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Abstract
This paper considers the problem of recovering an unknown vector based on partial information presented in the
form of certain linear dependencies. Such problem is an alternative to the standard one of solving a system of
polynomial equations over a finite field, which arises in the context of algebraic cryptanalysis of stream ciphers,
and it models a situation when it’s not possible to formulate specific equations with an unknown vector, but
certain restrictions on linear dependencies with this vector. To formalize such linear dependencies, the notation
of the system of linear restrictions over a finite field is introduced, and the problem of recovering the unknown
vector is replaced by the problem of solving the system of linear restrictions over a finite field. In this paper, we
researched some properties of this problem using its equivalent forms and important partial cases.
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1. Introduction

Standard models of algebraic cryptanalysis
search dependencies between plaintexts, cipher-
texts and keys in the form of the system of polyno-
mial equations over a finite field [1, 2, 3]. We can
consider an alternative task in which only restric-
tions on possible values of some dependencies with
unknown parameters are known. The study of such
problem is expedient, since there are many methods
that help to obtain partial information about the
intermediate values of some parameters during the
encryption process. These methods can indicate
that certain dependencies with unknown param-
eters cannot take some finite set of values. Such
information can be obtained from a side channel
or from the weaknesses of the cryptosystem imple-
mentation. Given this, the problem of recovering
an unknown vector based on partial information
presented in the form of certain linear dependencies
arises.

In this paper, we propose a formalization of this
problem by introducing the notation of a system of
linear restrictions over a finite field, prove a number
of properties of such systems and give equivalent
forms of this problem. At the end of paper, we
research the solution set properties of systems with
zero right-hand sides.
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The obtained theoretical results can be used
in algebraic cryptanalysis of stream ciphers and
cryptosystems based on linear codes [4].

2. Basic terms and notations

Let’s define the linear restriction and the system
of linear restrictions with analogy to the linear
equation and the system of linear equations.

Definition 1. The linear restriction over a field
F2𝑘 is an expression of the form

𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑛𝑥𝑛 ̸= 𝑎0, (1)

where 𝑎𝑖 ∈ F2𝑘 for 𝑖 = 0, 𝑛, 𝑥𝑖 ∈ F2𝑘 for 𝑖 = 1, 𝑛.

If we denote 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑛), then we
can rewrite the linear restriction as (𝑎, 𝑥) ̸= 𝑎0,
where (𝑎, 𝑥) =

∑︀𝑛
𝑖=1 𝑎𝑖𝑥𝑖 is a dot product of 𝑎

and 𝑥. In fact, the linear restriction means that
𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑛𝑥𝑛 ∈ F2𝑘 ∖ {0}. Depending
on the context, we’ll also call the linear restric-
tion the vector (𝑎1, 𝑎2, . . . , 𝑎𝑛, 𝑎0) for 𝑎0 ̸= 0 and
the vector (𝑎1, 𝑎2, . . . , 𝑎𝑛) for 𝑎0 = 0. Also, when
(𝑎, 𝑥0) = 0 holds for 𝑥0 ∈ F𝑛

2𝑘
we will say that a

vector 𝑎 restricts vector 𝑥0 or that these vectors
are orthogonal.

Definition 2. The solution of the linear restriction
is a vector 𝑥0 ∈ F𝑛

2𝑘
such that (𝑎, 𝑥0) ̸= 𝑎0. The

solution set of the linear restriction is a set of
vectors {𝑥 ∈ F𝑛

2𝑘
| (𝑎, 𝑥) ̸= 𝑎0}. If solution sets of

two restrictions are equal, we will say that these
linear restrictions are equivalent.
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Let’s find out what elementary operations with
linear restrictions we can perform to get equivalent
restrictions.

Claim 1. The solution set of the linear restriction
doesn’t change while moving terms from one side
of the restriction to another, as well as multiplying
both sides by a non-zero constant.

Proof. Consider the linear restriction of the
form (1). Denote sets 𝐷0 = {𝑥 ∈ F𝑛

2𝑘
| (𝑎, 𝑥) ̸= 𝑎0},

𝐷′
0 = F𝑛

2𝑘
∖𝐷0, i.e. 𝐷′

0 consists of all 𝑥 ∈ F𝑛
2𝑘

such
that (𝑎, 𝑥) = 𝑎0.

Let’s form another linear restriction

𝑎2𝑥2 + . . .+ 𝑎𝑛𝑥𝑛 ̸= 𝑎1𝑥1 + 𝑎0.

