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Abstract
In 2021, the first version of block cipher Qalqan was presented. It is positioned as a candidate to the future
national encryption standard of the Republic of Kazakhstan. This cipher features the usage of addition by
different modules for mixing the round keys and for linear layer. In this work, we consider some cryptographic
properties of Qalqan, related with the security against differential and linear cryptanalysis. We present variations
of cipher’s S-box with better cryptographic properties. We prove that branch number of Qalqan’s linear layer
is equal to 3, and the layer itself has a significant amount of fixed points. Also, we build a set of multi-round
differential characteristics with high probabilities for the modified version of the Qalqan cipher, which uses only
addition modulo 256. With these results, we can argue that the declared security of Qalqan against differential
and linear cryptanalysis should be reconsidered.

Keywords: Qalqan cipher, branch number, differential cryptanalisys

Introduction

A block cipher Qalqan was presented in 2021 [1];
it is positioned as a candidate to become the future
national encryption standard of the Republic of
Kazakhstan. There are few published results of
its cryptographic analysis; some security estima-
tions were presented in reports [1, 2]. However, the
methodology of security analysis was not presented
alongside, making it impossible to perform inde-
pendent external verification. Also, cryptographic
properties of Qalqan cipher S-box were studied
in [3]. They are quite sufficient for use in modern
block ciphers.

This paper considers the cryptographic proper-
ties of structural elements of the Qalqan cipher. We
present simple variations of Qalqan’s S-box, which
are potentially increase the security against differ-
ential cryptanalysis and algebraic attacks. We cal-
culate branch number of linear layer and show that
linear layer does not fulfill the wide trail strategy [4].
This may correspond to cipher vulnerabilities to
differential and linear cryptanalysis. Consequently,
we find large classes of fixed points for Qalqan’s
linear layer, which eases the construction of appro-
priate differential and linear attacks. To illustrate
our claims, we find the multi-round differential
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characteristics with high probabilities for modified
Qalqan cipher.

We strongly believe that Qalqan cipher will be
improved further. Therefore, in our work, we will
refer to the version of Qalqan cipher, presented
in [1], as the first version of this cipher and denote
it as Qalqan𝑣1.

1. Preliminaries

Let 𝑉𝑛 = {0, 1}𝑛 be the space of all binary vec-
tors with bit-wise addition ⊕. The elements from
the 𝑉𝑛 are naturally correspond to non-negative
integers from the set Z2𝑛 = {0, 1, . . . , 2𝑛−1}: each
vector is treated as a binary form of an integer num-
ber. With introduced notation for the set 𝑉𝑛, we
will consider operation + as addition modulo 2𝑛 of
two binary vectors in the form of integer numbers.

We name elements from the space 𝑉8 (or, cor-
respondingly, Z256) as bytes and elements from
the space 𝑉128 as blocks. Each block 𝑥 ∈ 𝑉128

can be naturally represented as an array of bytes
𝑥 = (𝑥0, 𝑥1, . . . , 𝑥15), 𝑥𝑖 ∈ 𝑉8. For the modulo
addition operation Little Endian format is used:

𝑥+ 𝑦 = (𝑥0+ 𝑦0, 𝑥1+ 𝑦1+ 𝜈1, . . . , 𝑥15+ 𝑦15+ 𝜈15),

where 𝜈𝑖 = 𝜈𝑖(𝑥0, 𝑦0, . . . , 𝑥𝑖−1, 𝑦𝑖−1) are carry bits
from lower digits. Furthermore, for such represen-
tation, we consider byte-wise addition ⊞ of vectors:

𝑥⊞ 𝑦 = (𝑥0 + 𝑦0, 𝑥1 + 𝑦1, . . . , 𝑥15 + 𝑦15).
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Each block 𝑥 ∈ 𝑉128 can be represented as byte
4× 4-matrix:⎡⎢⎢⎣
𝑥0 𝑥1 𝑥2 𝑥3
𝑥4 𝑥5 𝑥6 𝑥7
𝑥8 𝑥9 𝑥10 𝑥11
𝑥12 𝑥13 𝑥14 𝑥15

⎤⎥⎥⎦→

⎡⎢⎢⎣
𝑎0,0 𝑎0,1 𝑎0,2 𝑎0,3
𝑎1,0 𝑎1,1 𝑎1,2 𝑎1,3
𝑎2,0 𝑎2,1 𝑎2,2 𝑎2,3
𝑎3,0 𝑎3,1 𝑎3,2 𝑎3,3

