
UDC 001.8

TECHNIQUE OF TESTING CYBER VULNERABILITIES AND QUALITY OF
CYBERPHYSICAL SOFTWARE SYSTEMS

Yuriy Danyk1, Victoriya Vysochanska1

1National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»,
Educational and Research Institute of Physics and Technology

Abstract
Cyber vulnerability testing and software quality cyberphysical systems (complexes) is an important task in ensuring its
reliability and security. When working with several variations of products or their versions, testing all software for every
variation is resource intensive and irrational. To implement effective technological and economical quality of testing and
cyber vulnerabilities of cyberphysical systems software (complexes) in terms of its increasing complexity, both in time
(when considering the version) and in space (when considering variation) and lack of access to program code should be
developed as follows new methods. Those methods will allow to use the results of previous tests and focus on the most
important, for their testing, not yet tested parts. This is possible using regression testing methods and the appropriate
choice of test cases and their prioritization to identify and address software issues and cyber vulnerabilities. Of course,
testing variations and versions without access to source code, is an extremely problematic and costly task. The article
analyzes the stages of regression testing and proposes an improved method for selecting test cases for testing of cyber
vulnerabilities of software of cyberphysical systems (complexes) without access to program code. During the study, an
analysis of the achievements in this area was conducted, investigating leading experts works. This article also identifies
and compares the effectiveness of prioritized and non-prioritized test cases using the average percent detection rate
(APFD). As a result of the study, new metrics for measuring test coverage are presented.

Keywords: vulnerability, testing, software, cps, cybersecurity

Introduction

Nowadays, there is a predicted future of destructive
activity in cyberspace, which is characterized by di-
versity, complexity and asymmetry of actions, lead to
chain and synergistic destructive effects in different,
interconnected in cyberspace, areas. Those effects af-
fect all aspects of daily life and national security. To
prevent detection of destructive cyber effects, risk as-
sessment and effective counteraction to cyber threats,
cybersecurity systems are created. They have a lot of
different levels in which, comprehensive organizational
and technical measures are implemented. Development
of information and cyber technologies, artificial intel-
ligence, the Internet of Things, global informatization
and widespread use of cloud services, etc. have led to
the emergence of large the number of various cyber-
physical systems (complexes).They also include those
that are used in the national security and defence sector
and at critical facilities’ infrastructure. According to
the current standards, cyber-physical systems (CPS)
are the systems in which physical and software compo-
nents are deeply intertwined by themselves. They are
able to work in different spatial and temporal scales
and are controlled either by computer algorithms or
program codes. Their components have numerous and
separate behavioural modalities and can interact with
each other in a way which varies according to the con-
text [1]. Creating and using cyberphysical systems
usually have transdisciplinary approaches, merging in-
formation theory and practice technologies, cybernetics,

mechatronics, design and technological processes [3, 4].
Cyberphysical systems (complexes) have a high level
of integration, combination and coordination between
physical and computational elements [5]. Examples of
cyber-physical systems are: Internet of Things, ground,
underwater, surface, air and space, robotic systems
(complexes), medical monitoring complexes, industrial
control and operating systems, avionics, etc. [6].

The most vulnerable elements are the components of
software and hardware systems management. The effec-
tiveness and safety of their usage depends primarily on
quality and cybersecurity of their software. Therefore,
the creation and development of methods and systems
for testing and detecting cyber vulnerabilities and en-
sure its high quality and cybersecurity is an urgent
task.

The aim of the study was to increase the efficiency of
software testing providing cyberphysical systems in the
absence of access to their software code by developing
a method of regression testing of the quality and cyber
vulnerabilities of their software codes based on a new
approach to the selection and prioritization of test cases.

Results and discussion In modern software systems
there are always many improvements, bugs corrected,
new functionality added, etc. This leads to new versions
software [9]. By the same principle, new properties can
be added to various software variations. Thus, there
is a need for periodic software testing cyberphysical
systems (complexes) at all stages of their life cycle due
to many reasons, the main of which are:

58

Intelligent Data analysis methods in cybersecurity



• integration of new functionality. Modern software
systems constantly improving, providing new func-
tionality.