Similarly, we define sets 𝐷1 and 𝐷′
1. The set 𝐷′

1

consists of all 𝑥 ∈ F𝑛
2𝑘

such that

𝑎2𝑥2 + . . .+ 𝑎𝑛𝑥𝑛 = 𝑎1𝑥1 + 𝑎0.

After moving term 𝑎1𝑥1 to the left side of equation,
we get

𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑛𝑥𝑛 = 𝑎0.

It follows that 𝐷′
1 = 𝐷′

0 and therefore 𝐷1 = 𝐷0,
because sets 𝐷0, 𝐷

′
0 and 𝐷1, 𝐷′

1 aren’t intersected.
Proof of the constant multiplying part is the same.
■

Also we can calculate the cardinality of the linear
restrictions solution set exactly.

Claim 2. For the linear restriction

𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑛𝑥𝑛 ̸= 𝑎0

over a finite field F2𝑘 the cardinality of the solution
set is equal to 2𝑘𝑛 − 2𝑘(𝑛−1).

Proof. Consider the corresponding linear equa-
tion 𝑎1𝑥1 + 𝑎2𝑥2 + . . . + 𝑎𝑛𝑥𝑛 = 𝑎0 and 𝐷′ – its
solution set. The left side of this equation is a lin-
ear function with respect to variables 𝑥1, 𝑥2, . . . , 𝑥𝑛,
so the expression 𝑎1𝑥1 + 𝑎2𝑥2 + . . . + 𝑎𝑛𝑥𝑛 takes
each value of F2𝑘 the same number of times,
namely |𝐷′| = 2𝑘(𝑛−1). So, the linear restric-
tion solution set 𝐷 = F𝑛

2𝑘
∖𝐷′ has the cardinality

|𝐷| = |F𝑛
2𝑘
| − |𝐷′| = 2𝑘𝑛 − 2𝑘(𝑛−1). ■

Definition 3. The system of linear restrictions
over a field F2𝑘 is a system of expressions of the
form⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑎
(1)
1 𝑥1 + 𝑎

(1)
2 𝑥2 + . . .+ 𝑎(1)𝑛 𝑥𝑛 ̸= 𝑎

(1)
0 ,

𝑎
(2)
1 𝑥1 + 𝑎

(2)
2 𝑥2 + . . .+ 𝑎(2)𝑛 𝑥𝑛 ̸= 𝑎

(2)
0 ,

. . .

𝑎
(𝑚)
1 𝑥1 + 𝑎

(𝑚)
2 𝑥2 + . . .+ 𝑎(𝑚)

𝑛 𝑥𝑛 ̸= 𝑎
(𝑚)
0 ,

(2)

where 𝑎
(𝑗)
𝑖 ∈ F2𝑘 for 𝑖 = 0, 𝑛, 𝑗 = 1,𝑚, 𝑥𝑡 ∈ F2𝑘 for

𝑡 = 1, 𝑛, and 𝑚 > 1.

Shortly we can denote 𝑎(𝑗) = (𝑎
(𝑗)
1 , 𝑎

(𝑗)
2 , . . . , 𝑎

(𝑗)
𝑛 )

and rewrite the system (2) as:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(𝑎(1), 𝑥) ̸= 𝑎

(1)
0 ,

(𝑎(2), 𝑥) ̸= 𝑎
(2)
0 ,

. . .

(𝑎(𝑚), 𝑥) ̸= 𝑎
(𝑚)
0 .

Also we can even more short notation: if 𝐴 is
(𝑚× 𝑛)-matrix over a F2𝑘 of the form

𝐴 =

⎛⎜⎜⎝
𝑎(1)

𝑎(2)

. . .

𝑎(𝑚)

⎞⎟⎟⎠ =
{︁
𝑎
(𝑗)
𝑖

}︁𝑗=1,𝑚

𝑖=1,𝑛

and 𝑎0 is (𝑚× 1)-vector of the form

𝑎0 =

⎛⎜⎜⎜⎝
𝑎
(1)
0

𝑎
(2)
0

. . .

𝑎
(𝑚)
0

⎞⎟⎟⎟⎠
then the system (2) takes from 𝐴 · 𝑥 ≠ 𝑎0, where
symbol « ̸=» is used in untypical context and stands
for «not equal in all components».

Similarly to the linear restriction, we can define
the solution of the system of linear restrictions.

