
UDC 004.056

Alan Nafiiev
1
, Andrii Rodionov

1

1
 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Institute of Physics and

Technology, Build. 1, 37, Beresteiskyi avenue, Kyiv, 03056, Ukraine

__

Abstract
Cyber wars and cyber attacks are an urgent problem in the global digital environment. Based on

existing popular detection methods, malware authors are creating ever more advanced and

sophisticated malware. Therefore, this study aims to create a malware analysis system that uses both

dynamic and static analysis. Our system is based on a machine learning method - support vector

machine. The set of data used was collected from various Internet sources. It consists of 257

executable files in .exe format, 178 of which are malicious and 79 are benign. We use 5 different

types of data representation: binary information, trace instructions, control flow graph, information

obtained from the dynamic operation of the file, and file metadata. Then, using multiple kernel

learning, we combine all data views and create one summative machine learning model.

Keywords: malware detection, malware dynamic analysis, feature selection, multiple kernel learning

__

Introduction

In the history of mankind, wars are an integral

part of the nature of Homo sapiens. And as the

current situation in the world shows, despite the

rapid technological breakthrough of the 21st

century, war is still inherent in modern man.

However, with the growth of the global

digitalization of the world, the type of war is also

changing. Today we can observe that almost the

most important role is played by cyber attacks.

Since even one malicious file can harm the vital

infrastructure. Therefore, this study is aimed at

combating malware, namely the difficult

associated with its detection. Malware analysis

can be performed by static or dynamic methods.

In this work, we use both and combine them.

The aim of this work is to create a binary

classification system for executable files. A

system that equally well detects both malware

with a simple structure and a complex,

isomorphic malware that can change its structure

during activity. Obviously, to solve such a task,

one data view will not be enough. To

successfully analyze the true nature of a

malicious file, we should extract as much

information from it as possible. Therefore, we

will use 5 different types of data representation:

1. Binary

2. Trace

3. Control flow graph

4. Dynamic

5. File Info

Binary - uses the byte information contained

in the binary executable file. Trace -

disassembled code is used. These two static

methods were described in detail in our previous

work [1]. CFG - a method based on control flow

graph, the graphlet kernel is used [2]. Dynamic -

a method based on dynamic analysis, where we

get information about a file while it is active in a

virtual environment [3]. File Info - method based

on file metadata. Each method is described in

more detail in the section Feature Selection.
Now, with the five methods of file

representation, the task is to apply this data for

classification. For each method, we constructed a

machine learning model based on the support

vector machine algorithm. This algorithm was

chosen because it showed good accuracy results

in our work, where we compared different

machine learning methods [4]. And the main

selection criterion was the fact that SVM uses the

properties of kernels, which allows us to apply

multiple kernel learning [5, 6]. By means of

which several data views can be combined into

one model. And this model takes into account the

features of each of the methods during training.

97

___Intelligent Data analysis methods in cybersecurity

Malware Detection System Based on Static and Dynamic Analysis
Using Machine Learning

This approach is described in more detail in the

section “Kernel and training”.

1. Dataset

The dataset used consists of 257 .exe files

(178 malware and 79 benign). There are 7 types

of malware files: InstallCore, CryptoRansom,

TheZoo, Zeus, Zbot, Zeroaccess, Winwebsec.

The distribution infographic can be seen in

Figure 1. All malware files were taken from

various sites: "virusshare.com", "malicia-

project.com", "thezoo.morirt.com". The benign

files were taken from the installed application

folders of legal software from different

categories. Files were also taken from the site

"exefiles.com". The input dataset was separated

as a test and training set in the ratio of 30/70,

respectively. Both sets included 7 malware types.

Figure 1: Infographics of file types distribution

2. Feature Selection

This section describes 5 different approaches

to representing an .exe file. We have focused on

collecting and processing data to form features

on which the support vector machine will learn.

2.1. Binary

To generate the input data for the machine

learning model, we use the bit information of the

executable file represented using the PE format.

For each item in the dataset, we generate an array

containing the byte sequence of the .exe file.

Figure 2: File representation in PE format

Then, based on the byte sequences obtained,

construct a graph as follows: all 256 possible

bytes (00, 01, ... ff) are the vertices of the graph.

