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Abstract  
It is considered the inverse problem of Q-analysis. In the course of the research, an algorithm for the 

recovery of simplicial complexes from elementary simplex using local maps and a structural tree was 

developed. This algorithm will reduce the amount of data stored and improve the management process 

if the simplicial complex describes a real big complex system wich it can imagine cyber security 

system. 
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Introduction 

Q-analysis was first described by Atkin [1]. 

This approach has been used to formalize various 

problems in social sciences. It is now developed 

in the context of the application of hypergraphs 

to the analysis of various complex systems. The 

formalism of the simplicial complexes intervenes 

in a very wide range of applications. The 

approach allows to analyze the structure of a 

complex system, taking into account the variety 

of connections between its components. In order 

to use Q-analysis, it is necessary to formalize the 

description of the system in terms of the 

simplicial complexes. Such complexes are also 

visible in cyber security systems. 

The simplicial complex is called the finite set 

of simplexes, which satisfies the following 

conditions [5]: 

1. Together with any simplex, its facets of all 

dimensions belong to this set; 

2. Two simplexes can intersect (have 

common points) only along the entire facet of 

any dimension and thus only on one facet. 

The simplicial complex is a multidimensional 

topological structure, so it better describes the 

relationship between parts of the system and its 

elements than graphs. Also the concept of q-

connectivity is used in this context, that is, the 

level of connectivity between simplexes in a 

complex. The complexes described in this work 

are well distributed to the search system for 

various vulnerabilities. At each level of such 

connectivity, a simplex complex can be 

described as a set of chains, that is, a graph 

whose nodes are simplexes and edges are 

connections which dimension is not less than a 

given level of connectivity (in current level). 

Such graphs are also called local maps [3] 

because they reflect the internal structure of the 

chains. 

Definition 1. The local map of a simplicial 

complex is called the graph of the binary relation 

q-adjacent whose nodes are the simplexes of 

dimension k> q, and the edges correspond to the 

q-relation between them. 

Definition 2. Q-adjacency is called the binary 

relation between simplexes in a simplicial 

complex, which occurs at the cross section of 

two simplexes and whose dimension is greater 

than or equal to "q" [7]. 

Definition 3. A Q-link is a binary relation that 

occurs when a q-junction is transitively closed in 

a simplicial complex [7]. 

Basing on the imitation of circuits of adjacent 

levels of connectivity, it is possible to build a 

corresponding tree [2]. The nodes of a Q-tree are 

chains of simplexes that are connected at a 

certain level of connectivity, and the depth levels 

of the trees are the same q-levels of connectivity. 

That is, a structural analysis of a complex system 

(a direct problem) results in a structural tree and 

local maps of the corresponding complex. The 

Atkin structural vector and the eccentricities of 
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the simplexes are only a small part of the 

complete information about the structure of the 

system set up in this way. This method allows to 

quantify the set of connections between 

simplexes that form chains in a complex, which 

is important for the study of the structure of the 

system as a whole [4]. 

The question naturally arises about the 

inverse task. Suppose, that a system has a large 

number of elements (not simplexes), they make 

up certain subsystems that can be considered as 

simplexes or circuits of simplexes. Then the 

simplicial complex represents the structure of 

connections in the system, that knowledge gives 

the opportunity to visit the whole system. 

Working with large systems, we would like to 

reduce the amount of information on their 

structure for efficient storage and processing. 

Merging into a simplex of a vertex can be 

considered as a single vertex on some scale of 

representation of a simplicial complex and it 

creates opportunities for more efficient (scaled) 

processing of system related information. 

In addition, management systems may 

encounter tasks related to individual subsystems, 

when it is advisable to work only with certain 

simplexes, without affecting the complex as a 

whole, that is, maintaining their external 

connections. Therefore, you need not only to 

decompose the system (which allows you to do 

Q-analysis), but also to synthesize it to its 

original state as needed. 

 

1. Problem discussion 

In the studied sources, the analysis is 

considered for the application and use of the 

results of its work [8-10]. Studies of system and 

network topologies are based, as a rule, on their 

graph representation, when bijective 

correspondences are established between the sets 

of system modules and graph vertices, as well as 

between the sets of communication lines and 

graph edges. The set of studied/optimized 

topological properties of the cyber system also 

has a bijective image in the description of the 

graph and in the set of its characteristics, which 

allows for a comparative analysis using the 

characteristics of the descriptions of the 

corresponding graphs. However, due to the 

combinatorial nature of the problems of analysis, 

synthesis, and reconfiguration of the topology of 

computer cyber systems and communication 

networks, their solution is traditionally based on 

exhaustive, heuristic, or stochastic approaches. 