• correction of various, previously undetected errors.
Even already released final product may contain
errors. In this case, edits are made by developers
in the form of an update that allows you to fix the
shortcomings.

• software adaptation. Quite often, software adapt
to new components. Testing is required to verify
correctness of such adaptation.

Therefore, any software changes require testing to make
sure that the system has not lost its cybersecurity and
still meets its requirements & specifications. Accord-
ingly, regression testing focuses on already tested parts
of software and aims to ensure the proper operation
of these parts in already new adapted versions of the
software.

1. Modern problems in software testing of cy-
berphysical systems.

There are several testing methods that help reduce
the cost of testing and indicate how to choose the right
test cases. To test software versions providing the most
popular means to reduce efforts is the selection and
prioritization of test cases [10]. However, these tech-
niques usually require knowledge of the code [11, 14] or
are based on application of models [14]. Unfortunately,
complex software systems are often component, so they
consist of different software components, each developed
individually. Despite the fact that such components
enhance the reusage of provided software and support
parallel development, they cause new challenges when
testing, because the source code of such components is
usually not available. Only several methods deal with
black box metadata, for example, the history of test
cases [8, 14].

There is no method that would simultaneously in-
clude many components of testing in conditions due to
lack of access to program codes. In addition, the com-
plexity of software systems does not allow to thoroughly
test each variation individually. Modern methods for
testing variations mostly focus on selection [10, 11] and
prioritization [11, 14] of variations or on the genera-
tion of test cases. Identifying important test cases for
variations and versions of the software is difficult, as it
is impossible to change code levels directly observing
and analyzing. Thus, new methods are needed for solv-
ing the complexity of testing variations and versions
in conditions without access to code. In the process of
software development, models are often used that help
to control various aspects of its creation. Examples of
such models are Waterfall model, V-model or Scrum
[8].

Due to the complexity of modern cyberphysical sys-
tems, testing their software requires significant resources
and time. In the stages of the software product life cy-
cle, there is a stage at which testing of part or all of the
product is performed. Regardless, accordingly to which
software life cycle methodology is developed, it is pos-

sible to allocate the general stages (states) and stages
which are inherent in each of the methodologies. They
are the basis of any process of software development
and testing, [15]. Each stage of conceptual development
has an analogue on the testing side, for example design
system provides a specification for the appropriate stage
of testing at different levels of development. In each
phase of testing, the specification is used to define the
set of test cases 𝑇𝐶 = {𝑡𝑒𝑠𝑡1, ..., 𝑡𝑒𝑠𝑡𝑛} of the system
being tested. Each test case covers a specific one aspect
of the system under test and ensures that it meets the
specifications. In this article, the two phases of test-
ing are considered in detail - integration and system.
System testing completes the verification of the system
implementation. The system is defined by the set of
requirements 𝑅𝐸𝑄 = {𝑟𝑒𝑞1, ..., 𝑟𝑒𝑞𝑛} and includes all
key moments. In the course of system testing, func-
tional testing is performed as well the characteristics of
the developed software are tested, including stability,
productivity, reliability and security [21].

The black box approach: system is used for system
testing is considered as a single whole, real data is sub-
mitted to the input, the work of the system is analysed
by the results obtained. The system testing phase re-
veals related errors with incorrect implementation of
software functions, incorrect interaction with other sys-
tems, hardware, incorrect memory allocation, lack of
correct release of resources and so on [17]. The data
source is a technical task for the development of the sys-
tem, specifications for its components, its environment
and standards used. To assess whether the system is
working according to its specifications, a set of system
test cases is selected. That’s right, tracking the rela-
tionship between requirements and test cases affects the
quality of the system. In other words, it is important
to know what requirement a test case covers in order to
be able to measure certain indicators related to quality.
One of the main assumptions for system testing is that
each requirement is covered by at least one test case, so
coverage of requirements [18], necessary to ensure the
required quality.