⎤⎥⎥⎦.
Let ℳ be a set of all 4 × 4-matrix over 𝑉8. A

weight 𝑤𝑡(𝑀) of matrix 𝑀 ∈ ℳ is a number of
non-zero matrix cells (similarly to the weight of a
vector). Then branch number of nonsingular linear
transformation 𝐿 : ℳ → ℳ is a value

𝐵(𝐿) = min
𝑀∈ℳ,𝑀 ̸=𝑂

{𝑤𝑡(𝑀) + 𝑤𝑡(𝐿(𝑀))},

where 𝑂 is a zero matrix.
Branch number has a significant value for resis-

tance evaluation of SP-networks to the differen-
tial and linear cryptanalysis. In correspondence
to “wide trail strategy”, presented by J. Daemen
and V. Rijmen [4], branch number must be maxi-
mized for the sake of security against the mentioned
methods of cryptanalysis.

Let us remind the basic definitions of differential
cryptanalysis [5, 6, 7]. For function 𝑓 : 𝑉𝑛 → 𝑉𝑛

a differential is a pair of two arbitrary vectors
(𝛼, 𝛽) ∈ 𝑉 2

𝑛 , which are considered as differences
between an input and corresponding output of
function 𝑓 . In general case, differences can be
calculated with respect to distinct operations. A
probability of differential (𝛼, 𝛽) of function 𝑓 w.r.t.
operations ∘ and ∙ is a value

𝐷𝑃 𝑓
∘,∙(𝛼, 𝛽) =

1

2𝑛

∑︁
𝑥∈𝑉𝑛

[𝑓(𝑥 ∘ 𝛼) = 𝑓(𝑥) ∙ 𝛽],

where [𝐴] is an indicator of event 𝐴 (Iverson’s brack-
ets). In our work, we mostly consider probabilities
𝐷𝑃 𝑓

⊕,⊞ and 𝐷𝑃 𝑓
⊞,⊞.

Let 𝐹𝑘 : 𝑉𝑛×𝒦 → 𝑉𝑛 be an encryption mapping
with key parameter 𝑘 ∈ 𝒦. Differential probability
is defined for each input 𝑥 ∈ 𝑉𝑛 independently:

𝐷𝑃𝐹𝑘
∘,∙(𝑥;𝛼, 𝛽) =

1

|𝒦|
∑︁
𝑘∈𝒦

[𝐹𝑘(𝑥 ∘ 𝛼) = 𝐹𝑘(𝑥) ∙ 𝛽].

The encryption mapping is called Markov mapping
with respect to a pair of operations (∘, ∙), if the
probability for all its differentials is independent of
the input point [6, 7]:

∀𝑥∀𝛼∀𝛽 : 𝐷𝑃𝐹𝑘
∘,∙(𝑥;𝛼, 𝛽) = 𝐷𝑃𝐹𝑘

∘,∙(0;𝛼, 𝛽).

Further, for the sake of simplicity, we omit the nota-
tion of the input point for differential probabilities
of Markov mappings.

Let 𝐸(𝑥) = 𝐹
(𝑟)
𝑘𝑟

(𝐹
(𝑟−1)
𝑘𝑟−1

(. . . 𝐹
(1)
𝑘1

(𝑥) . . . )) —
𝑟-round iterative cipher with round functions 𝐹 (𝑖)

and independent random round keys 𝑘𝑖. Differen-
tial characteristic of cipher 𝐸 is an arbitrary se-
quence of non-zero binary vectors Ω = (𝜔0, . . . , 𝜔𝑟),
which represent the differences between input val-
ues and intermediate ciphertexts after each round
of encryption. If cipher 𝐸 is Markov with respect
to some sequence of operations, then probability
𝐷𝐶𝑃 of differential characteristics Ω is equal to [8]

𝐷𝐶𝑃𝐸(Ω) =
𝑟∏︁

𝑖=1

𝐷𝑃𝐹 (𝑖)
(𝜔𝑖−1, 𝜔𝑖).

The sequence of operations for difference evaluation
is considered to be known in advance.