At the same time, a non-linear increase in the 

number of states in large systems exacerbates the 

problem of achieving an acceptable compromise 

between the quality of control processes and 

their relevance, leads to the emergence of 

emergency situations and to unstable dynamics 

of the systems. The main drawback of the 

traditionally used matrix-list descriptions of 

system graphs lies in the low-level nature of the 

binary relations between vertices specified by 

these descriptions, while the routes and cycles 

used to assess the quality of structures, by 

definition, are multi-place relations on the set of 

graph vertices[12]. 

This provides some (incomplete) information 

about all nodes, simplexes, chains in the 

complex. As stated earlier, this is a very large 

amount of data. Sometimes it is enough to know 

only the set of simplexes and the levels of 

connectivity between them. This study proposes 

a new approach to the analysis, synthesis, and 

control of structurally complex systems in cyber 

security based on the use of their structural tree 

and local maps. We will work with subsystems 

or simplexes and circuits, store information 

about connections, that is, trees and local maps, 

and, if necessary, restore the overall structure of 

the system. So far, the formulation of tasks in 

this form is unknown to the authors. It is possible 

only with the exception of the general meta-rule 

of “act locally, think globally”. The main 

purpose of this study is to prove the possibility of 

correct restoration of a structurally complex 

system in cyber security (simplicial complex) by 

information about its structural tree and local 

maps. 

In addition, this methodology can be used to 

build complex systems with a defined structure 

of connections, but unknown nodes. Such 

problems are typical in linear systems, when the 

analysis of the system itself is not difficult, and 

the construction of a system with given 

characteristics is not a trivial task. 

In this article, we will analyze and synthesize 

not a large system, but with non-trivial binary 

relationships. This will allow you to use this 

methodology not only for compact data storage, 

which will reduce data load, but also allow you 

to synthesize new systems only on known 

attributes. 
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2. Methodology 

To solve this problem, an appropriate 

synthesis method has been developed, that is, a 

certain algorithm for the recovery of the 

simplicial complex has been constructed. The 

basic idea behind a recovery is that local maps 

give us the topology of connections at each level 

of connectivity, and the structural tree defines the 

rules of inheritance between chains when the 

level of connectivity changes. More details about 

the algorithms for constructing local maps and 

structural tree can be found in the article [8]. 

Therefore, it is well known how and what 

simplexes are related. But there is a problem: 

how or which nodes / edges / facets are 

connected by simplexes. To do this, you need to 

enter a certain equivalence ratio [5]. Therefore, it 

was hypothesized that there is a certain 

isomorphism that, if necessary, will return the 

simplex in the way it was built into the complex. 

A graph can exist in different forms having 

the same number of vertices, edges, and also the 

same edge connectivity. Such graphs are called 

isomorphic graphs. Note that we label the graphs 

in this chapter mainly for the purpose of referring 

to them and recognizing them from one another. 

Two graphs G1 and G2 are said to be 

isomorphic if:  

 their number of components (vertices 

and edges) are same; 

 their edge connectivity is retained. 

If G1 ≡ G2 then: 

 |V(G1)| = |V(G2)| 

 |E(G1)| = |E(G2)| 

Degree sequences of G1 and G2 are same. 

If the vertices {V1, V2, .. Vk} form a cycle of 

length K in G1, then the vertices {f(V1), 

f(V2),… f(Vk)} should form a cycle of length K 

in G2. 

All the above conditions are necessary for the 

graphs G1 and G2 to be isomorphic, but not 

sufficient to prove that the graphs are 

isomorphic. 

 (G1 ≡ G2) if and only if (G1− ≡ G2−) 

where G1 and G2 are simple graphs. 

 (G1 ≡ G2) if the adjacency matrices of 

G1 and G2 are same. 

 (G1 ≡ G2) if and only if the 

corresponding subgraphs of G1 and G2 

(obtained by deleting some vertices in G1 and 

their images in graph G2) are isomorphic. 

