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Abstract  
Cyber wars and cyber attacks are an urgent problem in the global digital environment. Based on 

existing popular detection methods, malware authors are creating ever more advanced and 

sophisticated malware. Therefore, this study aims to create a malware analysis system that uses both 

dynamic and static analysis. Our system is based on a machine learning method - support vector 

machine. The set of data used was collected from various Internet sources. It consists of 257 

executable files in .exe format, 178 of which are malicious and 79 are benign. We use 5 different 

types of data representation: binary information, trace instructions, control flow graph, information 

obtained from the dynamic operation of the file, and file metadata. Then, using multiple kernel 

learning, we combine all data views and create one summative machine learning model. 
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Introduction 

In the history of mankind, wars are an integral 

part of the nature of Homo sapiens. And as the 

current situation in the world shows, despite the 

rapid technological breakthrough of the 21st 

century, war is still inherent in modern man. 

However, with the growth of the global 

digitalization of the world, the type of war is also 

changing. Today we can observe that almost the 

most important role is played by cyber attacks. 

Since even one malicious file can harm the vital 

infrastructure. Therefore, this study is aimed at 

combating malware, namely the difficult 

associated with its detection. Malware analysis 

can be performed by static or dynamic methods. 

In this work, we use both and combine them. 

The aim of this work is to create a binary 

classification system for executable files. A 

system that equally well detects both malware 

with a simple structure and a complex, 

isomorphic malware that can change its structure 

during activity. Obviously, to solve such a task, 

one data view will not be enough. To 

successfully analyze the true nature of a 

malicious file, we should extract as much 

information from it as possible. Therefore, we 

will use 5 different types of data representation: 

1. Binary 

2. Trace 

3. Control flow graph 

4. Dynamic 

5. File Info 

Binary - uses the byte information contained 

in the binary executable file. Trace - 

disassembled code is used. These two static 

methods were described in detail in our previous 

work [1]. CFG - a method based on control flow 

graph, the graphlet kernel is used [2]. Dynamic - 

a method based on dynamic analysis, where we 

get information about a file while it is active in a 

virtual environment [3]. File Info - method based 

on file metadata. Each method is described in 

more detail in the section Feature Selection. 
Now, with the five methods of file 

representation, the task is to apply this data for 

classification. For each method, we constructed a 

machine learning model based on the support 

vector machine algorithm. This algorithm was 

chosen because it showed good accuracy results 

in our work, where we compared different 

machine learning methods [4]. And the main 

selection criterion was the fact that SVM uses the 

properties of kernels, which allows us to apply 

multiple kernel learning [5, 6]. By means of 

which several data views can be combined into 

one model. And this model takes into account the 

features of each of the methods during training. 
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This approach is described in more detail in the 

section “Kernel and training”. 
 

1. Dataset 

The dataset used consists of 257 .exe files 

(178 malware and 79 benign). There are 7 types 

of malware files: InstallCore, CryptoRansom, 

TheZoo, Zeus, Zbot, Zeroaccess, Winwebsec. 

The distribution infographic can be seen in 

Figure 1. All malware files were taken from 

various sites: "virusshare.com", "malicia-

project.com", "thezoo.morirt.com". The benign 

files were taken from the installed application 

folders of legal software from different 

categories. Files were also taken from the site 

"exefiles.com". The input dataset was separated 

as a test and training set in the ratio of 30/70, 

respectively. Both sets included 7 malware types. 

 

 
Figure 1: Infographics of file types distribution 

2. Feature Selection 

This section describes 5 different approaches 

to representing an .exe file. We have focused on 

collecting and processing data to form features 

on which the support vector machine will learn. 

2.1. Binary 

To generate the input data for the machine 

learning model, we use the bit information of the 

executable file represented using the PE format. 

For each item in the dataset, we generate an array 

containing the byte sequence of the .exe file. 

 

 
Figure 2: File representation in PE format 

 

Then, based on the byte sequences obtained, 

construct a graph as follows: all 256 possible 

bytes (00, 01, ... ff) are the vertices of the graph. 

For each pair of bytes in the graph it is counted 

how many times the first byte was immediately 

followed by the second byte. So, we find the 

probability that some byte   will be followed by 

byte  . 

 
Figure 3: Adjacency matrix  

 

We group all the adjacency matrices into one 

final matrix, which is sent to the support vector 

machine algorithm. The algorithm uses a 

Gaussian kernel, where for two graphs their 

adjacency matrices are taken and their kernel is 

calculated using the following formula: 

 

             
  

            
  

 
    

(1) 
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2.2. Trace 

The disassembled code generated by IDA Pro 

is used for the trace type of data representation. 

