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Abstract
It turned out that in addition to problems with classical asymmetric cryptography in the post-quantum
period, there are certain doubts about the strength of symmetric cryptographic schemes. This paper
demonstrates that on Type III Generalized Feistel Scheme (GFS), by selectively fixing specific parts
of the plaintext at the input to the GFS, it is possible to reduce the problem of distinguishing between
random text and encrypted output of the same GFS to the Simon problem through different approaches.
Our method enables the cracking of the cipher up to 𝑑 rounds in polynomial time, while a more
sophisticated approach based on different formulas from other paths of the cipher can crack 𝑑 + 1
rounds with the same time complexity in quantum adversary model. These distinct approaches yield
varying results in terms of scheme security, indicating the potential to break more rounds in the GFS
using the same methodology.
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Introduction

In 1994, Daniel Simon introduced a signif-
icant problem in the field of quantum comput-
ing – the task of finding the period of a func-
tion, demonstrating its solvability within polyno-
mial time in a quantum model [1]. This dis-
covery opened the door to exploring the po-
tential of quantum computing for solving com-
plex computational problems efficiently. In 1996,
Lov Grover made another breakthrough by re-
ducing the time required to solve the problem
of finding a unique element in an unstructured
database using quantum algorithms, achieving a
quadratic speedup [2]. The implications of quan-
tum computing for symmetric cryptography did
not capture widespread attention until 2010 when
Kuwakado and Morii proposed a novel approach.
They proposed a way to reduce the attack of dis-
tinguishing a random text from the ciphertext for
the classical three-round Feistel scheme to the
Simon problem [3]. This discovery marked the
birth of post-quantum cryptanalysis of symmetric
ciphers and this field that has gained increasing

aazv-ipt23@lll.kpi.ua
ba.fesenko@kpi.ua

relevance due to the rapid advancement of quan-
tum computers.

Over time, researchers have identified
vulnerabilities and developed quantum at-
tacks on various cryptographic schemes
and constructions. These include attacks
on Types I and II GFS [4], Even-
Mansour scheme, authentication codes [5],
FX-constructions [6], five-round Feistel
scheme [7], 2/4K-Feistel scheme, 2/4K-DES [8].
Moreover, cryptographic primitives such as
MISTY L/R, CAST-256, CLEFIA, MARS,
SMS4, and Skipjack-A/B have also been
subjected to quantum cryptanalysis [9].

In the context of this evolving landscape, this
paper presents a comprehensive analysis of the
strength of Type III GFS within the quantum
adversary model. While it does not introduce a
novel finding, it serves a crucial purpose by elu-
cidating the difference between the strategy pub-
lished in our work [10] (as well as in [11] that
was gain independently) and that used in [12],
enabling a better understanding of its security.
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1. Preliminaries

Simon’s algorithm is used in the quantum
distinguisher attack on Type III GFS, therefore,
there is a need to explicate it. This section also
describes some of the theoretical foundations of
quantum computing for further research.

1.1. Simon’s problem.

Suppose for the function

𝑓 : {0, 1}𝑛 → {0, 1}𝑛

there exists such 𝑎 that 𝑓(𝑥) = 𝑓(𝑦) if and only
if 𝑦 = 𝑥⊕𝑎, where ⊕ is an exclusive disjunction
(XOR). Simon’s problem is to find 𝑎.

Obviously, in the classical case, the solu-
tion of this problem requires an exponential
number of steps and memory; however, in the
quantum model of computation, Daniel Simon
showed that the complexity of finding 𝑎 is poly-
nomial [1]. To understand how he did it, we
have to introduce some definitions and claim.

Definition 1. 𝑛-qubit quantum register is a
quantum system whose wave function is defined
as follows:

|Ψ⟩ =
2𝑛−1∑︀
𝑖=0

𝛼𝑖 |𝑖⟩,

where |·⟩ is a ket vector as in Dirac notation,
and amplitudes 𝛼𝑖 satisfy the normalization con-
dition:

2𝑛−1∑︀
𝑖=0

|𝛼𝑖|2 = 1.

It is important to emphasise that when some-
one talks about quantum computations it means
the application of unitary operators in order to
change state vectors.

One of the well-known operators is the
Hadamard operator (or corresponding Hadamard
gate).

Definition 2. The Hadamard operator (gate)
is a unitary operator that is defined as follows:

𝐻𝑛 = 𝐻𝑛−1 ⊗𝐻 , where 𝐻 = 1√
2

(︂
1 1
1 −1

)︂
,

⊗ is the Kronecker product, 𝑛 is the dimension
of the quantum system to which we want to
apply the Hadamard operator.