2. Selection and prioritization of test cases.

In 2002, Rothermel [1] compared existing prioritiza-
tion techniques, such as random prioritization, optimal
prioritization, and lack of priorities, using the Siemens
suite of applications. The optimal prioritization was
possible, because the research was conducted in a con-
trolled environment, so all errors were known. The
results showed that the above method showed a higher
percentage fault detection than accidental prioritization
or absence. Search-based testing is now a popular area
of research. Most of them focus on single-purpose re-
gression testing, while only several authors have focused
on multi-purpose regression testing.

Harman [11] notes that this type of optimization is
a very important area for research. He notes that the
goals for optimization are the values that should be
maximized or the means that should be minimized.

59

Technique of Testing Cyber Vulnerabilities and Quality of Cyberphysical Software Systems



In 2008 Srivastava P. [12] presented a new algorithm
for prioritization of test cases to calculate the average
number of errors found per minute. Using results of the
APFD metric, he proved the efficiency of the presented
algorithm. Calculating the effectiveness of prioritized
and non-prioritized test cases was the main goal of his
work.

Also, in 2011 Kavita R. [13] proposed an algorithm
that calculates the speed of troubleshooting and pri-
oritizes test cases based on this data. Experimental
data showed that APFD is higher and more effective
detection of serious ones occurs faults at an early stage
of the testing process can be obtained using of the pro-
posed algorithm for prioritized test cases is compared
with non-prioritized.

Already in 2019, Sudhir Kumar Mukhapatra [15] pro-
posed a new genetic algorithm for solving the problem
of prioritization of test cases. The results of the ex-
periment showed that the percentage of fault detection
when using the algorithm was higher than when using
the above-mentioned technique of random prioritiza-
tion. It was also held experiment for fixing execution
time with different number of generated test cases, and
it was found that the result does not depend directly
on the number of generated test cases. Testing in the
absence of access to software code is very important for
integration, system and acceptance testing of software
cyberphysical systems, because it involves knowledge
of external data and internal interface of the tested
program. Thus, the control point and the observation
point are outside the internal structure of the systems,
f.e the tester does not have access to the code and only
the observed results determine the test result [16].

Existing black box testing methods often focus on the
creation process test cases, such as equivalence classes,
boundary value analysis, or tables decision-making [8].
However, the performance of test cases is not trivial,
especially when testing software versions, where only a
certain subset of test cases can be performed due to lim-
ited resources. Software version testing is available as a
complex task due to the time-limited retesting of new
versions. In this context, regression testing should be
considered. Regression testing focuses on retesting pre-
viously tested software parts that are subject to changes
that have been made in the new version of the software
provision [17]. Quality of test documentation created
during system development and modified during testing
will affect the cost of regression testing. If given test
cases were correctly recorded and saved, duplication of
effort is minimized [17]. The main problem of regression
testing is the choice between full and partial retesting
and replenishment of test sets. At partial repeated test-
ing only those parts of the project that are related to
the changed components are controlled [15]. Without
access to the source code, to identify potentially broken
system parts non-trivial task, which depends on the
knowledge of experts and repetitive manual attempts.
This makes the reliable identification of important re-
gression test cases difficult and expensive, especially for
their large number.

In addition, retesting is generally not possible because
of the amount of effort required to the execution of all
test cases may be greater than the available resources
for testing, not every test case can be run again for each
version. This is a problem, especially in flexible develop-
ment methodology [18], where new versions are released
after a short interval time and testing should be done
quickly and often. Another problem arises if testing
should be performed manually, as in the case of system
testing, that dramatically reduces test bandwidth and
forces the tester to focus on all possible subsets of test
cases. Thus, regression testing is both very effective and
at the same time very effective costly testing method.
Highest costs and often lower quality testing associated
with the execution of each test case for each function of
the program after the smallest change of functionality.
Problems with the correct selection of test cases can
be solved with the help of their correct prioritization.
Methods for prioritizing test cases include planning exe-
cution of test cases in the order that improves regression
testing. Methods of prioritization of test cases allow
to significantly increase efficiency performing tests in
practice, namely to increase the speed of finding errors
and cyber vulnerabilities. According to the empirical
assessment, the order of regression test cases for the
method prioritization is measured using an evaluation
metric such as the average percentage measuring the
quality of prioritization of test cases.