For each pair of bytes in the graph it is counted

how many times the first byte was immediately

followed by the second byte. So, we find the

probability that some byte will be followed by

byte .

Figure 3: Adjacency matrix

We group all the adjacency matrices into one

final matrix, which is sent to the support vector

machine algorithm. The algorithm uses a

Gaussian kernel, where for two graphs their

adjacency matrices are taken and their kernel is

calculated using the following formula:

(1)

98

___Malware Detection System Based on Static and Dynamic Analysis Using Machine Learning

2.2. Trace

The disassembled code generated by IDA Pro

is used for the trace type of data representation.

A fragment of such code can be seen in Figure 4.

The Markov chain is constructed similarly to

how it was constructed for binary files. Only

instead of byte values for vertices of the graph

we use disassembled instructions (mov, push,

call, jz, etc.)

Figure 4: A fragment of the disassembled code

Figure 5: Graph

Based on the obtained graphs, we construct

an adjacency matrix for each file. The size of the

adjacency matrix determines the set of unique

instructions, which was formed as follows: the

 most frequent instructions in the files were

taken. Just as in the binary file representation, we

use the Gaussian kernel (1) in the support vector

machine algorithm.

2.3. Control Flow Graph

A control flow graph is a graph representation

that models all of the paths of execution that a

program might take during its lifetime. In the

graph, the vertices are the basic blocks,

sequential code without branches or jump

targets, of the program, and the edges represent

the jumps in control flow of the program. One of

the advantages of this representation is that it is

very difficult for a polymorphic virus to create a

semantically similar version of itself while

modifying its control flow graph enough to avoid

detection. A fragment of the CFG can be seen in

Figure 6.

Figure 6: A fragment of the Control Flow Graph

For further graph processing we chose the

graphlet kernel because of its computational

efficiency [7]. The essence of the graphlet kernel

is that it does not take into account what

instructions are inside vertices, but just compares

their structure. A -graphlet is defined as a

subgraph of graph with the number of

subgraph nodes equal to . As k was chosen 4 as

such which gives the highest accuracy and AUC.

99

___Intelligent Data analysis methods in cybersecurity

Figure 7: k-graplets, where k = 4

If
 is a feature vector, where each feature is

the number of times a unique graphlet of size

occurs in , the normalized probability vector is:

and the graphlet kernel is defined as:

2.4. Dynamic method

For dynamic file representation, we used the

Drakvuf Sandbox malware analysis system,

which allows us to monitor malware at the user

and OS kernel level without the need to install an

agent in the guest OS [8]. The system is built on

the Xen virtualization platform, uses the LibVMI

API and the DRAKVUF engine. With this

system we collect data on the operation of

metamorphic malware and monitor: process

execution, file operations, system calls and

kernel function traces. The principle behind the

formation of features is the same as in the binary

representation of the data. You can see a diagram

of this process in Figure 8. We also use the

Gaussian kernel (1) for this data representation.

This dynamic method was described in more

detail in our previous work [3].

Figure 8: Final matrix formation scheme

2.5. Miscellaneous File Information

For this data view, we collected seven pieces

of information about the different data views

described earlier. The following data is taken

about the file:

1. Entropy

2. Packed

3. Binary Size

4. Number Edges

5. Number Vertices

6. Number Static Instructions

7. Number Dynamic Instructions

We use file entropy, similar to previous work

[9]. To find whether a file was packed or not, we

used the PEID signature method [10]. Binary

Size is used as the file size in megabytes. We

also use the number of vertices and edges in the

control flow graph. Finally, we use the average

number of instructions in the disassembled file

and the average number of instructions/system

calls in the dynamic analysis. For the file

information feature vector, we use a standard

squared exponential kernel:

3. Kernel and training

In our previous work, we experimented with

simply averaging the features of different

methods to obtain the final machine learning

model [3]. However, this approach did not yield

significant improvements in accuracy. Therefore,

we use multiple kernel learning, since this

approach combines the features of different

methods directly during model training, that is, it

allows us to combine different types of data

representation at a deeper level.

100

___Malware Detection System Based on Static and Dynamic Analysis Using Machine Learning

Figure 9: Architecture diagram for classification
system

The goal of classical kernel-based learning

with support vector machines is to learn the

weight vector, , describing each data instance’s

contribution to the hyperplane that separates the

points of the two classes with a maximal margin

and can be found with the following optimization

problem:

(2)

subject to the constraints:

where is the class label of instance .