At this point, it is inconvenient to use such
definition in the general case, thereby for our
purposes we employ an alternative formulation,
which is given below.

Claim 1. The Hadamard gate applied to a vec-
tor |𝑥⟩ of some system with 𝑛 qubits can be repre-
sented as:

𝐻𝑛 |𝑥⟩ = 1√
2𝑛

2𝑛−1∑︀
𝑦=0

(−1)⟨𝑥|𝑦⟩ |𝑦⟩,

where ⟨𝑥|𝑦⟩ is a scalar product of vectors 𝑥 and 𝑦.

It should be noted that a quantum oracle is
a formal model that performs the work of some
function 𝑓 , the internal structure of which is
unknown to us. Then, based on the fact that in
the quantum computational model everything is
described by unitary operators, it becomes clear
that the quantum oracle must implement such
operator 𝑈𝑓 which is invertible. Usually, the
standard oracle model is used:

𝑈𝑓 |𝑥⟩ |𝑦⟩ = |𝑥⟩ |𝑦 ⊕ 𝑓(𝑥)⟩.

It is plain to see that 𝑈𝑓 does not affect the
value of |𝑥⟩, although uses it to determine the
value of the function 𝑓(𝑥), what justifies the
inversion of this operator. Furthermore, substitut-
ing different values in the registers |𝑥⟩ and |𝑦⟩,
it is easy to make sure that all possible values
of the function 𝑓(𝑥) are realised.

Theorem 1. Simon’s problem is solved in a
quantum computational model in polynomial time
[1, 3, 4, 7].

Proof.
1) Let us set two quantum registers, to the

input of which we give 𝑛-qubit zeros, i.e.
|0⟩𝑛 |0⟩𝑛. Then we apply the Hadamard
transformation to the first of them:

1√
2𝑛

2𝑛−1∑︀
𝑥=0

|𝑥⟩ |0⟩𝑛.

Thus, we received all possible input data.
2) To obtain the value of the function 𝑓(𝑥),

we make a query to the quantum oracle, i.e.
we apply the unitary operator 𝑈𝑓 to two
registers:

1√
2𝑛

2𝑛−1∑︀
𝑥=0

|𝑥⟩ |𝑓(𝑥)⟩.

33

_________________________________________________________________________________Theoretical and cryptographic problems of cybersecurity



3) Since Simon’s problem is a period finding
problem, we have:

1√
2𝑛

2𝑛−1∑︀
𝑥=0,

𝑥̸=𝑥⊕𝑎

(|𝑥⟩+ |𝑥⊕ 𝑎⟩) |𝑓(𝑥)⟩.

4) We measure the state of the second register,
then we get the value of the function 𝑓 and
the sum of its preimages:

1√
2
(|𝑥⟩+ |𝑥⊕ 𝑎⟩) |𝑓(𝑥)⟩.

5) Again, we apply the Hadamard transforma-
tion to the first register:

1√
2𝑛+1

2𝑛−1∑︀
𝑦=0

(−1)⟨𝑥|𝑦⟩ |𝑦⟩+

1√
2𝑛+1

2𝑛−1∑︀
𝑦=0

(−1)⟨𝑥⊕𝑎|𝑦⟩ |𝑦⟩.

6) If ⟨𝑎|𝑦⟩ ̸= 0, then the coefficient for |𝑦⟩
is zero. Accordingly, Simon’s algorithm
reduces the brute force of all register’s
states to the solution of the linear equation
⟨𝑎|𝑦⟩ = 0, which can be done efficiently in
time 𝑂(𝑛).

■

1.2. Three-round Feistel scheme quan-
tum distinguisher with polynomial
time

Hidenori Kuwakado and Masakatu Morii in
[3] showed why the ciphertext

𝑦 = 𝑦1 ‖ 𝑦2 ∈ {0, 1}2𝑛, where 𝑦1, 𝑦2 ∈ {0, 1}𝑛

of the scheme in the Fig. 1 is not a random
permutation in the quantum adversary model by
reducing the question of the randomness of its
output to Simon’s problem when for the classi-
cal case Luby and Rackoff proved in 1988 that
the Feistel scheme is resistant to distinguishing
attacks.

Let the input to the scheme in the Fig. 1 be
defined as follows:

𝑥 = 𝑥1 ‖ 𝑥2 ∈ {0, 1}2𝑛, where 𝑥1, 𝑥2 ∈ {0, 1}𝑛.