The three main approaches to regression testing are
the prioritization of test cases, correct selection of test
cases and minimization of test set. Therefore, it is
necessary to improve correct selection and prioritization
of test cases in the methodology of cyberphysical testing
systems in the absence of access to program codes.
Selection of test cases. When working with a large set of
test cases, 𝑇𝐶 = {𝑡𝑒𝑠𝑡1, ..., 𝑡𝑒𝑠𝑡𝑛} the correct selection
and execution of a subset of test cases is a well-known
approach for reduction of resources for testing [8]. We
will define the problem of choosing test cases, according
to Rothermel [1].

Definition. Let 𝑝𝑟 be a software system, 𝑝𝑟′ be a new
version of a software system, and 𝑇𝐶 be a set of test
cases. Problem statement: Find the set of test cases
𝑇𝑆′ ⊆ 𝑇𝐶 to test 𝑝𝑟′.

Categorization of test cases
By definition [19], there are four categories of test

cases:
1) New. When adding new functionality to the sys-

tem, new requirements are added. They lead to the
need to create a set of new test cases: 𝑇𝐶𝑛𝑒𝑤 ⊆ 𝑇𝐶
Usually new test cases have a high priority, because
they have not been reproduced before, respectively,
their execution must be mandatory for the current
program under test.

2) Obsolete. Previously implemented functionality
can be removed from the new version. For In addi-
tion, there are many obsolete test cases: 𝑇𝐶𝑜𝑏 ⊆
𝑇𝐶, which are not part of the regression testing
for the program under test, as test cases are no
longer executable.

60

Intelligent Data analysis methods in cybersecurity



3) Reusable. A number of test cases that were per-
formed for at least one previous version of the
software and can also be run for the current one
version of the program under test. This set of test
cases: 𝑇𝐶𝑟 ⊆ 𝑇𝐶 is the basis for regression test-
ing. Although each test case from such a set is
executable, their number can be very large.

4) They can be re-checked. To increase the effective-
ness of regression testing, there is a subset of test
cases selected from a set of multiple test cases:
𝑇𝐶𝑟𝑒 ⊆ 𝑇𝐶𝑟. This set of test cases applies to the
current program being tested and should be based
on the best techniques for selecting test cases to
obtain the highest probability of error detection.
Set like this should include only effective ones test
cases that detect new errors.

3. Solving existing problems in the effective
selection of test cases.

In the past, many techniques have been proposed
for the selection of test cases, most of which have a
common disadvantage - their use requires access to the
code and accurate information about modifications of
the system [8]. Because even with the right choice of
test cases and creation necessary set, their number may
still be too large, there is a need to pay attention to
the prioritization of selected test cases.

3.1. Prioritization of test cases.

Since the selection of test cases is intended to find
a subset of tests that will be re-verified - 𝑇𝐶𝑟𝑒. Pri-
oritization of test cases [7] aims to prioritize a set of
𝑇𝐶 for a specific program under test according to their
priorities. Formally, this is described by Elbaum [20]
as a definition.