A fragment of such code can be seen in Figure 4. 

The Markov chain is constructed similarly to 

how it was constructed for binary files. Only 

instead of byte values for vertices of the graph 

we use disassembled instructions (mov, push, 

call, jz, etc.) 

 

 
Figure 4: A fragment of the disassembled code 

 

 
Figure 5: Graph 

 

Based on the obtained graphs, we construct 

an adjacency matrix for each file. The size of the 

adjacency matrix determines the set of unique 

instructions, which was formed as follows: the 

    most frequent instructions in the files were 

taken. Just as in the binary file representation, we 

use the Gaussian kernel (1) in the support vector 

machine algorithm. 

 

2.3. Control Flow Graph 

A control flow graph is a graph representation 

that models all of the paths of execution that a 

program might take during its lifetime. In the 

graph, the vertices are the basic blocks, 

sequential code without branches or jump 

targets, of the program, and the edges represent 

the jumps in control flow of the program. One of 

the advantages of this representation is that it is 

very difficult for a polymorphic virus to create a 

semantically similar version of itself while 

modifying its control flow graph enough to avoid 

detection. A fragment of the CFG can be seen in 

Figure 6. 

 
Figure 6: A fragment of the Control Flow Graph 

 

For further graph processing we chose the 

graphlet kernel because of its computational 

efficiency [7]. The essence of the graphlet kernel 

is that it does not take into account what 

instructions are inside vertices, but just compares 

their structure. A  -graphlet is defined as a 

subgraph of graph   with the number of 

subgraph nodes equal to  . As k was chosen 4 as 

such which gives the highest accuracy and AUC. 

99

_________________________________________________________________________________Intelligent Data analysis methods in cybersecurity



 
Figure 7: k-graplets, where k = 4 

  

If   
     is a feature vector, where each feature is 

the number of times a unique graphlet of size   

occurs in  , the normalized probability vector is: 

 

  
       

  
    

                                 
 

 

 

and the graphlet kernel is defined as: 

 

           
                   

 

2.4. Dynamic method 

For dynamic file representation, we used the 

Drakvuf Sandbox malware analysis system, 

which allows us to monitor malware at the user 

and OS kernel level without the need to install an 

agent in the guest OS [8]. The system is built on 

the Xen virtualization platform, uses the LibVMI 

API and the DRAKVUF engine. With this 

system we collect data on the operation of 

metamorphic malware and monitor: process 

execution, file operations, system calls and 

kernel function traces. The principle behind the 

formation of features is the same as in the binary 

representation of the data. You can see a diagram 

of this process in Figure 8. We also use the 

Gaussian kernel (1) for this data representation. 

This dynamic method was described in more 

detail in our previous work [3]. 

 
Figure 8: Final matrix formation scheme 

2.5. Miscellaneous File Information 

For this data view, we collected seven pieces 

of information about the different data views 

described earlier. The following data is taken 

about the file: 

1. Entropy 

2. Packed 

3. Binary Size 

4. Number Edges 

5. Number Vertices 

6. Number Static Instructions 

7. Number Dynamic Instructions 

 

We use file entropy, similar to previous work 

[9]. To find whether a file was packed or not, we 

used the PEID signature method [10]. Binary 

Size is used as the file size in megabytes. We 

also use the number of vertices and edges in the 

control flow graph. Finally, we use the average 

number of instructions in the disassembled file 

and the average number of instructions/system 

calls in the dynamic analysis. For the file 

information feature vector, we use a standard 

squared exponential kernel: 

 

             
  

          
  

 
   

 

 

3. Kernel and training 

In our previous work, we experimented with 

simply averaging the features of different 

methods to obtain the final machine learning 

model [3]. However, this approach did not yield 

significant improvements in accuracy. Therefore, 

we use multiple kernel learning, since this 

approach combines the features of different 

methods directly during model training, that is, it 

allows us to combine different types of data 

representation at a deeper level. 
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Figure 9: Architecture diagram for classification 
system 

 

The goal of classical kernel-based learning 

with support vector machines is to learn the 

weight vector,   , describing each data instance’s 

contribution to the hyperplane that separates the 

points of the two classes with a maximal margin 

and can be found with the following optimization 

problem: 

 

   
 

 
 

 
                      

 

   

 

   

 

   

 

                         
     

  

(2) 

subject to the constraints: 

 

     

 

   

    
 
 

 
        

 
where    is the class label of instance   . 