We assume that 𝑃1, 𝑃2, 𝑃3 are random permuta-
tions on 𝑛-bit vectors, therefore at the output of
the encryption scheme 𝐸 we get:

𝐸(𝑥) = 𝐸(𝑥1 ‖ 𝑥2) = 𝑃2(𝑃1(𝑥2)⊕ 𝑥1)⊕ 𝑥2 ‖
𝑃3(𝑃2(𝑃1(𝑥2)⊕ 𝑥1)⊕ 𝑥2)⊕ (𝑃1(𝑥2)⊕ 𝑥1) =

𝑦1 ‖ 𝑦2.

Figure 1: Classical three-round Feistel scheme

To restore the plaintext when the inverse permu-
tations to 𝑃1, 𝑃2, 𝑃3 are unknown, we only need
to analyze one part of the ciphertext from the
third round, either 𝑦1 or 𝑦2, as both contain 𝑥1
and 𝑥2. Let’s focus on 𝑦1 and define function
𝑊 as:

𝑊 (𝑥) = 𝑊 (𝑥1 ‖ 𝑥2) = 𝑃2(𝑃1(𝑥2)⊕ 𝑥1)⊕ 𝑥2.

Let 𝑓 be a function that maps (𝑛+1)-bit vectors
to 𝑛-bit vectors. 𝑓 operates as follows, where 𝛼
and 𝛽 are arbitrary 𝑛-bit constants:

𝑓(𝑏 ‖ 𝑥1) =

{︃
𝑊 (𝑥1 ‖ 𝛼)⊕ 𝛽, if 𝑏 = 0,
𝑊 (𝑥1 ‖ 𝛽)⊕ 𝛼, if 𝑏 = 1.

Lemma 1. The ciphertext in the third round
of the classical Feistel scheme (see Fig. 1) is not
a random permutation in the quantum adversary
model.

Proof. Show that 𝑓(𝑏 ‖ 𝑥1) = 𝑓(𝑏
′ ‖ 𝑥

′
1) if

and only if 𝑏
′
= 𝑏⊕ 1 and 𝑥

′
1 = 𝑥1 ⊕ 𝑎, where

period 𝑎 = 𝑃1(𝛼)⊕ 𝑃1(𝛽).
Necessary condition proof. Let 𝑏 = 𝑏

′
= 0,

then:

𝑓(0 ‖ 𝑥1) = 𝑊 (𝑥1 ‖ 𝛼)⊕ 𝛽 =
𝑃2(𝑃1(𝛼)⊕ 𝑥1)⊕ 𝛼⊕ 𝛽,

𝑓(0 ‖ 𝑥
′
1) = 𝑊 (𝑥

′
1 ‖ 𝛼)⊕ 𝛽 =

𝑃2(𝑃1(𝛼)⊕ 𝑥
′
1)⊕ 𝛼⊕ 𝛽.

Since 𝑓(0 ‖ 𝑥1) = 𝑓(0 ‖ 𝑥
′
1) and 𝑃2 is a random

permutation, we have:

𝑥1 = 𝑥
′
1 and 𝑏 ‖ 𝑥1 = 𝑏

′ ‖ 𝑥
′
1.
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If 𝑏 = 0, 𝑏
′
= 1, then:

𝑓(1 ‖ 𝑥
′
1) = 𝑊 (𝑥

′
1 ‖ 𝛽)⊕ 𝛼 =

𝑃2(𝑃1(𝛽)⊕ 𝑥
′
1)⊕ 𝛽 ⊕ 𝛼.

Since 𝑓(0 ‖ 𝑥1) = 𝑓(1 ‖ 𝑥
′
1) and 𝑃2 is a random

permutation, we have:

𝑥
′
1 = 𝑥1 ⊕ 𝑎, where period 𝑎 = 𝑃1(𝛼)⊕ 𝑃1(𝛽).

A similar proof for the cases where 𝑏 = 1, 𝑏
′
= 1

and 𝑏 = 1, 𝑏
′
= 0.

Sufficient condition proof. Let 𝑏 = 0, 𝑏
′
= 1,

then:

𝑓(1 ‖ 𝑥
′
1) = 𝑊 (𝑥

′
1 ‖ 𝛽)⊕ 𝛼 =

𝑃2(𝑃1(𝛽)⊕ 𝑥
′
1)⊕ 𝛽 ⊕ 𝛼 = 𝑃2(𝑃1(𝛽)⊕ 𝑥1 ⊕

𝑃1(𝛼)⊕ 𝑃1(𝛽))⊕ 𝛽 ⊕ 𝛼 = 𝑓(0 ‖ 𝑥1).

A similar proof for the case where 𝑏 = 0, 𝑏
′
= 1.