Definition. Let 𝑇𝑆 ⊆ 𝑇𝐶 be a set of tests, 𝒫(𝑇𝑆) be
the set of their permutations, and 𝑓 : 𝒫(𝑇𝐶) 𝑡𝑜N
be a priority function. Problem statement: Find
𝑇𝑆′ ∈ 𝒫(𝑇𝑆) such that {∀𝑇𝑆′′ ∈ 𝒫(𝑇𝑆)| 𝑇𝑆′′ ̸=
𝑇𝑆′ ∧ 𝑓(𝑇𝑆′) ≥ 𝑓(𝑇𝑆′′)}

One of the main advantages of prioritizing test cases
over their selection is that testing can stop at any time,
and by setting priorities, we ensure that the most im-
portant test cases have been completed by that point
in time. The main purpose of the priority of test cases
is to detect faults in the system as early as possible, by
performing effective test cases first [1]. It is not possible
to know the optimal number of permutations for test
cases to perform, because fault information is available
for the first time during the execution of test cases.
However, certain approaches have been developed to
achieve the goal in the fastest way. Most of them are
based on the code [20], test models [8], test history and
much less often, the method of functional testing.

3.2. Assessment of the quality of priorities.

Regardless of which technique is used, the desired
result is early detection of faults. To evaluate, there

was this goal achieved or not, we introduce the concept
of the average percentage of fault detection (APFD)[7].
This metric calculates values between 0 and 1, where 1
is the best possible result. It calculates the error rate in
existing test cases from a numbered list. Accordingly,
the earlier the test case at position 𝑇𝐹𝑖 finds the 𝑖-error,
the higher its priority. In this work, we measure the
finding of faults, not bugs, because we do not have
access to information at the code level, therefore, we
can only observe manifestations of bugs in the form of
malfunctions[24].

Example.
Measuring the quality of the priority of test cases

Assume the following two permutations from the
five test cases 𝑇𝐶 = {𝑡𝑒𝑠𝑡1, ..., 𝑡𝑒𝑠𝑡5}: 𝑇𝑆1 =
(𝑡𝑒𝑠𝑡1, 𝑡𝑒𝑠𝑡2, 𝑡𝑒𝑠𝑡3, 𝑡𝑒𝑠𝑡4, 𝑡𝑒𝑠𝑡5)

𝑇𝑆2 = (𝑡𝑒𝑠𝑡2, 𝑡𝑒𝑠𝑡4, 𝑡𝑒𝑠𝑡1, 𝑡𝑒𝑠𝑡3, 𝑡𝑒𝑠𝑡5) Now suppose
that 𝑡𝑒𝑠𝑡2 and 𝑡𝑒𝑠𝑡4 are false test cases. Looking at
the first two permutations, I see that 𝑇𝑆2 is the best
permutation of test cases, but usually both failures
can be detected by executing the first two test cases.
Instead, 𝑇𝑆1 finds errors in another and penultimate
test case. Therefore, 𝑇𝑆1 reaches 𝐴𝑃𝐹𝐷 0.5, while
𝑇𝑆2 wins to 0.8.

𝐴𝑃𝐹𝐷 = 1− 2 + 4

5 · 2
+

1

2 · 5
= 1− 0.6 + 0.1 = 0.5 (1)

𝐴𝑃𝐹𝐷 = 1− 1 + 2

5 · 2
+

1

2 · 5
= 1− 0.3 + 0.1 = 0.8 (2)

Fig. 1. Visualization of difference between a prioritized
and a non-prioritized set of test cases

Therefore, 𝑇𝑆1 reaches the value of 𝐴𝑃𝐹𝐷 0.5, while
𝑇𝑆2 leads to the value 0.8, which is shown in the figure
1.

3.3. Improving the scheme of the regression
testing process

Because software updates occur frequently, regression
testing of different versions of software is a complex and
necessary task. In order to cope with the large volume of
regression testing, there are various methods of selecting
test cases. Based on the selection criteria, a subset of
test cases is determined. The quality of the selection of
test cases for regression depends on the test objectives,
which vary depending on the software version.

61

Technique of Testing Cyber Vulnerabilities and Quality of Cyberphysical Software Systems



In general, there are enough methods for testing
software, but most of them require access to software
code, which is not always possible, especially in system
testing [8]. The basic scheme of the advanced regression
testing process is shown in Figure 2.