2. Qalqan𝑣1 Cipher and Its Modifications

The block cipher Qalqan [1] has an SP-network-
based structure with a block size of 128 bits. The
cipher key length is 256-1024 bits, with 17-23 en-
cryption rounds. The number of rounds depends
on the key length. Cipher has a byte-oriented struc-
ture: all operations, but adding round keys, are
done over bytes (8-bit sequences) or sets of bytes.

Input texts and encryption states are represented
as 128-bit vectors, arrays of 16 bytes, and byte
matrix 4×4 at the same time, depending on applied
transformation.

One encryption round 𝐹𝑘(𝑥) = 𝐿(𝑆(𝐾∘
𝑘(𝑥))) con-

sists of three sequential layers:
1) round key addition 𝐾∘

𝑘 with operation ∘;
2) non-linear substitution 𝑆;
3) linear transformation 𝐿, which consists of a

series of state byte additions (details further).
At the end of encryption, extra whitening is

applied with a separate round key.
Addition with the round key on the first round

and at the end of the encryption is performed
with the bit-wise operation (𝐾⊕

𝑘 (𝑥) = 𝑥 ⊕ 𝑘).
All other rounds use addition modulo 2128

(𝐾+
𝑘 (𝑥) = (𝑥+ 𝑘) mod 2128) and encryption state

is represented as 128-bit non-negative integer in
Little-Endian format. In our work, we denote these
functions as 𝐹⊕

𝑘 and 𝐹+
𝑘 for round functions. They

use 𝐾⊕
𝑘 and 𝐾+

𝑘 keys respectively.
Non-linear substitution 𝑆 is applied to all bytes

in state matrix with fixed S-Box 𝑠: 𝑎𝑖,𝑗 = 𝑠[𝑎𝑖,𝑗 ].
Qalqan𝑣1 S-Box is claimed to be constructed us-
ing Nyberg scheme [9], similarly to AES S-Box;
however, its algebraic form had not be published.

Linear layer 𝐿 of Qalqan𝑣1 cipher is based on byte
addition (modulo 28) and consists of two phases:

a) on the first phase («absorption») diagonal ele-
ments from the matrix are added with all elements
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Fig. 1. General scheme of the linear layer 𝐿: on
the left — absorption phase, on the right — distri-
bution phase.

from the corresponding row:

∀𝑖 ∈ {0, 1, 2, 3} : 𝑎𝑖,𝑖 = 𝑎𝑖,0 + 𝑎𝑖,1 + 𝑎𝑖,2 + 𝑎𝑖,3;

b) on the second phase («distribution») updated
diagonal matrix elements are added to all elements
of corresponding columns:

∀𝑗, 𝑖 ∈ {0, 1, 2, 3}, 𝑖 ̸= 𝑗 : 𝑎𝑖,𝑗 = 𝑎𝑖,𝑗 + 𝑎𝑗,𝑗 .

The scheme of the linear layer 𝐿 is presented in
fig. 1.

It’s worth mentioning that the linear layer of
Qalqan𝑣1 cipher has no analogs among other linear
mappings used in known block ciphers.

A detailed description of the Qalqan𝑣1 cipher,
its components and key schedule are presented
in [1, 2].

Further in our work, alongside with original ci-
pher, we consider its modification, where byte-wise
vector addition ⊞ modulo 28 is used. The first modi-
fication has all its round key additions 𝐾+

𝑘 modulo
2128 substituted with additions 𝐾⊞

𝑘 (𝑥) = 𝑥 ⊞ 𝑘.
The modified round function we denote as 𝐹⊞

𝑘 .
The essence of this modification is a removal of
carry bits between state bytes. This modification
transforms cipher into Markov cipher w.r.t. the
sequence of operations (⊕,⊞,⊞, . . . ,⊞,⊕). The
second modification uses byte-wise addition for
first and last addition with key as well. This modi-
fication transforms the cipher into Markov cipher
w.r.t. ⊞ operation and can be considered as a ci-
pher model without first round and final whitening.
We denote these modifications as Qalqan𝑣1

⊕⊞ and
Qalqan𝑣1

⊞⊞ respectively.

