𝐶𝑘
𝑞 )

2𝑑𝑘 ≡ 0 (mod 𝑝) holds, then the curve

𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2 contains exactly 𝑝 − 1 − 2
(︁

𝑑
𝑝

)︁
points (𝑥, 𝑦), whose coordinates belong to the field 𝐹𝑝.
Let’s rewrite the equation of the curve in the form
𝑦2(𝑑𝑥2 − 1) = 𝑥2 − 1. Now let’s perform the substitu-
tions 𝑥 = 1+𝑢

1−𝑢 and 𝑦 = 2𝑢
𝑣 . The equation will take the

form 4𝑢2

𝑣2 · (𝑑−1)𝑢2+2(𝑑+1)𝑢+(𝑑−1)
(1−𝑢)2 = 4𝑢

(1−𝑢)2 . Let’s multi-

ply both parts by 𝑣2(1−𝑢)2

4𝑢 . We shall get the relation

𝑣2 = (𝑑− 1)𝑢3 + 2(𝑑+ 1)𝑢2 + (𝑑− 1)𝑢.

Now our task is to analyse, which new solutions of the
given equation appeared relatively to 𝑦2(𝑑𝑥2 − 1) =
𝑥2 − 1, and which solutions disappeared.

At the beginning let’s describe the solutions (𝑢, 𝑣),
where 𝑣 = 0. A solution of such type cannot correspond
to any pair (𝑥, 𝑦), because for the evaluation of the
needed coordinates (𝑥, 𝑦) we would divide by zero in
the formula 𝑦 = 2𝑢

𝑣 . For 𝑣 = 0 the equation transforms
into (𝑑− 1)𝑢3 + 2(𝑑+ 1)𝑢2 + (𝑑− 1)𝑢 = 0. Let’s find
its solutions. Firstly, the variant 𝑢 = 0 fits. Secondly,
the needed solutions are the roots of the equation (𝑑−
1)𝑢2 + 2(𝑑+ 1)𝑢+ (𝑑− 1) = 0. They can be found by
the formula 𝑢 = −𝑏±

√
𝑏2−𝑎𝑐
𝑎 for roots of an equation

𝑎𝑢2 +2𝑏𝑢+ 𝑐 = 0, where 𝑎 ̸= 0. The formula acts in an
arbitrary field, so in 𝐹𝑝 too. We have 𝑢 = −(𝑑+1)±2

√
𝑑

𝑑−1 .
So, if 𝑑 is a quadratic residue by modulo 𝑝, then the
solutions 𝑢 = −(𝑑+1)−2

√
𝑑

𝑑−1 and 𝑢 = −(𝑑+1)+2
√
𝑑

𝑑−1 are

added. That is, in the case
(︁

𝑑
𝑝

)︁
= −1 exactly one

additional solution, which satisfies the condition 𝑣 = 0,
appears: it is (𝑢, 𝑣) = (0, 0). In the case

(︁
𝑑
𝑝

)︁
= 1 three

additional solutions of such form appear. Uniting these
cases, we obtain 2+

(︁
𝑑
𝑝

)︁
additional solutions (𝑢, 𝑣), for

which 𝑣 = 0.
Also no pairs (𝑥, 𝑦) correspond the solutions (𝑢, 𝑣),

where 𝑢 = 1.
The correspondent pairs (𝑥, 𝑦) are absent because

of division by zero in the expression 𝑥 = 1+𝑢
1−𝑢 . For

𝑢 = 1 our equation transforms into 𝑣2 = 4𝑑. If 𝑑 is
a quadratic residue by modulo 𝑝, then new solutions
(𝑢, 𝑣) = (1,−2

√
𝑑) and (𝑢, 𝑣) = (1, 2

√
𝑑) appear. We

have 1 +
(︁

𝑑
𝑝

)︁
solutions more.
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On the other side, the reverse substitutions have
the form 𝑢 = 𝑥−1

𝑥+1 and 𝑣 = 2(𝑥−1)
𝑦(𝑥+1) . So, the solutions

with 𝑥 = −1 or 𝑦 = 0 disappear, because they don’t
correspond to pairs (𝑢, 𝑣). Substituting 𝑥 = −1 and
𝑦 = 0 to the equation 𝑦2(𝑑𝑥2 − 1)𝑥2 − 1 separately, we
get two disappearing solutions: (𝑥, 𝑦) = (−1, 0) and
(𝑥, 𝑦) = (1, 0).

