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Abstract 
We introduce large groups of quadratic transformations of a vector space over the finite fields defined 
via symbolic computations with the usage of algebraic constructions of Extremal Graph Theory. They 
can serve as platforms for the protocols of Noncommutative Cryptography. The modifications of these 
symbolic computations in the case of large fields of characteristic two allow us to define quadratic 
bijective multivariate public keys such that the inverses of public maps has a large polynomial degree. 
We suggest the usage of constructed protocols for the private delivery of quadratic encryption maps 
instead of the public usage of these transformations. 
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Introduction: On Post Quantum, 
Multivariate and Noncommutative 
Crytography 

Post-Quantum Cryptography (PQC) is an 
answer to a threat coming from a full-scale 
quantum computer able to execute Shor’s 
algorithm. With this algorithm implemented on a 
quantum computer, currently used public key 
schemes, such as RSA and elliptic curve 
cryptosystems, are no longer secure. PQC is 
subdivided into Coding based Cryptography, 
Multivariate Cryptography, Noncommutative 
Cryptography, Hash based Cryptography. 
Isogeny based Cryptography and Lattice based 
Cryptography.  

Each of these six areas is based on the 
complexity of certain NP - hard problem. 
Noteworthy that fundamental assumption of 
cryptography that there are no polynomial-time 
algorithms for solving any NP-hard problem 
remains valid. So all six directions are well 
justified theoretically.  

The tender of US National Institute of 
Standartisation Technology (NIST, 2017) is 
dedicated to the standardisation process of 

possible real life Post-Quantum Public keys. 
Already selected in July of 2022 four 
cryptosystems are developed via methods of 
Lattice based Cryptography. This fact motivates 
researchers from other four core areas of Post 
Quantum Cryptography to continue design of 
new cryptographical primitives. Noteworthy that 
during the NIST project an interesting results on 
cryptanalysis of Unbalanced Rainbow Oil and 
Vinegar digital signatures schemes were found 
(see [1], [2], [3]). This scheme is defined via 
quadratic multivariate public rule, which refers 
to MiniRank problem. Examples of previously 
knowm multivariate quadratic public keas reader 
can find in classical monographs [4], [5], [6]  

Graph based multivariate public keys with 
bijective encryption maps generated via special 
walks on incidence graph of projective geometry 
were proposed in [7] this year. It can be count as 
attempt to combine methods of Coding based 
and Multivariate Cryptographies.  

Classical multivariate public rule is a 
transformation of n-dimensional vector space 
over  finite field Fq which move vector (x1, x2, … 
, xn) to the tuple (g1(x1, x2, … , xn), g2(x1, x2, …, 
xn), ..., gn(x1, x2, …, xn)), where polynomials gi 
are given in their standard forms, i. e. lists of 
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monomial terms in the lexicographical order. 
The degree of this transformation is the maximal 
value of deg(gi). Traditionally public rule has 
degree 2 or 3. 

We use the known family of graphs D(n, q) 
and A(n.q) of increasing girth (see [8], [9] and 
further references) and their analogs D(n, K) and 
A(n, K) defined over finite commutative ring K 
with unity for the construction of our public 
keys. Noteworthy to mention that for each prime 
power q, q > 2 graphs D(n, q), n = 2, 3,... form a 
family of graphs of large girth (see [8]). There is 
well defined projective limit of these graphs 
which is a q-regular forest. In fact if K is an 
integral domain both families A(n, K) and D(n, 
K) are approximations of infinite dimensional 
algebraic forests. Cubical transformation groups 
GA(n, K) and GD(n, k) of Kn (see [10], [11]),  
were used for the design of key exchange 
protocols of Noncommutative Cryptography (see 
[12], [13], [11]), elements of this groups were 
used for the creation of stream ciphers. 

1. On graphs, groups and quadratic 
maps with the inverses of high 
degree 

Let K be a commutative ring .We define A(n, 
K) as bipartite graph with the point set P=Kn and 
line set L=Kn (two copies of a Cartesian power of 
K are used). We will use brackets and 
parenthesis to distinguish tuples from P and L. 
So (p)=(p1, p2, … , pn) ϵ Pn and [l]=[l1,  l2 , … , 
ln] ϵ Ln. The incidence relation I=A(n,K) (or 
corresponding bipartite graph I) is given by 
condition  p I l if and only if the equations of the 
following kind hold.  
p2 - l2=l1p1, p3 -  l3= p1 l2,p4 - l4 = l1p3,  p5 - l5 = p1 
l4 , … , pn - ln = p1 ln-1 for odd n and pn - ln = l1 pn-

1 for even n. We can consider an infinite bipartite 
graph  A(K) with points (p1, p2 ,…, pn ,…) and 
lines [l1 , l2 ,…,ln , …]. We proved that for each 
odd n girth indicator of A(n, K) is at least 2n+2. 