3. Improvements for the Qalqan𝑣1 cipher
S-Box

It is claimed that the S-box of Qalqan𝑣1 cipher
is constructed based on the Nyberg scheme [9], but
its algerbaic structure remains hidden. Detailed
analysis of cryptographic properties if this S-Box
can be found in [3]. Qalqan𝑣1 S-Box has good val-
ues of parameters that indicate the security against

known cryptanalytic attacks. Here are the main
cryptographic properties (both mentioned in [3]
and some extra):

1) balanced, compliance with strict avalanche
criteria;

2) algebraic degree: 7;
3) 𝑀𝐷𝑃⊕,⊕(𝑠) = 4/256 = 2−6;
4) 𝑀𝐷𝑃+,+(𝑠) = 8/256 = 2−6;
5) 𝑀𝐷𝑃⊕,+(𝑠) = 6/256 = 2−5.415;
6) non-linearity: 112, maximum linear potential

value: 2−6;
7) fixed point number: 0;
8) the number of cycles of length two: 1.
It is worth mentioning that the Nyberg scheme

provides solid cryptographic properties for cipher
if its algebraic structure (key addition and linear
layer) constructed with respect to bit-wise addition.
However, in Qalqan𝑣1 cipher, the linear layer uses
byte-wise addition, and the key adder uses both
bit-wise addition and addition modulo 2128. In
our opinion, it would be more appropriate to focus
on cryptographic parameters related to modular
addition during choosing process of the S-box.

We considered all S-boxes of the form

𝑠𝑢,𝑣(𝑥) = 𝑠(𝑥⊕ 𝑢)⊕ 𝑣

for 𝑢, 𝑣 ∈ 𝑉8 and evaluated their cryptographic
properties. Such affine transformation changes
the cycle structure of permutation, but does not
change imbalance, algebraic degree, non-linearity,
maximum linear potential value, and 𝑀𝐷𝑃⊕,⊕.
Therefore, most of the cryptographic properties of
S-boxes 𝑠𝑢,𝑣 for all 𝑢, 𝑣 have the same quality as
the original Qalqan𝑣1 S-box. However, we found
24 S-boxes with better cryptographic parameters:

1) 𝑀𝐷𝑃+,+(𝑠) = 6/256 = 2−5.415;
2) 𝑀𝐷𝑃⊕,+(𝑠) = 5/256 = 2−5.678;
3) fixed point number: 0;
4) the number of cycles of length two: 0.
For instance, such S-boxes are 𝑠02,0𝐹 or 𝑠52,70;

full list is given in tab. 1. Weakening require-
ments for value 𝑀𝐷𝑃⊕,+(𝑠) to the original value
6/256 leads to an increasing number of appropriate
S-boxes up to 1076.

In our opinion, considered improvements of
Qalqan𝑣1 S-box will make it possible to strengthen
the security of the Qalqan cipher against differen-
tial cryptanalysis and algebraic attacks.

4. Properties of the Linear Layer of
Qalqan𝑣1 cipher

In this section, the cryptographic properties of
the linear transformation of the Qalqan𝑣1cipher are
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Table 1. List of 𝑢, 𝑣 parameter values (in hex-
adecimal) for which S-boxes 𝑠𝑢,𝑣 have the best
cryptographic properties.

№ 𝑢 𝑣 № 𝑢 𝑣

1 02 0𝐹 13 82 8𝐹

2 0𝐷 70 14 8𝐷 𝐹0

3 13 70 15 93 𝐹0

4 2𝐷 0𝐹 16 𝐴𝐷 70

5 2𝐷 𝐹0 17 𝐴𝐷 8𝐹

6 3𝐹 𝐹0 18 𝐵𝐹 70

7 40 8𝐹 19 𝐶0 0𝐹

8 52 70 20 𝐷2 0𝐹

9 52 8𝐹 21 𝐷2 𝐹0

10 6𝐶 0𝐹 22 𝐸𝐶 8𝐹

11 72 0𝐹 23 𝐹2 8𝐹

12 7𝐷 70 24 𝐹𝐷 𝐹0

considered. In particular, we found its branch num-
ber, and describe large classes of its fixed points.

Claim 1. Branch number of the linear layer 𝐿 of
Qalqan𝑣1 cipher is equal to 3.

Proof. It is known that the branch number of a
linear transformation over the space of dimension
𝑚 can take values only in the interval from 2 to
𝑚+ 1. Let us first show that 𝐵(𝐿) ̸= 2.