With multiple kernel learning, each individual 

kernel’s contribution,  , must also be found such 

that: 

 

                         

 

   

 

 

 

      is a combination of   kernels with 

    , where each kernel    uses a unique set 

of features, which is a different kind of data 

representation. The general outline of the 

algorithm is to first combine the kernels with 

   
 

 
, find  , and then iteratively continue 

optimizing for β and   until convergence. To 

solve for  , assuming a fixed set of support 

vectors ( ), the following semi-infinite linear 

program has been proposed [6]: 

 

     
 

                  
 

    

 

(3) 

subject to constraints: 

 

        

 

   

   

 

(4) 

   

 

   

 

 

      
 

for all      with       and         , 

and where       is defined in eq. (2).   is the 

number of kernels to be combined. This is a 

semi-infinite linear program because all of the 

constraints in eq. (4) are linear, and there are 

infinitely many of them, one for each      

satisfying       and           cannot go  

to   because of the constraint  
         

     . Finding the maximal theta 

corresponds to finding a saddle-point of the 

following min-max optimization problem: 

 

   
 

   
 

        

 

   

   

 

 

If   is the optimal solution, then 

           
    would be minimal satisfying 

eq. (4) for all  . To find solutions for   and  , an 

iterative algorithm was proposed that first uses a 

standard support vector machine algorithm to 

find   (eq. (2)), then fixes   to the solution, and 

solves eq. (3) to find  . Although this algorithm 

is known to converge, there are no known 

convergence rates [11]. Therefore, the following 

stopping criterion was proposed [6]: 

 

           
   

        
   

  
  

 

 

Results 

Table 1 shows the accuracy results of all 

models. All kernels - the model that combines all 

5 methods of data representation: Dynamic, 

Binary, Trace, CFG, and File info. Static - the 

model that combines static analysis methods: 
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Table 1 
Performance results of the machine learning models 

 

Binary, Trace, CFG and File info. We can see the 

AUC curves in Figure 10 and Figure 11. From 

Figure 12 to Figure 18 we can see the confusion 

matrix of each model. It is not difficult to notice 

that the “All kernels” model shows the best result 

(roc auc - 0.9876) for all metrics. The Static 

model also shows good accuracy (roc auc - 

0.9606). It is worth noting that the dynamic 

model was better than any static method, but 

worse than all static methods taken together - the 

Static model. As expected, the model based on 

file metadata had the worst accuracy (roc auc - 

0.8109). The CFG model showed more 

acceptable accuracy (roc auc - 0.8842), but was 

slightly worse than the Binary and Trace models, 

which showed approximately equal results for all 

metrics. However, the Binary is still slightly 

better, (roc auc - 0.9205) versus (roc auc - 

0.9120). 

 
Figure 10: Roc сurves 

 

 
Figure 11: Precision-Recall curves 

 

 
Figure 12: Confusion matrix of "All Kernels" model 
 

 
F-score Precision Recall 

roc_auc pr_auc 
0 1 0 1 0 1 

All kernels 0.9200 0.9622 0.8846 0.9807 0.9583 0.9444 0.9876 0.9945 

Static 0.8571 0.9345 0.8400 0.9433 0.8750 0.9259 0.9606 0.9838 

Dynamic 0.8163 0.9158 0.8000 0.9245 0.8333 0.9074 0.9328 0.9710 

Binary 0.7755 0.8971 0.7600 0.9056 0.7916 0.8888 0.9205 0.9678 

Trace 0.7843 0.8952 0.7407 0.9215 0.8333 0.8703 0.9120 0.9619 

CFG 0.7200 0.8679 0.6923 0.8846 0.7500 0.8518 0.8842 0.9516 

File info 0.6153 0.8076 0.5714 0.8400 0.6666 0.7777 0.8109 0.9107 
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Figure 13: Confusion matrix of Static model 

 
Figure 14: Confusion matrix of Dynamic model 

 
Figure 15: Confusion matrix of Binary model 

 
Figure 16: Confusion matrix of Trace model 

 

 
Figure 17: Confusion matrix of CFG model 

 
Figure 18: Confusion matrix of File info model 

 

Conclusions 

In this study, we described 5 methods of file 

representation. 4 methods of static analysis and 1 

method of dynamic analysis. Using multiple 

kernel learning, the final model was created, 

which combines all the data representation 

methods we described. This final model showed 

the highest accuracy on all metrics. Also, the 

dynamic model was better than any static 

method, but worse than all static methods 
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combined. Based on this, it can be argued that it 

is useful to use all available information about 

executable files, rather than just a single data 

representation, in order to classify malicious files 

qualitatively. It is worth noting that in order to 

use such a file classification system in a real 

case, a large dataset should be collected that 

includes as many types of malicious files as 

possible. 
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