■

2. Type III GFS quantum distinguisher
with polynomial time

Dong, Li, and Wang in [4] proposed a way to
reduce the problem of distinguishing a random
text from the ciphertext for Types I and II GFS
to the Simon problem. A similar result can be
shown for Type III.

2.1. Cracking 𝑑 rounds of the Type III GFS

We consider the scheme in the Fig. 2 and
trace the outputs of each of the three rounds.
Let us suppose that the input message to this
scheme is a 3𝑛-bit vector:

𝑥 = 𝑥1 ‖ 𝑥2 ‖ 𝑥3, where 𝑥1, 𝑥2, 𝑥3 ∈ {0, 1}𝑛.

Let 𝑃 𝑗
𝑖 stands for the permutation function,

where 𝑖 is the number of the round, and 𝑗 is the
number of the permutation function in the round
(we assume that the numbering starts with 1).
The second block 𝑦2 in the third round equals

𝑊 (𝑥) = 𝑊 (𝑥1 ‖ 𝑥2 ‖ 𝑥3) =
𝑃 1
3 (𝑃

1
2 (𝑃

1
1 (𝑥2)⊕ 𝑥1)⊕ 𝑥3)⊕ 𝑃 2

1 (𝑥3)⊕ 𝑥2.

Suppose 𝑓 be function that maps (2𝑛+1)-bit to
𝑛-bit vector, and operates on the constants 𝛼, 𝛽
and a fixed 𝑛-bit vector 𝑥3, as follows:

𝑓(𝑏 ‖ 𝑥1 ‖ 𝑥3) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
if 𝑏 = 0:
𝑊 (𝑥1 ‖ 𝛼 ‖ 𝑥3)⊕ 𝛽,

if 𝑏 = 1:
𝑊 (𝑥1 ‖ 𝛽 ‖ 𝑥3)⊕ 𝛼.

Figure 2: Type III GFS where the plaintext is divided
into three parts at the entrance to the encryption
scheme

Lemma 2. The ciphertext in the third round of
the Type III Generalized Feistel Scheme where the
plaintext is divided into three parts (see Fig.2) is
not a random permutation in the quantum adver-
sary model [10].

Proof. Show that 𝑓(𝑏 ‖ 𝑥1 ‖ 𝑥3) =
𝑓(𝑏

′ ‖ 𝑥
′
1 ‖ 𝑥3) if and only if 𝑏

′
= 𝑏 ⊕ 1 and

𝑥
′
1 = 𝑥1 ⊕ 𝑎, where period 𝑎 = 𝑃 1

1 (𝛼)⊕ 𝑃 1
1 (𝛽).

Necessary condition proof. Let 𝑏 = 𝑏
′
= 0,

then:

𝑓(0 ‖ 𝑥1 ‖ 𝑥3) = 𝑊 (𝑥1 ‖ 𝛼 ‖ 𝑥3)⊕ 𝛽 =
𝑃 1
3 (𝑃

1
2 (𝑃

1
1 (𝛼)⊕ 𝑥1)⊕ 𝑥3)⊕ 𝑃 2

1 (𝑥3)⊕ 𝛼⊕ 𝛽;

𝑓(0 ‖ 𝑥
′
1 ‖ 𝑥3) = 𝑊 (𝑥

′
1 ‖ 𝛼 ‖ 𝑥3)⊕ 𝛽 =

𝑃 1
3 (𝑃

1
2 (𝑃

1
1 (𝛼)⊕ 𝑥

′
1)⊕ 𝑥3)⊕ 𝑃 2

1 (𝑥3)⊕ 𝛼⊕ 𝛽.

Since 𝑓(0 ‖ 𝑥1 ‖ 𝑥3) = 𝑓(0 ‖ 𝑥
′
1 ‖ 𝑥3) and

𝑃 1
2 is a random permutation, we have:

𝑥1 = 𝑥
′
1 and 𝑏 ‖ 𝑥1 ‖ 𝑥3 = 𝑏

′ ‖ 𝑥
′
1 ‖ 𝑥3.

If 𝑏 = 0, 𝑏
′
= 1, then:

𝑓(1 ‖ 𝑥
′
1 ‖ 𝑥3) = 𝑊 (𝑥

′
1 ‖ 𝛽 ‖ 𝑥3)⊕ 𝛼 =

𝑃 1
3 (𝑃

1
2 (𝑃

1
1 (𝛽)⊕ 𝑥

′
1)⊕ 𝑥3)⊕ 𝑃 2

1 (𝑥3)⊕ 𝛽 ⊕ 𝛼.
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Since 𝑓(0 ‖ 𝑥1 ‖ 𝑥3) = 𝑓(1 ‖ 𝑥
′
1 ‖ 𝑥3) and 𝑃 1

2

is a random permutation, we have:

𝑥
′
1 = 𝑥1 ⊕ 𝑎, where period 𝑎 = 𝑃 1

1 (𝛼)⊕ 𝑃 1
1 (𝛽).