Definition 4. The solution of the system of linear
restrictions is a vector 𝑥0 ∈ F𝑛

2𝑘
such that 𝐴·𝑥 ̸= 𝑎0.

The solution set of the system of linear restrictions
is a set of vectors

{𝑥 ∈ F𝑛
2𝑘 | 𝐴 · 𝑥 ̸= 𝑎0} = 𝐷1 ∩𝐷2 ∩ . . . ∩𝐷𝑚, (3)

where 𝐷𝑗 – the solution set of corresponding linear
restriction in the system, 𝑗 ∈ 1,𝑚. If solution sets
of two systems are equal, we will say that these
systems are equivalent.

Claim 3. The solution set of the system of linear
restrictions doesn’t change while moving terms from
one side to another in any restriction of the system,
as well as multiplying both sides of any restriction
by a non-zero constant.

Proof. This statement follows directly from
claim 1 and formula (3). ■

3. Equivalent forms of the problem of solving
the system of linear restrictions over a finite
field

Let’s consider several problems equivalent to the
system of linear restrictions. These alternative
problems provide other ways of characterizing the
original problem, thus expanding the set of avail-
able methods that can be applied to it. Consider
the following tasks.
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1) Checking the polynomial, which specifies a cer-
tain multilinear form, for the identical equality
to zero over a finite field.

2) Solving a system of quadratic equations of a
certain type over a finite field.

3) Checking whether a polynomial belongs to an
ideal (of polynomial ring) of a certain type.

We’ll say that the polynomial 𝑓 ∈ F2𝑘 [𝑥1, . . . , 𝑥𝑛]
is identically equal to zero over F2𝑘 if for all 𝑥 ∈ F𝑛

2𝑘

holds 𝑓(𝑥) = 0.

Claim 4. The system of linear restrictions
𝐴 · 𝑥 ̸= 𝑎0 over a field F2𝑘 has a solution if and
only if the polynomial

𝐹 (𝑥) =
𝑚∏︁
𝑖=1

(︁
(𝑎(𝑖), 𝑥) + 𝑎

(𝑖)
0

)︁
(4)

isn’t identically equal to zero over F2𝑘 .

Proof. We will prove this fact in the following
form: the system of linear restrictions 𝐴·𝑥 ≠ 𝑎0 has
no solutions if and only if 𝐹 (𝑥) ≡ 0. Since proving
the necessity and sufficiency of this criterion are
quite similar, we will not consider these two cases
separately. The nonexistence of solutions of the
system (2) is equivalent to the fact that for every
𝑥 ∈ F𝑛

2𝑘
at least one restriction is not satisfied,

namely, it turns into equality. We can write it in
this way:

∀𝑥 ∈ F𝑛
2𝑘 ∃𝑖 ∈ 1,𝑚 : (𝑎(𝑖), 𝑥) + 𝑎

(𝑖)
0 = 0.

Consider a polynomial which is equal to the
product of the left sides of all linear restrictions
(see formula (4)). For every given value of 𝑥 there
will be a factor, that is equal to 0, so the entire
product will turn into zero. Thus, for all 𝑥 ∈ F𝑛

2𝑘

holds 𝐹 (𝑥) = 0. And this, in fact, means that the
polynomial 𝐹 over a field F2𝑘 is identically to zero
because it converges to zero at every possible input.
■

Having this criterion, the idea arises to analyti-
cally check whether the polynomial 𝐹 (𝑥) is identi-
cally equal to zero. Unfortunately, when opening
the parentheses, an exponential number of terms
can potentially appear – we are dealing with a
polynomial of degree 𝑚 and 𝑛 variables, which
generally contains 𝐶𝑛−1

𝑛+𝑚−1 terms. Moreover, even
opening the parentheses does not always provide an
answer to this question, since in a finite field there
are polynomials with nonzero coefficients that are
identically equal to zero over this field, for example,
the polynomial 𝑥2 + 𝑥 over the field F2.

There are a number of works dedicated to the
study of the PIT problem (short for Polynomial
Identity Testing) [5, 6]. In these papers, prob-

abilistic and even deterministic polynomial algo-
rithms for solving partial cases of PIT are pre-
sented, including arithmetic schemes of the ΠΣ
type. But these results are not applicable to the
above-described problem of checking the identical
equality to zero over a finite field, since in these
results «the identical equality to zero» means the
equality of all coefficients of the polynomial in the
canonical form to zero. Therefore, all methods of
solving this task such as replacing different mono-
mials with monomials of a higher degree from one
variable cannot be transferred to the context of our
problem.