Given graphs G and H, an isomorphism from 

G to H is a bijection ϕ : V (G) → V (H) such that 

ϕ(g) is adjacent to ϕ(g0) if and only if g is 

adjacent to g0 . When such an isomorphism 

exists, we say that G and H are isomorphic and 

write G =∼ H. The notion of isomorphism is 

central to a broad area of mathematical research 

encompassing algebraic and structural graph 

theory, but also combinatorial optimization, 

parameterized complexity, and logic. The graph 

isomorphism (GI) problem consists of deciding 

whether two graphs are isomorphic. It is a 

question with fundamental practical interest due 

to the number of problems that can be reduced to 

it. Additionally, the GI problem has a central role 

in theoretical computer science as it is one of the 

few naturally defined problems in NP which is 

not known to be polynomial-time solvable or 

NP-complete. While there is a deterministic 

quasipolynomial algorithm for the GI problem, 

regardless of its worst case behavior, the problem 

can be solved with reasonable efficiency in 

practice. In relation to the context of this paper, it 

is valuable to notice that the discussion around 

graph isomorphism has branched into the 

analysis of many equivalence relations that form 

hierarchical structures. Prominent instances are, 

for example, cospectrality, fractional 

isomorphism, etc[11]. 

The search for isomorphism, i.e. establishing 

the fact of isomorphism or non-isomorphism of 

graphs G1 and G2 belongs to the class of NP-

hard problems and therefore, in practice, indirect 

isomorphism criteria are used that characterize 

the graph structure - numerical invariants. The 

invariant I of the graph G should be fairly easy to 

calculate, and if the graphs G1 and G2 are 

isomorphic, then it must necessarily be I (G1) = I 

(G2), but the converse statement is generally not 

true: the equality of the invariants of two graphs 

does not guarantee their isomorphism. logically 

substantiated classification of graph invariants 

will allow grouping different invariants when 

comparing their ability to distinguish non-

isomorphic graphs, as well as identifying 

“empty” classification groups in which there are 

no invariants known today; such groups provide 

a "hint" for constructing new invariants. 

The first classification feature divides the 

graph invariants into two classes: scalar and 

vector. A scalar invariant is an integer or real 

number that characterizes the graph as a whole, 

for example: the number of vertices and edges, 

diameter, cyclomatic and chromatic numbers, 

Wiener and Randic indices, etc. It is obvious that 

the ability of such invariants to distinguish 

between non-isomorphic graphs cannot be high, 
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and it is likely that sufficiently large sets of non-

isomorphic graphs can have the same values of 

the scalar invariant. Vector invariants contain 

more information about the structure of the graph 

and, therefore, have a higher ability to 

distinguish non-isomorphism in the analyzed sets 

of graphs. Note that instead of the term “vector 

invariant”, it is more correct to use the term 

“invariant in the form of a multiset”, since, 

firstly, the order of the mutual arrangement of 

the elements of the vector invariant does not 

matter and, secondly, it may contain repeating 

elements. 

For Vertex Scalar invariants of the group, 

each element of the multiset is a scalar numerical 

characteristic of some graph vertex, showing its 

specific role in the overall graph structure and 

depending on the local "device" of the graph in 

the vicinity of this vertex. This feature could be: 

 degree (valence) of the vertex v, which is 

numerically equal to the cardinality of the set 

of vertices adjacent to it N(v): δ(v)=|N(v)|

the degree of the second order of the vertex v, 

which is numerically equal to the number of 

vertices, the shortest path to which from the 

given vertex v is exactly equal to 2: δ2 

(v)=|{u∈V, dist(u,v)=2}|; [13] 

 eccentricity of vertex v, equal to the 

shortest distance to the vertex farthest from 

vertex v, expressed in the number of edges; 

 resistive peak eccentricity v, which is 

based on the idea of measuring distances 

between pairs of peaks using analogies from 

the theory of electrical circuits; 

 coefficient of local clustering of the 

vertex v, which shows how close the 

subgraph H = (N(v), D) of the graph G, 

generated by the set of vertices N(v) adjacent 

to v, is close to the complete graph. 

 

In the Vertex MultiSet invariants of the 

group, each element of the multiset is a vector 

characteristic of the vertex v of the graph G, 

showing its “role” in the overall structure of the 

graph relative to other vertices. There are two 

possible approaches to constructing such vector 

characteristics (i.e., multisets): 

 "near" - the elements of the multiset are 

scalar characteristics of vertices from the 

"near environment", i.e. vertices adjacent to 

v; 

 “far”, in which the elements of the 

multiset are the distances (geodesic or 

resistive) between the current vertex v and all 

other vertices. 