Since only 𝑀 ̸= 𝑂 are considered and 𝐿 is
non-singular and bijective, we have 𝑤𝑡(𝑀) ⩾ 1,
𝑤𝑡(𝐿(𝑀)) ⩾ 1; therefore 𝐵(𝐿) = 2 if and only if
there exists a matrix 𝑀 of weight 1 such that 𝐿(𝑀)
also has weight 1. However, if the matrix 𝑀 ∈ ℳ
contains only one non-zero byte on the diagonal,
then the 𝐿(𝑀) matrix after the distribution phase
will contain four — all bytes of the corresponding
column will become non-zero; if the only non-zero
byte of 𝑀 is not on the diagonal, then there will be
five of them in 𝐿(𝑀): after the absorption phase,
the diagonal byte of the corresponding row becomes
non-zero, and after the distribution phase — all the
bytes of its column also become non-zero. Thus, if
𝑤𝑡(𝑀) = 1, we have 𝑤𝑡(𝐿(𝑀)) ⩾ 4, and therefore
𝐵(𝐿) > 2.

Let us now consider such bytes 𝑎 ̸= 0, 𝑏 ̸= 0 that
𝑎+ 𝑏 ≡ 0 (mod 256). Then

𝑀 =

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 𝑎 𝑏

⎤⎥⎥⎦ → 𝐿(𝑀) =

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 𝑎 0

⎤⎥⎥⎦ ,

and thus 𝑤𝑡(𝑀) + 𝑤𝑡(𝐿(𝑀)) = 3. It follows that
𝐵(𝐿) = 3 by definition.

The given claim shows that the linear layer of
the Qalqan𝑣1 cipher has a relatively low, almost

minimal value of branch number, which in general,
may indicate vulnerability to differential and linear
cryptanalysis. However, an even more disturbing
fact is that 𝐿 has large classes of fixed points, in
particular, of low weight.

Claim 2. Let 𝑎, 𝑏, 𝑥, 𝑦, 𝑧 be such nonzero bytes
that 𝑎+𝑏 ≡ 0 (mod 256), 𝑥+𝑦+𝑧 ≡ 0 (mod 256).
Let the rows of the matrix 𝑀 be formed according
to the following rule: the diagonal byte is zero, and
the other bytes are either the bytes 𝑎, 𝑏, and 0
in any order, or the bytes 𝑥, 𝑦, 𝑧 in an arbitrary
order (all possible forms of rows of such matrices
are shown in Fig. 2). Then 𝐿(𝑀) = 𝑀 .

1: (0, 𝑎, 𝑏, 0), (0, 𝑎, 0, 𝑏), (0, 0, 𝑎, 𝑏), (0, 𝑥, 𝑦, 𝑧);

2 : (𝑎, 0, 𝑏, 0), (𝑎, 0, 0, 𝑏), (0, 0, 𝑎, 𝑏), (𝑥, 0, 𝑦, 𝑧);

3 : (𝑎, 𝑏, 0, 0), (𝑎, 0, 0, 𝑏), (0, 𝑎, 0, 𝑏), (𝑥, 𝑦, 0, 𝑧);

4 : (𝑎, 𝑏, 0, 0), (𝑎, 0, 𝑏, 0), (0, 𝑎, 𝑏, 0), (𝑥, 𝑦, 𝑧, 0).

Fig. 2. Kinds of rows of matrices that form fixed
points for the linear layer 𝐿. Each row of the matrix
can take any of the following four forms.

Proof. It is easy to see that the values of the diag-
onal elements of the matrix becomes 0+𝑎+𝑏+0 = 0
or 0 + 𝑥 + 𝑦 + 𝑧 = 0 after the absorption phase;
so the rows of the matrix 𝑀 preserve their values.
Accordingly, in the distribution phase, diagonal
bytes (which all remains zero) are added to all
bytes of the matrix 𝑀 ; thus, the entire matrix 𝑀
will remain unchanged.