Fig. 2. Scheme of multi-purpose selection of test cases

There are three main phases:
1) Preparation and analysis of data for testing
2) Data selection
3) Selection and execution of test cases
Before applying the test case selection method, it is

necessary to prepare and analyse the data for testing.
The available data related to system testing include:

• Covered requirements and specifications
• Faults detected
• Fault priority
• The last execution of the test case
• The average cost of running a test case
Example. Identify test cases for regression

testing.[24]
Assume that the software architecture has changed

from 𝒵 to 𝒵 ′ as shown in Figure 3, where the software
version 𝒵 is shown on the left, and right - 𝒵 ′ Each
version contains three components, 𝐴, 𝐵, and 𝐶. In
the already tested version of 𝑍, three connectors connect
system components. Their sent signals are irrelevant for
this example. So, the software has been upgraded to 𝑍 ′,
which we can see on the right side of the picture. We see
that in the new version we added a connection between
𝐴 and 𝐶. The tester needs to determine which parts
of the system he will test in regression testing. The
re-testing approach involves a complete overview of the
entire system. Other methods would most likely focus
only on the difference between the proposed versions of
the software, that is, in this case, on the relationship

between 𝐴 and 𝐶. However, the changes could affect
the components 𝐴 and 𝐶 unpredictably, which would
lead to difficulties in communicating with 𝐵. Thus,
thanks to this figure, we can see all the difficulties in
choosing a set of test cases 𝑇𝐶 = {𝑡𝑒𝑠𝑡1, ..., 𝑡𝑒𝑠𝑡𝑛}.

Fig. 3. Example of changes between software versions

3.4. Introduction of new metrics for measur-
ing testing efficiency of cyberphysical soft-
ware systems

One or more coverage criteria are typically used to
measure how much code has been used by a set of
test cases. Such criteria are determined by a set of
requirements or specifications that test cases, in turn,
must meet[22]

Based on the above-proven efficiency of the average
percentage of fault detection, new metrics were derived,
depending on such criteria of testing coverage as:
1) Operators (statement)
2) Branches
3) Functions
Accordingly, new coverage metrics were calculated:

1) Average Operator Coverage Percentage (APSC)
2) Average percentage of branch coverage (APBC)
3) Average Function Coverage Percentage (APFC)
For example, in order to calculate the APFC metric

(3 point), define [23]:
Let 𝑇𝐶 = {𝑡𝑒𝑠𝑡1, ..., 𝑡𝑒𝑠𝑡𝑛} be a numbered set of

tests, with 𝑛 tests, 𝐹𝑛 = {𝑓𝑢𝑛1, ..., 𝑓𝑢𝑛𝑘} be a set
with 𝑘 functions. APFC for such a set is calculated by
the following formula:

𝐴𝑃𝐹𝐷 = 1−

𝑚∑︀
𝑖=1

𝑇𝐹𝑛𝑖

𝑛 · 𝑘
+

1

2𝑛
, 𝑛, 𝑘 > 0 (3)

The result of this metric is between 0 and 1, where
1 is the best possible result. APSC, APBC are de-
fined similarly to APFC, except that they measure the
coverage criteria of operators and branches.

Conclusion
Conclusion
Analysis of the software testing process and testing

in conditions without access to program code has shown
the effectiveness of the application in conditions that
methods of regression testing are considered and allowed
to reveal existing problems in the selection and prioriti-
zation of test cases. Thus, the improved methodology
was developed and practically applied to testing of cy-
ber vulnerabilities and quality of cyberphysical systems
(complexes) and an improved approach to the selection

62

Intelligent Data analysis methods in cybersecurity



of test cases and analyzed the obtained results. Future
research involves the development of selection methods
and prioritization of test cases for risk-based testing.
This article also analyzes the results of a study of pre-
decessors on the importance of prioritizing test cases
in their implementation. The difference in efficiency
between the priority and non-priority sets of test cases
was also determined using APFD metric comparisons.
As a result of the study, new metrics for measuring test
coverage were presented.