Now let’s consider the method of replacing the
relation « ̸=» with the usual equality using a trans-
formation called the «Rabinovitch trick» [7]. It uses
the following idea: let introduce the new variable
𝛾 ∈ F2𝑘 and replace the restriction 𝑥 ̸= 0, 𝑥 ∈ F2𝑘 ,
by equality 1 + 𝛾 · 𝑥 = 0. We will show that with
such a replacement, the solution set of the initial
system of restrictions remains unchanged up to the
introduced artificial variables.

Claim 5. The solution set of the system of linear
restrictions (2) is equal to the solution set of the
system equations⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 + 𝛾1 ·
(︁
(𝑎(1), 𝑥) + 𝑎

(1)
0

)︁
= 0,

1 + 𝛾2 ·
(︁
(𝑎(2), 𝑥) + 𝑎

(2)
0

)︁
= 0,

. . .

1 + 𝛾𝑚 ·
(︁
(𝑎(𝑚), 𝑥) + 𝑎

(𝑚)
0

)︁
= 0

(5)

up to artificial variables 𝛾1, 𝛾2, . . . , 𝛾𝑚, where 𝛾𝑗 ∈
F2𝑘 , 𝑗 ∈ 1,𝑚.

Proof. Let 𝐷 be the solution set of the sys-
tem of restrictions (2), which consists of vectors
of size 𝑛, and 𝑅 is the solution set of the system
of equations (5), which consists of vectors of size
𝑛 +𝑚. Let’s agree that each vector from 𝑅 first
contains 𝑦1, 𝑦2, . . . , 𝑦𝑛, and then 𝑦𝑛+1 = 𝛾1, 𝑦𝑛+2 =
𝛾2, . . . , 𝑦𝑛+𝑚 = 𝛾𝑚. We will also denote 𝑦1:𝑛 – a
vector of first 𝑛 components of the vector 𝑦.

Now we’ll show that if 𝑥 ∈ 𝐷, then exists 𝑦 ∈ 𝑅
such that 𝑦1:𝑛 = 𝑥. So, if 𝑥 is a solution of system of
linear restrictions (2), then exists the following set
of elements 𝑧1, 𝑧2, . . . , 𝑧𝑚, where 𝑧𝑗 ≠ 0, 𝑗 ∈ 1,𝑚,
that satisfy equalities⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(𝑎(1), 𝑥) + 𝑎
(1)
0 = 𝑧1,

(𝑎(2), 𝑥) + 𝑎
(2)
0 = 𝑧2,

. . .

(𝑎(𝑚), 𝑥) + 𝑎
(𝑚)
0 = 𝑧𝑚.
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We substitute all 𝑧𝑖 for 𝑖 = 1,𝑚 into the system
of equations: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 + 𝛾1 · 𝑧1 = 0,

1 + 𝛾2 · 𝑧2 = 0,

. . .

1 + 𝛾𝑚 · 𝑧𝑚 = 0.

If we put 𝛾𝑗 = (𝑧𝑗)
−1, 𝑗 = 1,𝑚, we’ll get get the

solution 𝑦, which belongs to the set 𝑅 and whose
first 𝑛 components coincide with the vector 𝑥.

Let’s show that if 𝑦 ∈ 𝑅, then 𝑦1:𝑛 ∈ 𝐷. If 𝑦 is
a solution of the system of equations, then⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 + 𝛾𝑛+1 ·
(︁
(𝑎(1), 𝑦1:𝑛) + 𝑎

(1)
0

)︁
= 0,

1 + 𝛾𝑛+2 ·
(︁
(𝑎(2), 𝑦1:𝑛) + 𝑎

(2)
0

)︁
= 0,

. . .

1 + 𝛾𝑛+𝑚 ·
(︁
(𝑎(𝑚), 𝑦1:𝑛) + 𝑎

(𝑚)
0

)︁
= 0.

It follows that (𝑎(𝑗), 𝑦1:𝑛) + 𝑎
(𝑗)
0 is not equal to

zero for 𝑗 = 1,𝑚, because in the case when for some
number 1 ≤ 𝑖 ≤ 𝑚 the expression (𝑎(𝑖), 𝑦1:𝑛) + 𝑎

(𝑖)
0

turns into zero, we have the contradiction. And
this, in turn, means that 𝑦1:𝑛 ∈ 𝐷. ■

The resulting system is a partial case of the MQ
problem (short for Multivariate Quadratic poly-
nomial), which consists in solving the system of
quadratic equations over a finite field. It is known
that the MQ problem is 𝒩𝒫-complete [8].