Corollary. The mapping 𝐿 has at least (216−1)4

fixed points.
Proof. Indeed, there are 255 pairs of bytes (𝑎, 𝑏),

where 𝑎, 𝑏 ̸= 0, and 𝑎 + 𝑏 ≡ 0 (mod 256); each
such pair forms three possible types of a fixed-
point matrix row. Similarly, with direct calculation
we find that there are 64770 triples (𝑥, 𝑦, 𝑧) such
that 𝑥, 𝑦, 𝑧 ̸= 0, and 𝑥 + 𝑦 + 𝑧 ≡ 0 (mod 256).
Accordingly, each row of the fixed-point matrix
described in the Claim 2 can be chosen in

3 · 255 + 64770 = 65535 = 216 − 1

ways; and since each of the four rows of the matrix
is chosen independently, we have (216 − 1)4 of such
matrices in general. Of course, 𝐿 can also have
fixed points of a different kind, so given the number
is only a lower estimate.

We see that the linear layer of the cipher
Qalqan𝑣1 has a significant number of fixed points
(at least 263.99 out of 2128 values of the input argu-
ment in total); among them, in particular, there
will be 4 · 3 · 255 = 3060 fixed points of weight 2,
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which can be used to construct high-probability
differential and linear characteristics. Thus, the
propagation properties and avalanche effects of
the 𝐿 transformation can be considered insufficient
to prevent algebraic and statistical attacks. In the
next section, we illustrate this statement by con-
structing a differential attack on modified versions
of this cipher.

5. High Probability Differential Characteristics
for Modified Qalqan𝑣1 Ciphers

Consider the family of three-round differential
characteristics Ω1 = Ω1(𝑢, 𝑣, 𝑎, 𝑏, 𝑐, 𝑑), where pa-
rameters 𝑢, 𝑣, 𝑎, 𝑏, 𝑐, 𝑑 are nonzero bytes, and
𝑎+ 𝑏 ≡ 0 (mod 256); the structure of the differen-
tial characteristics of this family is shown in Fig. 3.
For the cipher Qalqan𝑣1

⊕⊞ the first difference, which
is determined by the bytes 𝑢 and 𝑣, is calculated
by the operation ⊕, for the cipher Qalqan𝑣1

⊞⊞ — by
operation ⊞; all other differences in both ciphers
are calculated by the ⊞ operation. We will use the
notation Ω⊕

1 and Ω⊞
1 to emphasize this distinction.

For the round functions 𝐹⊕
𝑘 and 𝐹⊞

𝑘 of modi-
fied ciphers Qalqan𝑣1

⊕⊞ and Qalqan𝑣1
⊞⊞ consider the

differences 𝛼 = (𝛼0, . . . , 𝛼15), 𝛽 = (𝛽0, . . . , 𝛽15),
where 𝛼𝑖, 𝛽𝑗 ∈ 𝑉8 — individual bytes; then

𝐷𝑃
𝐹⊕
𝑘

⊕,⊞(𝛼, 𝛽) =

15∏︁
𝑖=0

𝐷𝑃 𝑠
⊕,+(𝛼𝑖, 𝛽𝑖),

𝐷𝑃
𝐹⊞
𝑘

⊞,⊞(𝛼, 𝛽) =
15∏︁
𝑖=0

𝐷𝑃 𝑠
+,+(𝛼𝑖, 𝛽𝑖),

where 𝛽 = 𝐿−1(𝛽), and the symbol + denotes addi-
tion modulo 256. So probabilities of the differential
characteristics of the family Ω1(𝑢, 𝑣, 𝑎, 𝑏, 𝑐, 𝑑) are
determined as

𝐷𝐶𝑃 (Ω⊕
1 ) = 𝐷𝑃 𝑠

⊕,+(𝑢, 𝑎)𝐷𝑃 𝑠
⊕,+(𝑣, 𝑏)×

×𝐷𝑃 𝑠
+,+(𝑎, 𝑐)(𝐷𝑃 𝑠

+,+(𝑐, 𝑑))
5,

𝐷𝐶𝑃 (Ω⊞
1 ) = 𝐷𝑃 𝑠

+,+(𝑢, 𝑎)𝐷𝑃 𝑠
+,+(𝑣, 𝑏)×

×𝐷𝑃 𝑠
+,+(𝑎, 𝑐)(𝐷𝑃 𝑠

+,+(𝑐, 𝑑))
5.

We found at least 106 various differential char-
acteristics of Ω⊕

1 with probabilities in the range of
2−42 ÷ 2−46, and at least 106 various differential
characteristics Ω⊞

1 with probabilities in the range
2−41.8÷2−45.9. The characteristics with the highest
probabilities are listed in tables 2 and 3. Note that
we did not evaluate the probabilities of the bor-
dering differentials for considered characteristics,
although, by definition, they will be even greater
than the given values.