References

References
[1] Rottermel G. Elbaum S. Test case prioritization: A

family of empirical studies. IEEE Transactions on
Software Engineering. — 2002.

[2] US National Science Foundation, Cyber-Physical
Systems (CPS) — 2010.

[3] Hancu, O., Maties, V. Mechatronic approach for
design and control of a hydraulic 3-dof parallel robot.
// The 18th International DAAAM Symposium —
2007.

[4] Suh, S.C., Carbone, J.N., Eroglu, A.E.: Applied
Cyber-Physical Systems. // Springer — 2014.

[5] Rad, Ciprian-Radu; Hancu, Olimpiu; Takacs, Ioana-
Alexandra; Olteanu, Gheorghe : Smart Monitoring
of Potato Crop: A Cyber-Physical System Architec-
ture Model in the Field of Precision Agriculture //
Conference Agriculture for Life, Life for Agriculture.
— 2015.

[6] Khaitan et al. Design Techniques and Applications
of Cyber Physical Systems: A Survey // IEEE
Systems Journal. — 2014.

[7] Rottermel G., Harrold M. A Safe, Efficient Regres-
sion Test Selection Technique. - p.173-210.- 1997.

[8] Runeson P., Skoglund M. A systematic review on
regression test selection techniques // Information
and Software Technology. - p.14-30. - 2010.

[9] M. Lehman. Programs, Life Cycles, and Laws of
Software Evolution. - p.1-17. - 1980.

[10] M. Harman. Regression Testing Minimisation, Se-
lection and Prioritisation : A Survey. // Wiley
InterScience - 2007.

[11] M. Harman. Pareto Efficient Multi-objective Test
Case Selection. // ISSTA ’07: Proceedings of the
2007 international symposium on Software testing
and analysis. - p.140-150. - 2007.

[12] P. Srivastava. Test Case Prioritization. // Journal
of Theoretical and Applied Information Technology
IEEE. - 2008.

[13] R. Kavitha. Factors Oriented Test Case Prioritiza-
tion Technique in Regression Testing. // European
Journal of Scientific Research. - 2011.

[14] Mondal D., Hemmati H. Exploring Test Suite Di-
versification and Code Coverage in Multi-Objective
Test Case Selection. - p.1-10. - 2015.

[15] K. Mohapatra. A Genetic Algorithm-Based Ap-
proach for Test Case Prioritization // European
Journal of Scientific Research - 2019.

[16] B. Dobran. Black Box Testing vs White Box Test-
ing: Know the Differences. - p.1-2. - 2018.

[17] W. E. Perry. Effective Methods Of Software Test-
ing. - 2006.

[18] R. Cole. Brilliant Agile Project Management: A
Practical Guide to Using Agile, Scrum and Kanban.
- 2015.

[19] Kent A., Williams J. Encyclopedia of Computer
Science and Technology: Volume 32. - p.300-311. -
1995.

[20] S. Elbaum. Test Case Prioritization: A Family of
Empirical Studies. // IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, VOL. 28, NO. 2 -
p.1-25. - 2002.

[21] I. Sommerville. Software Engineering. - 2016.
[22] Ammann P. Offutt J. Introduction to Software

Testing // Cambridge University Press. — 2013.
[23] Vysochanska V. Proving the efficiency of prioriti-

zation of test cases based on APFD metrics and
derivation of new metrics - 2021.

[24] Vysochanska V. Regression testing improvement
in terms of black-box technique. - p.30-34. - 2021.

63

Technique of Testing Cyber Vulnerabilities and Quality of Cyberphysical Software Systems


	1 Modern problems in software testing of cyberphysical systems.
	2 Selection and prioritization of test cases.
	3 Solving existing problems in the effective selection of test cases.
	3.1 Prioritization of test cases.
	3.2 Assessment of the quality of priorities.
	3.3 Improving the scheme of the regression testing process
	3.4 Introduction of new metrics for measuring testing efficiency of cyberphysical software systems