Another incidence relation I= D(n, K) is 
defined below. The following interpretation of a 
family of graphs D(n. K) in case of general 
commutative ring K is convenient for the 
computations.  Let us use the same notations for 
points and lines as in previous case of graphs 
A(n, K). 

Points and lines are elements of two copies of 
the affine space  over K. Point (p)=(p1, p2, … , 
pn) is incident with the line [l]=[l1,  l2 , … , ln] if 

the following relations between their coordinates 
hold: p2 - l2=l1p1,  p3 -  l3= p1 l2, p4 - l4 = l1p3, …, 
li-pi=p1li-2 if i congruent to 2 or 3 modulo 4, li-
pi=l1pi-2 if i congruent to 1 or 0 modulo 4. 

Let ℾ(n, K) be one of graphs D(n, K) or A(n, 
K). The graph ℾ(n, K) has so called linguistic 
colouring ρ of the set of vertices. We assume that 
ρ(x1, x2,…, xn)=x1 for the vertex x (point or line)  
given by the tuple with coordinates x1, x2,…, xn. 
We refer to x1 from K as the colour of vertex x. It 
is easy to see that each vertex has a unique 
neighbour of the chosen colour. Let Na and Ja be 
operators of taking the neighbour with colour a 
and jump operator changing the original colour 
of point or line for new colour a from K. Let [y1, 
y2,  …, yn] be the line y of ℾ(n, K[y1, y2, …, yn]) 
and (ᾳ(1), ᾳ(2), …, ᾳ(t)) and (β(1), β(2) , …, β(t))  
are the sequences of colours of the length at least 
2. We form (β*(1), β*(2), …, β*(t))=(y1+β(1), 
y1+β(2) ,…, y1+ β(t))   and consider the sequence 
0v=y, 1v=Jᾳ(1) (0v), 2v=Nβ*(1)(1v), 3v=Nᾳ(2)(2v), 
4v=N β*(2)( 3v), … , 2t-2v=Nβ*(t-1)(2t-3v),  2t-1v=Nᾳ(t)(2t-

2v), 2tv=Jβ*(t)(2t-1v).  
Assume that v=2tv=[v1, v2, … , vn] where vi 

are from K[y1, y2, …, yn]. We consider bijective 
quadratic transformation  g(ᾳ(1), ᾳ(2),… , ᾳ(t), 
β(1), β(2), …, β(t)), t ≥2 of affine space Kn of 
kind  y1 → y1 + β(t), y2 → v2(y1, y2), y3 → v3(y1, 
y2, y3), … , yn → vn(y1, y2,…, yn). 

It is easy to see that g(ᾳ(1), ᾳ(2),… , ᾳ(t), 
β(1), β(2) , …, β(t))•g(γ(1), γ(2),… , γ(s), σ(1), 
σ(2) , …, σ(t))= g(ᾳ(1), ᾳ(2),… , ᾳ(t),  γ(1), 
γ(2),… , γ(s), β(1), β(2) , …, β(s), σ(1)+β(t), 
σ(2)+β(t), …, σ(s)+ β(t)). 

Theorem 1 (see [11] and further references) 

Bijective transformations of kind g(ᾳ(1), ᾳ(2),… 
, ᾳ(t), β(1), β(2) , …, β(t)), t ≥2 generate a stable  
subgroup  2G(ℾ(n, K))  of transformations of  Kn 
of degree 2. 

Remark In the case of two quadratic 
transformations of Kn of ‘’general position’’ 
their composition will have degree 4. 