With multiple kernel learning, each individual

kernel’s contribution, , must also be found such

that:

 is a combination of kernels with

 , where each kernel uses a unique set

of features, which is a different kind of data

representation. The general outline of the

algorithm is to first combine the kernels with

, find , and then iteratively continue

optimizing for β and until convergence. To

solve for , assuming a fixed set of support

vectors (), the following semi-infinite linear

program has been proposed [6]:

(3)

subject to constraints:

(4)

for all with and ,

and where is defined in eq. (2). is the

number of kernels to be combined. This is a

semi-infinite linear program because all of the

constraints in eq. (4) are linear, and there are

infinitely many of them, one for each

satisfying and cannot go

to because of the constraint

 . Finding the maximal theta

corresponds to finding a saddle-point of the

following min-max optimization problem:

If is the optimal solution, then

 would be minimal satisfying

eq. (4) for all . To find solutions for and , an

iterative algorithm was proposed that first uses a

standard support vector machine algorithm to

find (eq. (2)), then fixes to the solution, and

solves eq. (3) to find . Although this algorithm

is known to converge, there are no known

convergence rates [11]. Therefore, the following

stopping criterion was proposed [6]:

Results

Table 1 shows the accuracy results of all

models. All kernels - the model that combines all

5 methods of data representation: Dynamic,

Binary, Trace, CFG, and File info. Static - the

model that combines static analysis methods:

101

___Intelligent Data analysis methods in cybersecurity

Table 1
Performance results of the machine learning models

Binary, Trace, CFG and File info. We can see the

AUC curves in Figure 10 and Figure 11. From

Figure 12 to Figure 18 we can see the confusion

matrix of each model. It is not difficult to notice

that the “All kernels” model shows the best result

(roc auc - 0.9876) for all metrics. The Static

model also shows good accuracy (roc auc -

0.9606). It is worth noting that the dynamic

model was better than any static method, but

worse than all static methods taken together - the

Static model. As expected, the model based on

file metadata had the worst accuracy (roc auc -

0.8109). The CFG model showed more

acceptable accuracy (roc auc - 0.8842), but was

slightly worse than the Binary and Trace models,

which showed approximately equal results for all

metrics. However, the Binary is still slightly

better, (roc auc - 0.9205) versus (roc auc -

0.9120).

Figure 10: Roc сurves

Figure 11: Precision-Recall curves

Figure 12: Confusion matrix of "All Kernels" model

F-score Precision Recall

roc_auc pr_auc
0 1 0 1 0 1

All kernels 0.9200 0.9622 0.8846 0.9807 0.9583 0.9444 0.9876 0.9945

Static 0.8571 0.9345 0.8400 0.9433 0.8750 0.9259 0.9606 0.9838

Dynamic 0.8163 0.9158 0.8000 0.9245 0.8333 0.9074 0.9328 0.9710

Binary 0.7755 0.8971 0.7600 0.9056 0.7916 0.8888 0.9205 0.9678

Trace 0.7843 0.8952 0.7407 0.9215 0.8333 0.8703 0.9120 0.9619

CFG 0.7200 0.8679 0.6923 0.8846 0.7500 0.8518 0.8842 0.9516

File info 0.6153 0.8076 0.5714 0.8400 0.6666 0.7777 0.8109 0.9107

102

___Malware Detection System Based on Static and Dynamic Analysis Using Machine Learning

Figure 13: Confusion matrix of Static model

Figure 14: Confusion matrix of Dynamic model

Figure 15: Confusion matrix of Binary model

Figure 16: Confusion matrix of Trace model

Figure 17: Confusion matrix of CFG model

Figure 18: Confusion matrix of File info model

Conclusions

In this study, we described 5 methods of file

representation. 4 methods of static analysis and 1

method of dynamic analysis. Using multiple

kernel learning, the final model was created,

which combines all the data representation

methods we described. This final model showed

the highest accuracy on all metrics. Also, the

dynamic model was better than any static

method, but worse than all static methods

103

___Intelligent Data analysis methods in cybersecurity

combined. Based on this, it can be argued that it

is useful to use all available information about

executable files, rather than just a single data

representation, in order to classify malicious files

qualitatively. It is worth noting that in order to

use such a file classification system in a real

case, a large dataset should be collected that

includes as many types of malicious files as

possible.