Let’s move on to the last equivalent form of
the original problem. Consider the lemma that
characterizes all polynomials of one variable, that
identically equal to zero over a finite field F2𝑘 .

Lemma 1. Polynomial 𝐹 ∈ F2𝑘 [𝑥] is identically
equal to zero over F2𝑘 if and only if this polynomial
can be represented in the form

𝐹 (𝑥) = 𝐺(𝑥) · (𝑥2𝑘 + 𝑥),

where 𝐺 ∈ F2𝑘 [𝑥]. Such representation is equivalent
to (𝑥2

𝑘
+ 𝑥)|𝐹 (𝑥).

Proof. Necessity. Let 𝐹 (𝑥) = 0 for every
𝑥 ∈ F2𝑘 . Then by Bezout’s theorem (𝑥+ 𝑔) | 𝐹 (𝑥)
for every 𝑔 ∈ F2𝑘 , therefore the product of these
polynomials also divides 𝐹 (𝑥), but the product∏︀

𝑔∈F
2𝑘

(𝑥+ 𝑔), in turn, is equal to 𝑥2
𝑘
+ 𝑥 in a

finite field, therefore (𝑥2
𝑘
+ 𝑥)|𝐹 (𝑥).

Sufficiency. Let (𝑥2
𝑘
+ 𝑥) | 𝐹 (𝑥), namely

𝐹 (𝑥) = 𝐺(𝑥) · (𝑥2𝑘 + 𝑥) for some 𝐺 ∈ F2𝑘 [𝑥].
Since 𝑥2

𝑘
+ 𝑥 = 0 for all 𝑥 ∈ F2𝑘 , then 𝐹 (𝑥) also

equals to zero for 𝑥 ∈ F2𝑘 . ■

Theorem 1. Polynomial 𝐹 ∈ F2𝑘 [𝑥1, . . . , 𝑥𝑛] is
identically equal to zero over F2𝑘 if and only if this
polynomial can be represented in the form

𝐹 (𝑥1, . . . , 𝑥𝑛) =
𝑛∑︁

𝑖=0

𝐺1(𝑥1, . . . , 𝑥𝑛) · (𝑥2
𝑘

𝑖 + 𝑥𝑖),

(6)
where 𝐺1, . . . , 𝐺𝑛 ∈ F2𝑘 [𝑥1, . . . , 𝑥𝑛].

Proof. Necessity. We will prove the state-
ment of the theorem by induction on the number
of variables. The basis of the induction follows
from lemma 1. Assume that the required state-
ment holds for 𝑛 variables, that is, any polynomial
𝐻 ∈ F2𝑘 [𝑥1, . . . , 𝑥𝑛] such that 𝐻(𝑥1, . . . , 𝑥𝑛) ≡ 0,
can be represented in the required form. Con-
sider the polynomial of (𝑛 + 1) variables 𝐹 ∈
F2𝑘 [𝑥1, . . . , 𝑥𝑛+1] for which 𝐻(𝑥1, . . . , 𝑥𝑛+1) ≡ 0
(note that 𝐹 cannot contain constants in the canon-
ical representation, because otherwise the condition
of identical equality to zero would not be satisfied).
We can represent this polynomial in the following
way:

𝐹 (𝑥1, . . . , 𝑥𝑛+1) =

=

𝑛+1∑︁
𝑖=1

deg𝐹∑︁
𝑙=0

𝑥𝑙𝑖𝐻
(𝑖,𝑙)(𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖+1, . . . , 𝑥𝑛+1),

where each of the polynomials 𝐻(𝑖,𝑙) does not de-
pend on variable 𝑥𝑖, i.e. depends on 𝑛 variables,
𝑖 = 1, 𝑛+ 1, 𝑙 = 0,deg𝐹 . Such representation can
be obtained using a «greedy» algorithm, which for
each variable 𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑛+1, and 𝑙, 0 ≤ 𝑙 ≤ deg𝐹 ,
performs the following steps.

1) Selects in 𝐹 all monomials, which contains 𝑥𝑙𝑖,
i.e. such monomials divisible by 𝑥𝑙𝑖, but not
divisible by 𝑥𝑙+1

𝑖 .
2) Groups all such monomials and put 𝑥𝑙𝑖 over the

parentheses. The polynomial, that remains in
parentheses, is denoted by the variable 𝐻(𝑖,𝑙).
This polynomial does not depend on the vari-
able 𝑥𝑖, because the monomial, that includes
this variable, was put out the brackets.