We associate with the sequence ᾳ(1), ᾳ(2),… , 
ᾳ(t), β(1), β(2), …, β(t) another quadratic 
transformation h=H(ᾳ(1), ᾳ(2),… , ᾳ(t), β(1), 
β(2) , …, β(t))  constructed via the sequence of 
vertices 0v, 1v, 2v, , … , 2t-2v=Nβ*(t-1)(2t-3v),  2t-

1v=Nᾳ(t)(2t-2v). We compute 
 2tv=Ja(t)(2t-1v)=v 

where a(t)=(y1)
2

  +
 β(t) and define h as   the 

quadratic map yi→vi, i=1, 2, …, n. 
Theorem 2 (see [16]) Let K be the finite field 

Fq, q=2r. Then transformation h=h(ᾳ(1), ᾳ(2),… 
, ᾳ(t), β(1), β(2) , …, β(t)) is a quadratic 
transformation of  the vector space (Fq)n. The 
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polynomial degree of its inverse transformation 
is at least 2r-1. 

 

2. Protocols and cryptosystems 
2.1. Twisted Diffie-Hellman 
protocol with the platform 2G(Г(n, 
Fq)), q>2 

Let 2G(ℾ(n, Fq))=G be the transformation 
group of Theorem 1. So the following twisted 
Diffie – Hellman protocol of Noncommutative 
Cryptography is feasible. 

Alice and Bob will use elements of Y= τGτ-1
 

where τ ϵ AGLn(Fq). They take element x = 
g(ᾳ(1), ᾳ(2),… , ᾳ(t), β(1), β(2) , …, β(t)), t ≥2 
from Y and representative y=(g(γ(1), γ(2),… γ(s), 
σ(1), σ(2), …, σ(s)) from this group and makes 

them public. We assume that ᾳ(i)≠ ᾳ(i+1), β(i)≠ 
β(i+1), i=1,2, …, t-1,  γ(i)≠ γ(i+1), ᾳ(i)≠ σ(i+1), 
), i=1,2, …, s-1.   

Alice selects rather big numbers k(A) and 

r(A). She sends x(A)= yr(A)xk(A)y-r(A)
 written in its 

standard form to Bob.  
Bob selects his numbers k(B) and r(B). He 

forms the standard form of x(B)= yr(B)xk(B)y-r(B)
 

and sends it to Alice. 
Correspondents Alice and Bob computes the 

collision map C as yr(A)x(B)k(A)y-r(A)
 and 

yr(B)x(A)k(A)y-r(A). Noteworthy that C is a quadratic 
map from the group of kind yn y1→c1(y1, y2,…, 
yn), y2→c2(y1, y2,…,),…, yn→cn(y1, y2,…, yn). One 
can take tuples iC of nonzero coefficients of 
taken in the lexicographical order and form the 
concatenation c of them.  

Remark It is easy to see that the complexity 
of the protocol coincides with the complexity of 
the computation of the composition of two 
quadratic transformations of n-dimensional 
vector space and equals O(n7). 

 

2.2. Stream cipher supported by 
the protocol 

Correspondents Alice and Bob can choose 
potentially infinite parameter m, m≥l(n) where 

l(n) is the length of vector c. 
After the completion of the presented above 

protocol they concatenate tuple c of 
[m/([l(n)]+1) and form the vector b= b(c)=( b1, 
b2, …, bm) containing first m coordinates of 

obtained tuple. They take coordinates of b in the 
reverse order and form vector b* of length m. 

They select parameter t, t≥n of size O(1). Let 
tb=(ᾳ(1), ᾳ(2),… , ᾳ(t)) and tb*=(β(1), β(2) , … , 
β(t)) be vectors formed by t first coordinates of b 

and b* and consider the recurrent usage of a 
composition of 1T,  h=h(ᾳ(1), ᾳ(2),… , ᾳ(t), β(1), 
β(2) , …, β(t)) of Theorem 2 and 2T , where 1T 

and  2T are linear transformation sending y1 to 
b1y1+b2y2+…+bmym and b*1y1+b*2y2+…+b*m  
respectively and leaving of coordinates yi, i=2, 
3,…, m. 

So, correspondents work with the space of 
plaintexts (Fq). They can agree on the parameter 
t via open channel. The password b(c) is 
computed via vector c of length O(n 3). Plaintext 
is converted into ciphertext via usage of two 
sparse linear operators with complexity O(m), 
two operators of changing colour of complexity 
O(1) and several operators of taking neighbour 
of chosen colour with complexity O(m). So fast 
encryption/decryption procedure takes time 
O(m). 