The Pairs of Vertex invariants of a group can 

be called "matrix" since their multisets are 

composed of elements of an n × n matrix, each 

element of which is a numerical characteristic of 

some relation between a pair of vertices. This is 

usually the distance (geodesic or resistive). For 

undirected graphs, it suffices to consider the 

upper triangular part of such a matrix of size n(n 

– 1)/2. Thus, taking into account line graphs, the 

PV group includes 4 invariants (see Table 1) 

[13]. 

We define such an isomorphism as a 

reflection of the set (denote such a set C) of 

nodes of the simplex itself f: C → C. The 

essence of such a mapping is that it renames the 

nodes in the simplicial complex obtained after 

restoration according to the names that were in 

the original complex. 

Hypothesis. For any two simplicial 

complexes in which the structure (number of 

nodes, simplexes, local maps, and structural tree) 

coincides, there is an isomorphism f: C → C that 

rearranges the nodes in the simplex so that the 

complexes become identical. 

At this stage of the study there is no doubt 

about the existence of such an isomorphism, so 

we will use this assumption to describe the 

algorithm of complex recovery. 

Therefore, to reconstruct a complex, it is 

necessary to have a structural vector in the 

concept of Q-analysis, that is, the number of 

symmetry chains at each q-connectivity level, 

local maps or incidence matrix between the 

simplexes at these levels, and the structural tree. 

In general, the recovery algorithm looks like this: 

 Incoming data: 

 Structural tree; 

 Local maps; 

 Sets of simplexes according to local 

maps; 

The output of the algorithm: 

 Simplicial complex of complex system. 

Algorithm: 

1. At the level of maximum dimension q = 

n, we use simplexes of this dimension, based 

on the "leaves" of the structural tree at that 

level. We add simplexes of this dimension. 

2. For q = n-k> 0: 

 If the link is inherited from the previous 

level, then we store it and do not process it at 

the current level. 
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 We form q-chains of (q + 1) -chains 

according to the inheritance structure given 

by the structural tree. We determine by the 

local map of the q-chain exactly which 

simplexes (q + 1) -chains will stick together. 

If existing links of level q = n-k between the 

corresponding simplexes connect their face 

(simplex) by face (simplex) with dimension 

n-k, while maintaining the correspondence of 

the previous level connections. We "suppress" 

simplexes of dimension q = n-k. We check 

the presence of simlexes that are not separate 

chains. 

 If all the links of the local map are 

processed, we proceed to the next (q + 1) 

chain of the structural tree. 

 If all the chains of the level are worked 

out - we move to the level above: q = n-k + 1. 

3. For the level q = 0: 

 If there are level 0 connections in the 

local map, that is, simplex connections across 

the vertex, then we connect the corresponding 

simplexes across the vertex, so as not to break 

the other-level connections. We "simplify" 

simplexes of dimension q = 0, that is, they are 

not connected to other simplexes 0-simplex 

points. 

 If there are no more 0-connections or 0-

simplexes - the complex is built. 

4. If necessary, we use isomorphism 

transformations (see Hypothesis) to obtain a 

symmetric complex corresponding to the 

system. 

5. The algorithm is complete. 

 

The definition of isomorphism will be 

specified in the course of the inverse algorithm. 

In the first step, a subset of nodes is formed by 

simplexes of maximum dimension. In the next 

step, the simplexes are glued in accordance with 

the scheme predetermined by local map, while 

the sub-complexes (facets) of the different 

simplexes are identified - each such sub-

complexes corresponds to the real subsystem, 

which correspond as a common part of the 

higher-level subsystems. That is, the nodes that 

form it are identified with precision by 

permutation according to the subsystem 

connection information. Subsequent bonding 

may clarify the correspondence between the 

nodes of the complex (points) and the real 

elementary (unstructured) subsystems. Some 

nodes uniquely correlate with such subsystems, 

and some up to permutations that can 

characterize the internal stuctural symmetry of 

the system. In addition, one must not forget 

about "pasting" individual simplexes that are not 

separate chains, because they are parts of some 

simplexes of a larger dimension. 