The second family of differential characteristics
Ω2 = Ω2(𝑢1, 𝑢2, 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2, . . . ), where pa-

rameters 𝑢1, 𝑢2, 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2, . . . are nonzero
bytes, 𝑢1 and 𝑢2 can take arbitrary non-zero values,
and all subsequent pairs of bytes must sum to zero:
𝑎1 + 𝑎2 ≡ 0 (mod 256), 𝑏1 + 𝑏2 ≡ 0 (mod 256),
etc.; the structure of the differential characteristics
of this family is shown in Fig. 4. This family of
differential characteristics exploits the low-weight
fixed points of the linear transformation 𝐿.

The probabilities of the differential characteris-
tics of the family Ω2(𝑢1, 𝑢2, 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2, . . . )
are determined as

𝐷𝐶𝑃 (Ω⊕
2 ) = 𝐷𝑃 𝑠

⊕,+(𝑢1, 𝑎1)𝐷𝑃 𝑠
⊕,+(𝑢2, 𝑎2)×

×𝐷𝑃 𝑠
+,+(𝑎1, 𝑏1)𝐷𝑃 𝑠

+,+(𝑎2, 𝑏2)×
×𝐷𝑃 𝑠

+,+(𝑏1, 𝑐1)𝐷𝑃 𝑠
+,+(𝑏2, 𝑐2)× . . .

𝐷𝐶𝑃 (Ω⊞
2 ) = 𝐷𝑃 𝑠

+,+(𝑢1, 𝑎1)𝐷𝑃 𝑠
+,+(𝑢2, 𝑎2)×

×𝐷𝑃 𝑠
+,+(𝑎1, 𝑏1)𝐷𝑃 𝑠

+,+(𝑎2, 𝑏2)×
×𝐷𝑃 𝑠

+,+(𝑏1, 𝑐1)𝐷𝑃 𝑠
+,+(𝑏2, 𝑐2)× . . .

We found several hundred differential charac-
teristics of the Ω⊕

2 family for different numbers
of encryption rounds. Probabilities of the best
characteristics for 𝑟 = 2, 3, . . . , 11 are given in the
table 4; at 𝑟 ≥ 12, the probabilities of the stud-
ied differential characteristics become smaller than
2−128.

Interestingly, we had found one regular differen-
tial characteristic of the form Ω⊞

2 with high proba-
bility:

(9𝐵, 65)→(16, 𝐸𝐴)→(9𝐵, 65)→(16, 𝐸𝐴)→ . . . ,

and the analog of the form Ω⊕
2 :

(3𝐶, 3𝐶) → (9𝐵, 65) → (16, 𝐸𝐴) →
→ (9𝐵, 65) → (16, 𝐸𝐴) → . . .

The probability of a three-round characteristic of
this type is 2−33.5424, and an eleven-round one is
2−122.287.

In [1] it is noted that the probabilities of the
three-round differential characteristics of the cipher
Qalqan𝑣1 “by of all assumptions” do not exceed
2−132, and the differential cryptanalysis for a four-
round cipher has the complexity not lower than
2312; unfortunately, the authors did not provide
any information on how the assessment data were
obtained. Our results contradict the declared secu-
rity estimates. Of course, we considered differential
characteristics for a modified Qalqan𝑣1 cipher, but
all the distinction from the original is the removal
of carry bits between state bytes after adding a
round key modulo 2128. If we consider the original
cipher version and differential characteristics of the
described Ω1 family, then the presence of carry bits
in the key adder (under the most favorable condi-
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Fig. 3. The structure of the differential characteristic of the family Ω1(𝑢, 𝑣, 𝑎, 𝑏, 𝑐, 𝑑); empty cells
correspond to zero differences, addition with keys is included in the 𝑆 layer, in the third round of
encryption the linear layer is removed. The application of 𝐿 layer does not affect the probability of
such characteristics, so the probabilities are determined only by the application of 𝑆 layer.

u1 u2

S SL L

First encryption round Second encryption round

...
a1 a2 a1 a2 b1 b2 b1 b2

Fig. 4. The structure of the differential characteristic of the family Ω2(𝑢1, 𝑢2, 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2, . . . );
empty cells correspond to zero differences, addition with keys is included in the 𝑆 layer. Byte pairs
(𝑎1, 𝑎2), (𝑏1, 𝑏2), etc., form fixed points of 𝐿, so the linear layer is actually excluded from the encryption
process; the probabilities of such a characteristic are determined only by the application of 𝑆 layer.