Remark Multivariate map 
1T h 2T has inverse 

of polynomial degree at least 2r-1. So if r ≥16 

then the stream cipher is resistant to a 
differential linearisation attacks. We implement 
the case with r=32. 

 

2.3. Quadratic Multivariate Public 
Key 

Alice selects finite field Fq, q=2r
, dimension n 

of the vector space over Fq, 1T and 
2T from 

AGLn(Fq) defined by matrices with  most entries 
distinct from zero. She chooses parameter 
t=O(n), elements ᾳ(1), ᾳ(2),… , ᾳ(t), β(1), β(2) , 
…, β(t) for which ᾳ(i)≠ ᾳ(i), β(i) ≠β(i+1), i=1, 2, 
…, n  and compute  the standard form of F= 

1Th(ᾳ(1), ᾳ(2),… , ᾳ(t), β(1), β(2) , …, β(t))2T. 
She presents F of kind yi→f(y1, y2, …, yn), 

i=1, 2, …, n as public map. Public user Bob use 
this transformation to encrypt his plaintext p in 
time O(n3). Alice knows the decomposition 1T h 
2T and sequences ᾳ(i) and β(i), i=1, 2… , t. It 
allows her to decrypt in time O(n2). 

Remark (the periodic privatization of public 
rule) Alice creates bijective G according 
presented above method. Together with Bob she 
executes algorithm 2.1 to elaborate the collision 
map and sends C+G to his partner. So 
correspondents can use ”public key rule” G in a 
private mode.  The usage of G just t(n)=[n2/2] 
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times for the message encryption or electronic 
signatures times does not allow adversary to 
make the restoration of G. After the exchange of 
t(n) vectors correspondents can start the new 
session of the execution of procedures 2.1 and 
2.2.  

 

2.4. Remark on the 
implementation 

We use computer simulation to generate maps 
of kind y = τ1h=h(ᾳ(1), ᾳ(2),… , ᾳ(t), β(1), β(2) , 
…, β(t)) τ2(x) related to graphs A(n, K) and D(n, 
K), K is one of the commutative rings: Boolean 
ring h B(32), modular ring Zq, q=232 and finite 
field Fq, q=232. 

We have implemented three cases of 
invertible affine transformations: 

1) τ1 and τ2 are identities, this is just 
evaluation of time execution of core quadratic 
transformation, 

2) τ1 and τ2 are of kind x1 →x1 +a2 x2  +a3x3 
+…+ anxn (linear time of computing execution of 
τ1 and τ2), 

3) τ1 = A1x+b1 and τ2 = A2x+b2, nonsingular 
matrices A1, A2 have nonzero entries and 
column vectors b1, b2 with mostly all coordinates 
differ from zero 

Standard forms of the maps in the cases 2 and 
3. 

The program is written in C++ and compiled 
with the gcc compiler. We used an average PC 
with processor Pentium 3.00 GHz, 2GB memory 
RAM and system Windows 7. 

Tables 1–6 presents the time of encryption 
with symmetric algorithm and three different 
commutative rings. 
 
Table 1 
Generation time for the map (ms) D(n,F2

32), case 
I 

 length of the the path (2t-2) 

 

16 32 64 128 256 

16  10  22   30  50   98 

32  60  138   289   590   1189 

64  1042   2259   4831   9983   20267 

128  15819   33844   74338   160211   331893 

 
Table 2 
Generation time for the map (ms) D(n,F2

32), case 
II 

 length of the path (2t-2) 

 

16 32 64 128 256 

16  25   45  97   209   417 

32  281  645   1369   2813  5709 

64  3226   8394  19451   41565   85780 

128  55072   139364  357359   824163   1758056 

 
Table 3 
Generation time for the map (ms) D(n,F2

32), case 
III 

 length of the word 

 

16 32 64 128 256 

16  71  136   263   518   1030 

32  1220   2324  4535  8962   17824 

64  21884   40412   77476   151587  299839 

128  
453793 

 
812136  

 
152678  

 
2946017  

 
5792884 

 
Table 4 
Generation time for the map (ms) A(n,F2

32), case 
I 

 length of the word 

 

16 32 64 128 256 

16  4   11  22   46   93 

32  53   130   286   597   1230 

64  992   298   4642   10065   20931 

128  15642   33487   74242   167452   364704 

 
Table 5 
Generation time for the map (ms) A(n,F2

32), case 
II 

 length of the word 

 