A similar proof for the cases where 𝑏 = 1, 𝑏
′
= 1

and 𝑏 = 1, 𝑏
′
= 0.

Sufficient condition proof. Let 𝑏 = 1, 𝑏
′
= 0,

then:

𝑓(1 ‖ 𝑥
′
1 ‖ 𝑥3) = 𝑊 (𝑥

′
1 ‖ 𝛽 ‖ 𝑥3)⊕ 𝛼 =

𝑃 1
3 (𝑃

1
2 (𝑃

1
1 (𝛽)⊕ 𝑥

′
1)⊕ 𝑥3)⊕ 𝑃 2

1 (𝑥3)⊕ 𝛽 ⊕ 𝛼 =
𝑃 1
3 (𝑃

1
2 (𝑃

1
1 (𝛽)⊕ 𝑥1 ⊕ 𝑃 1

1 (𝛼)⊕ 𝑃 1
1 (𝛽))⊕ 𝑥3)⊕

𝑃 2
1 (𝑥3)⊕ 𝛽 ⊕ 𝛼 = 𝑓(0 ‖ 𝑥1 ‖ 𝑥3).

A similar proof for the case where 𝑏 = 0, 𝑏
′
= 1.

■
Let us consider the Type III GFS where the

plaintext is divided into four parts at the entrance
to the encryption scheme and trace the outputs
of each of the four rounds. We suppose that the
input message to this scheme is a 4𝑛-bit vector:

𝑥 = 𝑥1 ‖ 𝑥2 ‖ 𝑥3 ‖ 𝑥4, where
𝑥1, 𝑥2, 𝑥3, 𝑥4 ∈ {0, 1}𝑛.

Permutation functions, as in the previous case,
we denote as 𝑃 𝑗

𝑖 , where 𝑖 is the number of the
round, 𝑗 is the number of the permutation func-
tion in the round. The second block 𝑦2 in the
fourth round equals

𝑊 (𝑥) = 𝑊 (𝑥1 ‖ 𝑥2 ‖ 𝑥3 ‖ 𝑥4) =
𝑃 1
4 (𝑃

1
3 (𝑃

1
2 (𝑃

1
1 (𝑥2)⊕ 𝑥1)⊕ 𝑥4)⊕ 𝑃 3

1 (𝑥4)⊕
𝑥3)⊕ 𝑃 3

2 (𝑃
3
1 (𝑥4)⊕ 𝑥3)⊕ 𝑃 2

1 (𝑥3)⊕ 𝑥2.

Let us redefine the function 𝑓 . Now it takes a
vector from the set of (3𝑛+ 1)-bit vectors and
returns a vector from the set of 𝑛-bit vectors.
The function 𝑓 works as follows (𝛼 and 𝛽 are
𝑛-bit arbitrary constants, 𝑥3, 𝑥4 are fixed):

𝑓(𝑏 ‖ 𝑥1 ‖ 𝑥3 ‖ 𝑥4) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
if 𝑏 = 0:

𝑊 (𝑥1 ‖ 𝛼 ‖ 𝑥3 ‖ 𝑥4)⊕ 𝛽,

if 𝑏 = 1:

𝑊 (𝑥1 ‖ 𝛽 ‖ 𝑥3 ‖ 𝑥4)⊕ 𝛼.

Lemma 3. The ciphertext in the fourth round of
the Type III Generalized Feistel Scheme where the
plaintext is divided into four parts is not a random
permutation in the quantum adversary model [10].

Proof. Show that 𝑓(𝑏 ‖ 𝑥1 ‖ 𝑥3 ‖ 𝑥4) =
𝑓(𝑏 ‖ 𝑥

′
1 ‖ 𝑥3 ‖ 𝑥4) if and only if 𝑏

′
= 𝑏⊕1 and

𝑥
′
1 = 𝑥1 ⊕ 𝑎, where 𝑎 = 𝑃 1

1 (𝛼)⊕ 𝑃 1
1 (𝛽). Since

𝑥3 and 𝑥4 are fixed, then for convenience we
denote 𝐾 = 𝑃 3

1 (𝑥4)⊕ 𝑥3.
Necessary condition proof. Let 𝑏 = 𝑏

′
= 0,

then:

𝑓(0 ‖ 𝑥1 ‖ 𝑥3 ‖ 𝑥4) = 𝑊 (𝑥1 ‖ 𝛼 ‖ 𝑥3 ‖
𝑥4)⊕ 𝛽 = 𝑃 1

4 (𝑃
1
3 (𝑃

1
2 (𝑃

1
1 (𝛼)⊕ 𝑥1)⊕ 𝑥4)⊕

𝐾)⊕ 𝑃 3
2 (𝐾)⊕ 𝑃 2

1 (𝑥3)⊕ 𝛼⊕ 𝛽,

𝑓(0 ‖ 𝑥
′
1 ‖ 𝑥3 ‖ 𝑥4) = 𝑊 (𝑥

′
1 ‖ 𝛼 ‖ 𝑥3 ‖

𝑥4)⊕ 𝛽 = 𝑃 1
4 (𝑃

1
3 (𝑃

1
2 (𝑃

1
1 (𝛼)⊕ 𝑥

′
1)⊕ 𝑥4)⊕

𝐾)⊕ 𝑃 3
2 (𝐾)⊕ 𝑃 2

1 (𝑥3)⊕ 𝛼⊕ 𝛽.

Since 𝑓(0 ‖ 𝑥1 ‖ 𝑥3 ‖ 𝑥4) = 𝑓(0 ‖ 𝑥
′
1 ‖ 𝑥3 ‖ 𝑥4)

and 𝑃 1
2 is a random permutation, we have:

𝑥1 = 𝑥
′
1 and

𝑏 ‖ 𝑥1 ‖ 𝑥3 ‖ 𝑥4 = 𝑏
′ ‖ 𝑥

′
1 ‖ 𝑥3 ‖ 𝑥4.

If 𝑏 = 0, 𝑏
′
= 1, then:

𝑓(1 ‖ 𝑥
′
1 ‖ 𝑥3 ‖ 𝑥4) = 𝑊 (𝑥

′
1 ‖ 𝛽 ‖ 𝑥3 ‖

𝑥4)⊕ 𝛼 = 𝑃 1
4 (𝑃

1
3 (𝑃

1
2 (𝑃

1
1 (𝛽)⊕ 𝑥

′
1)⊕ 𝑥4)⊕

𝐾)⊕ 𝑃 3
2 (𝐾)⊕ 𝑃 2

1 (𝑥3)⊕ 𝛽 ⊕ 𝛼.

Since 𝑓(0 ‖ 𝑥1) = 𝑓(1 ‖ 𝑥
′
1) and 𝑃 1

2 is a ran-
dom permutation, we have

𝑥
′
1 = 𝑥1 ⊕ 𝑎, where period 𝑎 = 𝑃 1

1 (𝛼)⊕ 𝑃 1
1 (𝛽).

A similar proof for the cases where 𝑏 = 1, 𝑏
′
= 1

and 𝑏 = 1, 𝑏
′
= 0.

Sufficient condition proof. Let 𝑏 = 1, 𝑏
′
= 0,

then:

𝑓(0 ‖ 𝑥
′
1 ‖ 𝑥3 ‖ 𝑥4) = 𝑊 (𝑥

′
1 ‖ 𝛼 ‖ 𝑥3 ‖

𝑥4)⊕𝛽 = 𝑃 1
4 (𝑃

1
3 (𝑃

1
2 (𝑃

1
1 (𝛼)⊕𝑥

′
1)⊕𝑥4)⊕𝐾)⊕

𝑃 3
2 (𝐾)⊕𝑃 2

1 (𝑥3)⊕𝛼⊕𝛽 = 𝑃 1
4 (𝑃

1
3 (𝑃

1
2 (𝑃

1
1 (𝛼)⊕

𝑥1 ⊕ 𝑃 1
1 (𝛼)⊕ 𝑃 1

1 (𝛽))⊕ 𝑥4)⊕𝐾)⊕ 𝑃 3
2 (𝐾)⊕

𝑃 2
1 (𝑥3)⊕ 𝛼⊕ 𝛽 = 𝑓(1 ‖ 𝑥1 ‖ 𝑥3 ‖ 𝑥4).

A similar proof for the case where 𝑏 = 0, 𝑏
′
= 1.

■

Corollary 1. From Lemmas 1 and 2, it becomes
clear that the 𝑑-round Type III GFS where the plain-
text is divided into 𝑑 parts is not resistant to attacks
of distinguishing a random text from the cipher-
text [10].