Table 2. Differential characteristics of Ω⊕
1 with

high probabilities; parameter values are given in
hexadecimal

𝑢 𝑣 𝑎 𝑏 𝑐 𝑑 𝐷𝐶𝑃 (Ω⊕
1 )

𝐷𝐴 36 12 𝐸𝐸 63 𝐶8 2−42.29

𝐷𝐴 𝐶𝐴 𝐸𝐸 12 9𝐷 38 2−42.29

2𝐶 8𝐶 27 𝐷9 63 𝐶8 2−42.51

2𝐶 74 𝐷9 27 9𝐷 38 2−42.51

tions for the analyst) can only add one non-zero
byte to the 15th position of the input difference for
the second round of encryption and another eight
non-zero bytes of the input difference for the third
round of encryption. Since the maximum probabil-
ity value of the Qalqan𝑣1 S-box differential is 2−5,
the appearance of nine more non-zero bytes in the
differential characteristic can reduce its probability
to 2−87 (again, with the most favorable conditions
for the analyst), but by no means up to 2−132.

We can summarize that the simple structure of
the linear layer of the Qalqan𝑣1 cipher, the ab-
sence of proper avalanche effects, and a very small
value of the branch number lead to the existence of
classes of differential characteristics (and, accord-
ingly, differentials) with very high probabilities.
This indicates potential serious vulnerabilities of
the cipher against differential cryptanalysis.

Table 3. Differential characteristics of Ω⊞
1 with

high probabilities; parameter values are given in
hexadecimal

𝑢 𝑣 𝑎 𝑏 𝑐 𝑑 𝐷𝐶𝑃 (Ω⊞
1 )

36 𝐶𝐴 𝐸𝐸 12 9𝐷 38 2−41.8

𝐶𝐴 36 12 𝐸𝐸 63 𝐶8 2−41.8

74 8𝐶 27 𝐷9 63 𝐶8 2−42.25

8𝐶 74 𝐷9 27 9𝐷 38 2−42.25

Table 4. Probabilities of the best found 255 differ-
ential characteristics Ω⊕

2 depending on the number
of encryption rounds 𝑟

𝑟 𝐷𝐶𝑃 (Ω⊕
2 )

2 2−21.6601 ÷ 2−24.1862

3 2−32.4902 ÷ 2−35.3561

4 2−43.9277 ÷ 2−46.3724

5 2−55.3203 ÷ 2−57.5424

6 2−66.5587 ÷ 2−68.6764

7 2−77.5065 ÷ 2−80.1139

8 2−88.7449 ÷ 2−91.3203

9 2−99.6927 ÷ 2−102.676

10 2−110.931 ÷ 2−113.693

11 2−121.879 ÷ 2−124.931
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Conclusion

In this work we considered the Qalqan𝑣1 cipher,
which is positioned as a possible national encryp-
tion standard of the Republic of Kazakhstan. We
show that the S-box of this cipher, which has suffi-
cient quality from the modern cryptology perspec-
tive, can be easily improved to increase security
against differential cryptanalysis and algebraic at-
tacks. We proved that the branch number of the
linear layer of this cipher is equal to 3, which is too
small value for ciphers of this type; moreover, the
linear layer has at least 263.99 fixed points, which
significantly reduces its avalanche effects.

For a modified Qalqan𝑣1 cipher with byte-wise
round key additions (or, equally, with removed
carry bits between bytes in the key adder) we found
at least one million three-round differential charac-
teristics with probabilities in the range 2−42÷2−46;
such characteristics allow to implement differen-
tial attack on a four-round cipher with very low
complexity. Several hundreds of multi-round differ-
ential characteristics based on the low-weight fixed
points of the linear layer of the cipher were also
found.

The obtained results indicate that the struc-
ture of the linear transformation of the cipher
Qalqan𝑣1 has significant shortcomings against
methods for assessing resistance to known cryptan-
alytic attacks. We hope that the found weaknesses
will be taken into account in the development of
the next versions of the Qalqan cipher.
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