This algorithm makes it possible to recover a 

simplicial complex from a structural tree and 

local maps, but an important step is a well-

defined isomorphism. Conflict may arise if 

several simplexes are connected through the 

same simplex but smaller dimension. But the 

local map at the appropriate level is always 

shown which simplexes are interconnected, and 

the isomorphism "returns" the simplexes so that 

the input complex of Q-analysis and the output 

of the recovery algorithm are identical. 

 

3. Example 

For a better understanding of the algorithm 

calculations, we give an example of a complex of 

small dimension and number of simplexes in the 

composition. 

Let the structural vector be Q = {1, 3, 3, 4}. 

The structural tree has the form: 

 

 

 
Figure 1: Structural tree for simplicial complex 

 

 

The local maps for each level look like this: 

 

 

 
Figure 2: Local map for level q = 0 

 

_________________________________________________________________________________

65

Mathematical methods, models and technologies for secure cyberspace functioning research



 
Figure 3: Local map for level q = 1 

 

 
Figure 4: Local map for level q = 2 

 
Figure 5: Local map for level q = 3 

 

So, we begin the restoration of the simplicial 

complex: 

   

 
Figure 6: Simplicial complex for level q=0 

 

 
Figure 7: Simplicial complex for level q=1  

 
Figure 8: Simplicial complex for level q=2  

 

 
Figure 9: Simplicial complex for level q=3 

 

When using the recovery algorithm, it is 

needs to remember that the simplicial complex 

presents some real system. In the process of 

joining a simplex to a complex, we considered 

that all nodes / edges / facets are equivalent, that 

is, by choosing a facet or node to attach another 

simplex, one can choose any existing one (except 

when one node / edges / facets with several 

simplexes). Therefore, after recovery, we use an 

isomorphism that will determine each vertex 

according to the connections that were in the real 

system. If it is not defined before the algorithm 

starts, then expert evaluation can be used to 

accurately determine the transformation. That is, 

specialists can provide information on how 

subsystems (in our terminology - simplexes) fit 

into the system (complex). Therefore, using 

isomorphism, the nodes will be determined 

according to the original simplicial complex. 

Using the algorithm of recovery (or 

synthesis), we must not forget that this is some 

real system such as cyber security systems. 

Therefore, after "gluing" simplexes on vertices, 

faces and edges, it is necessary to apply the 

isomorphism defined by us, which places the 

subsystems in the correct orientation. In itself, 

isomorphism can be determined on the basis of 

expert judgment, ie specialists provide 

information on how subsystems (simplexes) are 

embedded in the system (complex). 
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Conclusions 

Thus, the developed recovery algorithm 

makes it possible to reduce the amount of data on 

the structure of the system and improve 

management capabilities. The amount of data is 

reduced due to the fact that instead of storing all 

nodes and relations of the simplicial complex, it 

is sufficient to know only the simplexes and their 

dimensions, and, in addition, it is necessary to 

have a structural graph and local maps at each 

level of q-connectedness in order to be able to 

fully recover a structure of the system. The most 

important part of the synthesis of a complex is 

the determination of an isomorphism that will 

ensure that the complex being analyzed 

corresponds to the complex formed at the output 

of the recovery algorithm. Although this part is 

formed, it may not be sufficiently formalized, but 

there is no doubt about its feasibility (at least 

through busting). 

Therefore, the inverse problem of Q-analysis 

can have both theoretical and practical value for 

structuring and managing complex systems. This 

method is described for structurally complex 

systems, which in turn are cyber security 

systems. Therefore, such a mathematically based 

method can be used to model system 

vulnerabilities and be used for cyber security. 

Thus, the developed algorithm for the 

restoration of the simplex complex (or its 

synthesis) makes it possible to reduce the data 

stored and the development of new systems, if 

the task is to build a system with specified 

parameters. All simlexes must be preserved in 

the analysis task, and this methodology allows to 

store local simplex maps at each level of q-

connectivity and a structural tree, which is 

sufficient to restore the structure of the system. 

The main part of this algorithm is an 

isomorphism, which makes it possible to 

unambiguously establish a correspondence 

between subsystems (simlexes) and their location 

in the system (complex). 

Thus, the inverse problem of Q-analysis has 

practical and theoretical significance for the 

structuring, control and synthesis of complex 

systems. 
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