References

[1] Alan Nafiiev, Hlib Kholodulkin, Andrii

Rodionov and Dmytro Lande, “Comparative

analysis of machine learning models with

different types of data representations for

detecting malicious files”, International

Scientific Conference "Information

Technology and Implementation",

December 2022.

[2] Nino Shervashidze, S.V.N. Vishwanathan,

Tobias H. Petri, Kurt Mehlhorn, Karsten M.

Borgwardt, “Efficient graphlet kernels for

large graph comparison”, Journal of

Machine Learning Research, January 2009.

[3] Alan Nafiiev, Hlib Kholodulkin, Andrii

Rodionov, “Malware dynamic analysis

system based on virtual machine

introspection and machine learning

methods”, Information Technologies and

Security 2022.

[4] Alan Nafiiev, Hlib Kholodulkin, Andrii

Rodionov, “Comparative analysis of

machine learning methods for detecting

malicious files”, Theoretical and Applied

Cybersecurity, Algorithms and methods of

cyber attacks prevention and counteraction

(2022).

[5] Francis R. Bach, Gert R. G. Lanckriet, and

Michael I. Jordan, Multiple Kernel

Learning, Conic Duality, and the SMO

Algorithm, Proceedings of the Twenty-First

International Conference on Machine

Learning, 2004.

[6] Soren Sonnenburg, Gunnar Raetsch, and

Christin Schaefer, A General and Efficient

Multiple Kernel Learning Algorithm,

Nineteenth Annual Conference on Neural

Information Processing Systems (2005).

[7] Christopher Kruegel, Engin Kirda, Darren

Mutz, William Robertson, and Giovanni

Vigna, “Polymorphic Worm Detection

Using Structural Information of

Executables”, Recent Advances in Intrusion

Detection, 2006

[8] Tamas K Lengyel, Steve Maresca, Bryan D

Payne, George D Webster, Sebastian Vogl,

and Aggelos Kiayias. Scalability, fidelity

and stealth in the drakvuf dynamic malware

analysis system. In The 30th Annual

Computer Security Applications

Conference, pages 386–395, 2014

[9] Robert Lyda and James Hamrock, Using

Entropy Analysis to Find Encrypted and

Packed Malware, IEEE Security & Privacy

5 (2007)

[10] Portable Executable iDentifier, Accessed 6

October 2011. http://peid.info/.

[11] Rainer Hettich and Kenneth Kortanek,

Semi-Infinite Programming: Theory,

Methods, and Applications, SIAM Review

35 (1993), 380–429.

104

___Malware Detection System Based on Static and Dynamic Analysis Using Machine Learning

http://peid.info/

	Contents_Vol 5_002_2023.pdf
	001_1_Yanko.pdf
	001_2_Ustymenko.pdf
	001_3_Fesenko.pdf
	1 Introduction
	2 Preliminaries
	2.1 Security

	3 Comments on the National Standard project with «Vershyna» algorithm
	3.1 Options
	3.2 Hash functions and pseudorandom sequence generation
	3.3 Algorithms of «Vershyna» Digital Signature
	3.4 Creating a digital signature

	4 Analysis of characteristics and security levels of the «Vershyna» algorithm
	4.1 Resistance of the «Vershyna» algorithm to possible attacks

	5 Conclusions

	001_4_Kotukh.pdf
	002_1_Hrynchenko.pdf
	002_2_Kurinnyi.pdf
	1 Main notations
	2 The main problems related to systems of linear restrictions
	3 The complexity of the SLR partial cases
	4 Algorithms for finding solutions of the system of linear restrictions

	002_3_Polutsyganova.pdf
	002_4_Ovcharuk.pdf
	002_4_Ovcharuk.pdf
	003_1_Kuz.pdf
	003_2_Alekseichuk.pdf
	004_1_Stasiuk.pdf
	004_2_Nafiiev.pdf
	004_3_Lande.pdf
	First_second_pages_TACS_5_002_2023.pdf
	Contents_Vol 5_002_2023.pdf
	011_Kotukh.pdf
	003_2_Alekseichuk.pdf