2.2. Cracking 𝑑 + 1 rounds of the Type III
GFS

However, in 2022, Zhang, Wu, Sui, and
Wang discovered a polynomial time quantum
attack on 𝑑 + 1 rounds of a Type III GFS.
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They analyzed the scheme depicted in Fig. 3,
where 𝛼 and 𝛽 are arbitrary 𝑛-bit constants, and
𝑥12, ..., 𝑥

1
𝑑−1 ∈ {0, 1}𝑛 are fixed. They defined

an 𝑛-bit function 𝑓 using 𝐸𝑖(·) to represent the
result of the 𝑖-th round in Type III GFS:

𝑓𝐸𝑑+1(𝑥) = 𝑥𝑑+2
𝑑 ⊕ 𝑥

′𝑑+2
𝑑 ,

where 𝐸𝑑+1 is a quantum oracle that pro-
vides outputs of 𝐸𝑑+1(𝛼, 𝑥

1
2, ..., 𝑥

1
𝑑−1, 𝑥) and

𝐸𝑑+1(𝛽, 𝑥
1
2, ..., 𝑥

1
𝑑−1, 𝑥).

Figure 3: (d+1)-round distinguisher on Type III GFS

Lemma 4. Let 𝐸𝑑+1 is a quantum oracle, then
for any 𝑛-bit 𝑥, we can get

𝑓𝐸𝑑+1(𝑥) = 𝑓𝐸𝑑+1(𝑥⊕ 𝑠), where

𝑠 = 𝑃 1
𝑑−1(𝐹

1
𝑑−1(𝛼, 𝑥

1
2, ..., 𝑥

1
𝑑−1))⊕

𝑃 1
𝑑−1(𝐹

1
𝑑−1(𝛽, 𝑥

1
2, ..., 𝑥

1
𝑑−1)) is a period of 𝑓𝐸𝑑+1 ,

𝐹 1
𝑑−1 is a fixed function [12].

Proof. Let us examine the output value of
the first (𝑑− 1) rounds (𝑏 ∈ {𝛼, 𝛽}):

(𝑥𝑑1, 𝑥
𝑑
2, ..., 𝑥

𝑑
𝑑−1, 𝑥

𝑑
𝑑) = 𝐸𝑑−1(𝑏, 𝑥

1
2, ..., 𝑥

1
𝑑−1, 𝑥).

Using the equations below, we can obtain 𝑥𝑑1
and 𝑥𝑑2 since 𝑏 has shifted to the second position
from the left:

𝑥𝑑1 = 𝑃 1
𝑑−1(𝑥

𝑑−1
1 )⊕ 𝑥𝑑−1

2 ,

𝑥𝑑−1
1 = 𝑃 1

𝑑−2(𝑥
𝑑−2
1 )⊕ 𝑥𝑑−2

2 ,
𝑥𝑑−1
2 = 𝑃 2

𝑑−2(𝑥
𝑑−2
2 )⊕ 𝑥𝑑−2

3 ,
...

𝑥21 = 𝑃 1
1 (𝑏)⊕ 𝑥12,

...
𝑥2𝑑−2 = 𝑃 𝑑−2

1 (𝑥1𝑑−2)⊕ 𝑥1𝑑−1,
𝑥2𝑑−1 = 𝑃 𝑑−1

1 (𝑥1𝑑−1)⊕ 𝑥,

and

𝑥𝑑2 = 𝑃 2
𝑑−1(𝑥

𝑑−1
2 )⊕ 𝑥𝑑−1

3 ,
𝑥𝑑−1
2 = 𝑃 2

𝑑−2(𝑥
𝑑−2
2 )⊕ 𝑥𝑑−2

3 ,
𝑥𝑑−1
3 = 𝑃 3

𝑑−2(𝑥
𝑑−2
3 )⊕ 𝑥𝑑−2

4 ,
...

𝑥32 = 𝑃 2
2 (𝑥

2
2)⊕ 𝑥23,

...
𝑥3𝑑−2 = 𝑃 𝑑−2

2 (𝑥2𝑑−2)⊕ 𝑥2𝑑−1,
𝑥3𝑑−1 = 𝑃 𝑑−1

2 (𝑥2𝑑−1)⊕ 𝑏,
𝑥22 = 𝑃 2

1 (𝑥
1
2)⊕ 𝑥13,

...
𝑥2𝑑−2 = 𝑃 𝑑−2

1 (𝑥1𝑑−2)⊕ 𝑥1𝑑−1,
𝑥2𝑑−1 = 𝑃 𝑑−1

1 (𝑥1𝑑−1)⊕ 𝑥.