16 32 64 128 256 

16  18  57   125  257   538 

32  306   786  1773   3758   7713 

64  3190  8856   23228   53193  113146 

128  54029   137191   368458   950847   2164035 

 
Table 6 
Generation time for the map (ms) A(n,F2

32), case 
III 

 length of the word 

 

16 32 64 128 256 

16  73   146   285   573   1145 

32  1266   2417  4698   9265   18403 

64  22142  40945   78549   153781   304237 

12
8 

 
46019
8  

 
81949
5  

 
153227
5  

 
297074
1  

 
583693
6 
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Conclusions 

Recall that multivariate public rule is a 
transformation of n-dimensional affine space 
over commutative ring  K with unity which move 
a tuple (x1, x2, … , xn) to the tuple (g1(x1, x2, … , 
xn), g2(x1, x2, …, xn), ..., gn(x1, x2, …, xn)), where 
polynomials gi from K[x1, x2, … , xn] are given in 
their standard forms, i.e. lists of monomial terms 
in the lexicographical order. We are working in 
the area of intersection of Multivariate and 
Noncommutative Cryptographies. So groups 
formed by multivariate transformations are 
important for us and the following algebraic 
terminology is useful to interprete our results on 
Theoretical Computer Science. 

Affine Cremona Group nCG(K) is defined as 
automorphism group of polynomial ring K[x1, 
x2,..., xn] over the commutative ring K. It is an 
important object of Algebraic Geometry (see 
Max Noether paper [14] about mathematics of 
Luigi Cremona - prominent figure in Algebraic 
Geometry in XIX). Element of the group σ can 
be given via its values on variables, i. e. as the 
rule  xi→fi(x1, x2, …, xn), i=1, 2,…, n. This rule 
induces the map σ’: (a1, a2,.., an)→(f1(a1, a2,.., 
an), f2(x1, x2, …, xn),…, fn(x1, x2,…, xn)). 

Results about subgroups of nCG(K) (or 
subsemigroups of nCS(K) ) such that computation 
of  the superposition of arbitrary n elements can 
be completed for polynomial time can be used as 
so called platforms of Noncommutative 
Cryptography. 

Let us assume that element σ is given via so 
called standard form, i. e. some of monomial 
terms listed in the lexicographical order. 

We say the piece of information T is a 
trapdoor accelerator for nonlinear σ if the 
knowledge of T allows  us to compute the 
reimage of given value b in time O(n2) (see [15]).  
If T can be given in a form of tuple (a1, a2,…, 
af(n)), aiϵK we say that σ has affine trapdoor 
accelerator. 

Of course it is just an instrument to search for 
practical trapdoor functions for which without 
knowledge of secret T the computation of 
reimage in polynomial time is impossible.  

The existence of theoretical trapdoor 
functions is closely related to the open conjecture 
that P≠NP. 

The following inverse problem is an 
interesting for applications. Assume that σn is a 
family of quadratic or cubic elements of  nCG(K) 
given in the standard form and it has hidden 
trapdoor accelerator. Find some trapdoor 
accelerator for this map. 

Noteworthy that somebody has to find an 
algorithm to compute the reimages of σn in time 
O(n2). Note if σ-1

n  is known in its standard form 
then it gives the computation of reimage in time 
O(n3) and O(n4) in cases of degree 2 and 3. The 
following statement is instantly follows from 
Theorem 1. 

Corollary 1 For each commutative ring K 
with unity and n ≥2 there is a subgroup Xn(K) of 
degree 2 in nCG(K) such that each its nonlinear 
representative has an affine trapdoor accelerator 
and each tuple (a1, a2,.., an2s) , s≥2 with nonzero 
coordinatess can serve as a trapdoor accelerator 
of quadratic representative of this subgroup. 

Another construction which satisfies to this 
statement the reader can find in [7]. From 
Theorem 2 we deduce the following statement.  

Corollary 2 Let K be the finite field Fq, q=2r. 
Then there is a quadratic transformation of the 
vector space (Fq)n with affine accelerator such 
that polynomial degree of the  inverse 
transformation is at least 2r-1. 

These propositions insure existence of 
important platform of Noncommutative 
Cryptography, which can be used in various 
protocols and El. Gamal Cryptosystems (see 
[12]-[15] and [17]-[27]). Important feature of the 
multivariate platforms is their description as 
tansformations groups which does not use 
generators and relations. 
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