For each of these polynomials, we can apply
induction assumptions, that is, represent them in
the form:

𝐻(𝑖,𝑙)(𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖+1, . . . , 𝑥𝑛+1) =

=
∑︁

1≤𝑗≤𝑛+1,𝑗 ̸=𝑖

𝑅
(𝑖,𝑙)
𝑗 · (𝑥2𝑘𝑗 + 𝑥𝑗),

where each of the polynomials 𝑅
(𝑖,𝑙)
𝑗 depends on

the variables 𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖+1, . . . , 𝑥𝑛+1. We can
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put 𝑅
(𝑖,𝑙)
𝑖 ≡ 0 and rewrite 𝐻(𝑖,𝑙):

𝐻(𝑖,𝑙)(𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖+1, . . . , 𝑥𝑛+1) =

=
𝑛+1∑︁
𝑗=1

𝑅
(𝑖,𝑙)
𝑗 · (𝑥2𝑘𝑗 + 𝑥𝑗).

So, the polynomial 𝐹 (𝑥1, . . . , 𝑥𝑛+1) can be rewrit-
ten in the following way:

𝐹 (𝑥1, . . . , 𝑥𝑛+1) =
𝑛+1∑︁
𝑖=1

deg𝐹∑︁
𝑙=0

𝑥𝑙𝑖

𝑛+1∑︁
𝑗=1

𝑅
(𝑖,𝑙)
𝑗 · (𝑥2𝑘𝑗 + 𝑥𝑗).

Now we can enter 𝑥𝑙𝑖 under the sum over variable
𝑗 and swap the sums over 𝑗 and 𝑙, since these
summation indices are independent from each other.
After replacing 𝑄

(𝑖)
𝑗 =

∑︀deg𝐹
𝑙=0 𝑥𝑙𝑖𝑅

(𝑖,𝑙)
𝑗 , polynomial

𝐹 (𝑥1, . . . , 𝑥𝑛+1) will have the following form:

𝐹 (𝑥1, . . . , 𝑥𝑛+1) =

𝑛+1∑︁
𝑖=1

𝑛+1∑︁
𝑗=1

𝑄
(𝑖)
𝑗 · (𝑥2𝑙𝑗 + 𝑥𝑗).

Since the summation indices in these two sums are
independent of each other, we change the order of
summation and subtract (𝑥2

𝑘

𝑗 + 𝑥𝑗) into the first
sum:

𝐹 (𝑥1, . . . , 𝑥𝑛+1) =
∑︁
𝑗=1

(𝑥2
𝑘

𝑗 + 𝑥𝑗)
𝑛+1∑︁
𝑖=1

𝑄𝑖
𝑗 .

For convenience, we denote 𝐺𝑗 =
∑︀𝑛+1

𝑖=1 𝑄
(𝑖)
𝑗 and

rewriting 𝐹 (𝑥1, . . . , 𝑥𝑛) in new notations give us
required equality (6).

Sufficiency. Suppose that the polynomial 𝐹
can be represented in in the required form. Since
𝑥2

𝑘

𝑗 + 𝑥𝑗 = 0 for all 1 ≤ 𝑗 ≤ 𝑛, then each term in
the representation is zero for an arbitrary set of val-
ues of the variables 𝑥1, . . . , 𝑥𝑛, so the polynomial
𝐹 identically equals to zero. ■

Corollary 1. The polynomial 𝐹 ∈ F2𝑘 [𝑥1, . . . , 𝑥𝑛]
is identically equal to zero over the field F2𝑘 if and
only if 𝐹 belongs to the ideal

𝐼 = (𝑥2
𝑘

1 + 𝑥1, . . . , 𝑥
2𝑘

𝑛 + 𝑥𝑛).