Substituting the equations into each other, we
can get

𝑥𝑑1 = 𝑥⊕ 𝑃 𝑑−1
1 (𝑥1𝑑−1)⊕

𝑃 𝑑−2
2 (𝐹 𝑑−2

2 (𝑥1𝑑−2, 𝑥
1
𝑑−1))⊕

𝑃 2
𝑑−2(𝐹

2
𝑑−2(𝑥

1
2, 𝑥

1
𝑑−1))⊕

...
⊕𝑃 1

𝑑−1(𝐹
1
𝑑−1(𝑏, 𝑥

1
2, ..., 𝑥

1
𝑑−1))

and

𝑥𝑑2 = 𝑏⊕ 𝑃 𝑑−1
2 (𝐹 𝑑−1

2 (𝑥1𝑑−1, 𝑥))⊕
...

⊕𝑃 2
𝑑−1(𝐹

2
𝑑−1(𝑥

1
2, ..., 𝑥

1
𝑑−1, 𝑥)),

where 𝐹 𝑑−2
2 , ..., 𝐹 1

𝑑−1, and 𝐹 𝑑−1
2 , ..., 𝐹 2

𝑑−1 are
fixed functions that output 𝑛-bit values.

Denoting
Γ𝑏 = 𝑃 𝑑−1

1 (𝑥1𝑑−1)⊕ 𝑃 𝑑−2
2 (𝐹 𝑑−2

2 (𝑥1𝑑−2, 𝑥
1
𝑑−1))

⊕...⊕ 𝑃 2
𝑑−2(𝐹

2
𝑑−2(𝑥

1
2, ..., 𝑥

1
𝑑−1))⊕

𝑃 1
𝑑−1(𝐹

1
𝑑−1(𝑏, 𝑥

1
2, ..., 𝑥

1
𝑑−1))

and

Λ𝑥 = 𝑃 𝑑−1
2 (𝐹 𝑑−1

2 (𝑥1𝑑−1, 𝑥))⊕ ...⊕
𝑃 2
𝑑−1(𝐹

2
𝑑−1(𝑥

1
2, ..., 𝑥

1
𝑑−1, 𝑥)),

we can say that 𝑥𝑑1 = 𝑥 ⊕ Γ𝑏 and 𝑥𝑑2 = 𝑏 ⊕ Λ𝑥.
As 𝑥12, ..., 𝑥

1
𝑑−1 are arbitrary 𝑛-bit constants, Γ𝑏

and Λ𝑥 are functions of 𝑏 and 𝑥 respectively, we
have
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𝑥𝑑+2
𝑑 = 𝑥𝑑+1

1 = 𝑏⊕ Λ𝑥 ⊕ 𝑃 1
𝑑 (𝑥⊕ Γ𝑏),

and, as a result, we get

𝑓𝐸𝑑+1(𝑥) = 𝑥𝑑+2
𝑑 ⊕ 𝑥

′𝑑+2
𝑑 =

𝛼⊕ 𝛽 ⊕ 𝑃 1
𝑑 (𝑥⊕ Γ𝛼)⊕ 𝑃 1

𝑑 (𝑥⊕ Γ𝛽)

that means that 𝑓𝐸𝑑+1(𝑥⊕Γ𝛼⊕Γ𝛽) = 𝑓𝐸𝑑+1(𝑥),
where the period of derived function is

𝑠 = Γ𝛼 ⊕ Γ𝛽 = 𝑃 1
𝑑−1(𝐹

1
𝑑−1(𝛼, 𝑥

1
2, ..., 𝑥

1
𝑑−1))⊕

𝑃 1
𝑑−1(𝐹

1
𝑑−1(𝛽, 𝑥

1
2, ..., 𝑥

1
𝑑−1)).

■

Conclusions

In this paper, we delve into the vulnerability
assessment of the Type III Generalized Feistel
Scheme (GFS) within the context of the quantum
adversary model. Our investigation employs a
multifaceted approach to ascertain the susceptibil-
ity of this cryptographic scheme. To successfully
distinguish a random text from the ciphertext
on 𝑑 + 1 rounds of the Type III GFS it is suf-
ficient that the plaintext at the entrance to the
encryption scheme is divided into 𝑑 parts.

Open discussion: a more meticulous analysis
of the parts of the plaintext inputs may poten-
tially break more than 𝑑+ 1 encryption rounds
in a reasonable time. The ramifications extend
beyond the Type III GFS, raising concerns about
the security of other cipher types, therefore, we
may crack more rounds of Type I and Type II
GFS, leading to improved attacks on Type I ci-
phers such as CAST-256 and MAME, as well as
Type II ciphers like RC6 and CLEFIA.
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