Let 𝐿𝑑 denote the quantity of the points (𝑢, 𝑣), for
which 𝑣2 = (𝑑−1)𝑢3+2(𝑑+1)𝑢2+(𝑑−1)𝑢 and 𝑢, 𝑣 ∈ 𝐹𝑝.
According to the described properties of the solutions
(𝑢, 𝑣) and (𝑥, 𝑦), if the curve 𝑥2+𝑦2 = 1+𝑑𝑥2𝑦2 contains
exactly 𝑝− 1− 2

(︁
𝑑
𝑝

)︁
points (𝑥, 𝑦) with coordinates in

the field 𝐹𝑝, then the equality 𝐿𝑑 = 𝑝− 1− 2
(︁

𝑑
𝑝

)︁
+2+(︁

𝑑
𝑝

)︁
+ 1 +

(︁
𝑑
𝑝

)︁
− 2 = 𝑝 holds.

Now let’s apply the technique of evaluation of the
quantity of the points by the modulo 𝑝, which was
in the proof of the theorem 1. We have 𝐿𝑑 ≡
𝑝−1∑︀
𝑢=0

(︁
(𝑑−1)𝑢3+2(𝑑+1)𝑢2+(𝑝−1)𝑢

𝑝

)︁
(mod 𝑝), that is

𝐿𝑑 ≡
𝑝−1∑︁
𝑢=0

((𝑑−1)𝑢3+2(𝑑+1)𝑢2+(𝑝−1)𝑢)
𝑝−1
2 (mod 𝑝).

By condition, the element
√
𝑑 exists in 𝐹𝑝. We can

check directly the equality (𝑑− 1)𝑢3+2(𝑑+1)𝑢2+(𝑝−
1)𝑢 = (𝑑−1)𝑢

(︁
𝑢+

√
𝑑−1√
𝑑+1

)︁(︁
𝑢+

√
𝑑+1√
𝑑−1

)︁
. So, 𝐿𝑑 ≡ (𝑑−

1)𝑞
𝑝−1∑︀
𝑢=0

𝑢𝑞
(︁
𝑢+

√
𝑑−1√
𝑑+1

)︁𝑞 (︁
𝑢+

√
𝑑+1√
𝑑−1

)︁𝑞
(mod 𝑝), where

𝑞 = 𝑝−1
2 .

By the lemma about powers, 𝐿𝑑 ≡ −(𝑑 −
1)𝑞𝑏𝑝−1 (mod 𝑝), where 𝑏0, 𝑏1, ..., 𝑏3𝑞 are such numbers,

for which 𝑢𝑞
(︁
𝑢+

√
𝑑−1√
𝑑+1

)︁𝑞 (︁
𝑢+

√
𝑑+1√
𝑑−1

)︁𝑞
= 𝑏3𝑞𝑢

3𝑞 + ...+

𝑏1𝑢+ 𝑏0. Because of 𝑝 = 2𝑞 + 1, we have the equality

𝑏𝑝−1 =
𝑞∑︀

𝑘=0

(𝐶𝑘
𝑞 )

2
(︁√

𝑑−1√
𝑑+1

)︁𝑘 (︁√
𝑑+1√
𝑑−1

)︁𝑞−𝑘

, whence

𝑏𝑝−1 =

(︃√
𝑑+ 1√
𝑑− 1

)︃𝑞

·
𝑞∑︁

𝑘=0

(𝐶𝑘
𝑞 )

2

(︃√
𝑑− 1√
𝑑+ 1

)︃2𝑘

.