Consider the quotient ring F2𝑘 [𝑥1, . . . , 𝑥𝑛]/𝐼,
then there exists a canonical homomorphism

𝜋 : F2𝑘 [𝑥1, . . . , 𝑥𝑛] → F2𝑘 [𝑥1, . . . , 𝑥𝑛]/𝐼,

where 𝜋(𝐹 ) = 𝐹 mod 𝐼 denotes the remainder
of dividing the polynomial 𝐹 by the system of
polynomials that generate the ideal 𝐼. Under
this canonical homomorphism, all polynomials in
F2𝑘 [𝑥1, . . . , 𝑥𝑛], that identically equal to zero, will
get into the adjacency class of the zero polyno-
mial in F2𝑘 [𝑥1, . . . , 𝑥𝑛]/𝐼. Thus, the procedure
of checking the ideal 𝐼 membership can be re-
duced to finding the image of the polynomial 𝐹

under the mapping 𝜋, i.e. finding the remainder
of the division of 𝐹 by the system of polynomials
(𝑥2

𝑘

1 + 𝑥1, . . . , 𝑥
2𝑘
𝑛 + 𝑥𝑛). This remainder of the

division will be zero if and only if the polynomial
𝐹 identically equals to zero over F2𝑘 . Note, that
if the polynomial 𝐹 would be represented in the
canonical form (that is, as the arithmetic circuit of
the ΣΠ type), then it would be possible to perform
this division efficiently (in fact, by the standard al-
gorithm of «column division» [9]), but in our case,
the polynomial is represented as the arithmetic
circuit of the ΠΣ type.

4. Properties of the systems of linear restric-
tions with zero right sides

Suppose that one of the solutions of the system
of linear restrictions with zero right-hand sides is
known. The question arises whether in this case it
is possible to say something about other solutions
or whether it is even possible to restore some of
them.

Lemma 2. Let 𝑧 = (𝑧1, . . . , 𝑧𝑛) is a solution of
the system of linear restrictions 𝐴 · 𝑥 ̸= 0 over
a field F2𝑘 . Then 𝑧′ = (𝑏𝑧1, 𝑏𝑧2, . . . , 𝑏𝑧𝑛), where
𝑏 ∈ F2𝑘 ∖ {0}, is also solution of this system.

Proof. Let 𝑧 be the solution of the system of
linear restrictions, then⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑎
(1)
1 𝑧1 + 𝑎

(1)
2 𝑧2 + . . .+ 𝑎(1)𝑛 𝑧𝑛 = 𝑦1,

𝑎
(2)
1 𝑧1 + 𝑎

(2)
2 𝑧2 + . . .+ 𝑎(2)𝑛 𝑧𝑛 = 𝑦2,

. . .

𝑎
(𝑚)
1 𝑧1 + 𝑎

(𝑚)
2 𝑧2 + . . .+ 𝑎(𝑚)

𝑛 𝑧𝑛 = 𝑦𝑚,

(7)

where 𝑦1, 𝑦2, . . . , 𝑦𝑚 ∈ F2𝑘 ∖ {0}.
Let’s multiply the left and right sides of all equa-

tions by the element 𝑏 ∈ F2𝑘 ∖ {0} and replace
𝑧′𝑖 = 𝑏𝑧𝑖, 𝑖 = 1, 𝑛, and 𝑦′𝑗 = 𝑏𝑦𝑗 , 𝑗 = 1,𝑚. After
these operations we get the following system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑎
(1)
1 𝑧′1 + 𝑎

(1)
2 𝑧′2 + . . .+ 𝑎(1)𝑛 𝑧′𝑛 = 𝑦′1,

𝑎
(2)
1 𝑧′1 + 𝑎

(2)
2 𝑧′2 + . . .+ 𝑎(2)𝑛 𝑧′𝑛 = 𝑦′2,

. . .

𝑎
(𝑚)
1 𝑧′1 + 𝑎

(𝑚)
2 𝑧′2 + . . .+ 𝑎(𝑚)

𝑛 𝑧′𝑛 = 𝑦′𝑚.

(8)

Since 𝑏 ̸= 0, the new variables 𝑦′𝑗 ̸= 0, 𝑗 = 1,𝑚.
Therefore, (𝑧1, 𝑧2, . . . , 𝑧𝑛) – also the solution of the
initial system 𝐴 · 𝑥 ̸= 0. ■

So, other solutions can be reconstructed from a
known solution. Let’s formulate a theorem that
describes the structure of the solution set of the
system of linear restrictions with zero right-hand
sides.
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Claim 6. Let 𝐷 ⊆ F𝑛
2𝑘

– the solution set of the
system of linear restrictions 𝐴 · 𝑥 ̸= 0 over a finite
field F2𝑘 , then |𝐷| is divisible by 2𝑘 − 1.