So,

𝐿𝑑 ≡ (−1)𝑞(
√
𝑑+1)2𝑞

𝑞∑︁
𝑘=0

(𝐶𝑘
𝑞 )

2

(︃√
𝑑− 1√
𝑑+ 1

)︃2𝑘

(mod 𝑝).

We have already proved the equality 𝐿𝑑 = 𝑝. That’s
why 𝐿𝑑 ≡ 0 (mod 𝑝). We get

𝑞∑︁
𝑘=0

(𝐶𝑘
𝑞 )

2

(︃√
𝑑− 1√
𝑑+ 1

)︃2𝑘

≡ 0 (mod 𝑝),

what was needed to prove.
The theorem 3 is proved.

For example, if 𝑝 ≡ 7 (mod 8), than 2 is a quadratic
residue by modulo 𝑝. So, from the theorems 2 and 3

we have, that for 𝑔 =
(︁√

2−1√
2+1

)︁2
the curve 𝑥2 + 𝑦2 ≡

1 + 𝑔𝑥2𝑦2 (mod 𝑝) is supersingular. Multiplying the
numerator and the denominator in the expression for 𝑔

by
√
2− 1, we get

𝑔 =

(︃
(
√
2− 1)2

(
√
2 + 1)(

√
2− 1)

)︃2

= 17− 12
√
2.

In such a way, the curve 𝑥2 + 𝑦2 ≡ 1 + (17 −
12

√
2)𝑥2𝑦2 (mod 𝑝) is supersingular for an arbitrary

prime 𝑝 ≡ 7 (mod 8). The same is correct for the
coefficient 𝑔 = 17 + 12

√
2, because 17 + 12

√
2 =

(17− 12
√
2)−1.

Conclusions

The formula for the quantity of points of a biquadratic
Edward’s curve 𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2 over the field 𝐹𝑝

for an odd prime 𝑝 and 𝑑 ̸= 1 is obtained. The quantity
of the points, whose coordinates belong to the field, is

equal to some 𝑚𝑝 − 1 − 2
(︁

𝑑
𝑝

)︁
+ (−1)𝑞+1

𝑞∑︀
𝑘=0

(𝐶𝑘
𝑞 )

2𝑑𝑘,

where 𝑞 = 𝑝−1
2 and 𝑚 is an integer number. This quan-

tity belongs to the segment [4, 2𝑝] and is even, that’s
why is determined unambiguously. If we take into ac-
count the special points, then the general quantity of the

points of the curve equals 𝑚𝑝+1+(−1)𝑞+1
𝑞∑︀

𝑘=0

(𝐶𝑘
𝑞 )

2𝑑𝑘.

If the condition
𝑞∑︀

𝑘=0

(𝐶𝑘
𝑞 )

2𝑑𝑘 ≡ 0 (mod 𝑝) holds, then

the curve 𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2 is supersingular, that
means it contains exactly 𝑝+ 1 points.

We proved, that for 𝑝 ≡ 3 (mod 4) the curve 𝑥2+𝑦2 =
1 + 2𝑥2𝑦2 is supersingular over the field 𝐹𝑝.

Also it is shown, that the supersingularity of the
curve 𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2 implies the supersingularity
of the curves of the form 𝑥2+𝑦2 = 1+𝑔𝑥2𝑦2 for 𝑔 = 𝑑−1,

𝑔 =
(︁√

𝑑−1√
𝑑+1

)︁2
and 𝑔 =

(︁√
𝑑+1√
𝑑−1

)︁2
.

Analogous results have place for the elliptic curve
𝑣2 = (𝑑−1)𝑢3+2(𝑑+1)𝑢2+(𝑑−1)𝑢, because there are
the same quantity of the points on it, as on 𝑥2 + 𝑦2 =
1 + 𝑑𝑥2𝑦2, if we take into account the special points.
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