Proof. Consider a binary relation on the solution
set 𝐷 of the system of linear restrictions: two
vectors 𝑎, 𝑏 ∈ 𝐷 are in the relation ∼ if there is an
element 𝑐 ∈ F2𝑘 ∖ {0} such that

(𝑎1, 𝑎2, . . . , 𝑎𝑛) = (𝑐𝑏1, 𝑐𝑏2, . . . , 𝑐𝑏𝑛).

Such a relation will be called a proportionality re-
lation, and the vectors belonging to this relation
will be called proportional.

We will show that the relation ∼ is an equivalence
relation.

• Reflexivity. The property ∀𝑧 ∈ 𝐷 : 𝑧 ∼ 𝑧
always holds, since we can choose 𝑐 = 1.

• Symmetry. We need to check the statement

∀𝑥, 𝑦 ∈ 𝐷 : 𝑥 ∼ 𝑦 ⇒ 𝑦 ∼ 𝑥.

If 𝑥 ∼ 𝑦, then there exists 𝑐 ∈ F2𝑘 ∖ {0} such
that 𝑥𝑖 = 𝑐𝑦𝑖, 𝑖 ∈ 1, 𝑛. Since 𝑐 ∈ F2𝑘 ∖ {0},
then 𝑐−1 ∈ F2𝑘 ∖ {0} exists, so 𝑦𝑖 = 𝑐−1𝑥𝑖,
𝑖 = 1, 𝑛. In this case,

(𝑦1, 𝑦2, . . . , 𝑦𝑛) = (𝑐−1𝑥1, 𝑐
−1𝑥2, . . . , 𝑐

−1𝑥𝑛),

which means that 𝑦 ∼ 𝑥.
• Transitivity. We need to check the statement

∀𝑥, 𝑦, 𝑧 ∈ 𝐷 : 𝑥 ∼ 𝑦, 𝑦 ∼ 𝑧 ⇒ 𝑥 ∼ 𝑧.

Suppose 𝑥 ∼ 𝑦 and 𝑦 ∼ 𝑧, then there exist
𝑐1, 𝑐2 ∈ F2𝑘 ∖ {0} such that 𝑥𝑖 = 𝑐1𝑦𝑖 and
𝑦𝑖 = 𝑐2𝑧𝑖, 𝑖 = 1, 𝑛. We substitute 𝑦𝑖 = 𝑐2𝑧𝑖.
𝑖 = 1, 𝑛, into the condition 𝑥 ∼ 𝑦 and get
𝑥𝑖 = 𝑐1𝑐2𝑧𝑖, 𝑖 = 1, 𝑛. Since 𝑐1𝑐2 ∈ F2𝑘 ∖ {0},
then 𝑥 ∼ 𝑧.

The equivalence relation on the set 𝐷 defines
the partition of this set into equivalence classes:
𝐷 = 𝐷1∪𝐷2∪. . .∪𝐷𝑠, where 𝐷𝑖∩𝐷𝑗 = ∅ for 𝑖 ̸= 𝑗,
and 𝑠 is the number of equivalence classes. Thus,
any two elements of the same class 𝐷𝑖, 𝑖 ∈ 1, 𝑠, are
in the relation ∼, and any two elements of different
classes 𝐷𝑖 and 𝐷𝑗 , where 𝑖 ̸= 𝑗, are not in the
equivalence relation.

Each of the equivalence classes consists of 2𝑘 − 1
vectors. This can be verified by considering the set

{𝑧 ∈ F𝑛
2𝑘 | 𝑧 = 𝑏 · 𝑧′, 𝑏 ∈ F2𝑘 ∖ {0}},

where 𝑧 – any solution that generates this equiv-
alence class, and ensuring that this set contains
exactly 2𝑘−1 elements. Since all classes do not
intersect with each other, then

|𝐷| = 𝑠 · (2𝑘 − 1)

which completes the proof. ■

5. Conclusions

In this article, we formalize the problem of recov-
ering an unknown vector based on partial informa-
tion presented in the form of linear dependencies
by introducing the notation of the system of lin-
ear restrictions over a finite binary field. Then we
found several equivalent problems such as checking
a multilinear form for identical equality to zero over
a finite field, solving a system of quadratic equa-
tions of a certain form over a finite field and the
problem of checking the ideal membership for poly-
nomial (for specific ideals), which connect systems
of linear restrictions with existing mathematical
problems. As an important partial case, the prop-
erties of systems of linear restrictions with zero
right-hand sides are formulated and proved. The
obtained theoretical results make possible to cover
some partial cases of systems of linear restrictions
and gained more insights about their structure.
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