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Abstract  
An analysis of the performance of various classifiers on address and network groups of features was 
performed. A new classification model is proposed, which is a stacking of 3 models: kNN, XGBoost 
and Transformer. The best model for stacking was experimentally determined: Logistic Regression, 
which made it possible to improve the result of the best available model by 3%. The hypothesis that 
stacking a larger number of worse models has an advantage over stacking a smaller number of more 
productive models on the used data set was confirmed: regardless of the choice of stacking meta-
algorithm, stacking of three models showed better results than stacking two. 
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Introduction 

A large number of attacks are implemented 
using compromised URLs [1]. Attackers are 
constantly improving their methods, using a 
variety of techniques to spoof and mask 
malicious URLs. Traditional methods of 
malicious links detecting, such as spam filters 
and antivirus programs, often fail to detect new 
attacks or are too sensitive to false positives. As 
a result, the need to develop for detecting 
malicious links remains relevant. Compromised 
URLs used for cyber attacks are called malicious 
URLs. A large proportion of all websites are 
potentially malicious in nature [2]. Popular types 
of attacks using malicious URLs include 
autoloading, phishing and social engineering, 
and spam [3]. 

This paper provides a critical analysis of 
existing solutions to this problem and proposes a 
combination of several of the most successful 
malicious link detection models using stacking to 
improve accuracy.  

1. Characteristics of URLs 
1.1. Types of malicious links 

According to the classification of Palo-Alto 
Networks [4], the following types of malicious 

(clearly or potentially) links can be 
distinguished: 

• command-and-control (C2); 
• sites used by malicious software; 
• phishing resources;. 
• grayware – potentially harmful; 
• dynamic-dns – potentially unreliable; 
• resources infringing copyright; 
• web resources that promote extremism; 
• anonymizers – potentially harmful; 
• registered by individuals (parked) – 

potentially harmful.  

1.2. Malicious URLs detecting  

The most common method used by many 
antivirus groups to detect malicious URLs is the 
blacklist method. Blacklists are essentially a 
database of URLs that have been confirmed to be 
malicious in the past. This database is collected 
over time (often through crowdsourcing, e.g. 
PhishTank[5]) when a URL is known to be 
malicious. 

The advantages of the approach are speed and 
the absence of the need for additional 
calculations. ease of implementation and use and 
low false-positive rate (although there is 
evidence that blacklisting sometimes suffers 
from non-trivial false-positive responses [6]). 

The disadvantage of the approach is the 
impossibility of maintaining an exhaustive list of 
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malicious URLs, as new URLs are generated 
every day. Attackers use special techniques to 
avoid blacklists by changing the URL to appear 
legitimate through obfuscation. Four types of 
obfuscations are provided in [7]: 

• obfuscation of the host by IP address; 
• obfuscation of the host by another domain; 
• obfuscation of the host with large host 

names; 
• masquerading as legitimate domains 

(writing with errors). 
Attackers use many other methods to avoid 

blacklists, including: fast-flux, which 
automatically generates proxies to host a web 
page, algorithmic generation of new URLs, etc. 
[8]. Additionally, attackers can launch more than 
one attack at a time to change the attack 
signature, making such an attack invisible to 
techniques that focus on specific signatures. 

To effectively address this problem, specific 
machine learning algorithms have also been 
developed that either use properties exhibited by 
the training data of malicious URLs or recognize 
some associated features. 

In [9], instead of using traditional blacklist-
based filters or landing page content analysis for 
web URLs, the authors study the behavioral 
factors of both the URL publisher and the URL 
clicker. Link posting behavior was measured via 
the Twitter API, while clicker behavior was 
measured via the Bitly API. Examples of used 
features: number of publications, intensity of 
publications, number of links, difference 
between peak values of links, etc. The basic idea 
is that these behavioral signals may be more 
difficult to manipulate than traditional signals. 
Authors offer and rate features based on clicks 
and posts. The final result of this approach: 
precision (0.86), recall (0.86), and AUC (0.92), 
using only behavioral factors. The authors 
suggest not to consider this approach separately, 
but instead emphasize that the integration of 
similar features into existing algorithms and 
methods should significantly improve the 
reliability of the final solution. 

In [10], the authors used domain information 
about links to recognize phishing pages. One of 
the advantages of their method was the use of 
domain information to detect phishing sites, as 
this important characteristic was not taken into 
account in other anti-phishing methods. In this 
method, first of all, all direct and indirect links to 
the selected site were extracted. Next, using the 
source code of the page, all domains associated 
with direct links were extracted and placed in the 

S1 set. Then the indirect links were extracted and 
placed in the S2 set, after that both sets were 
combined and only common domains were 
extracted, from which the IP addresses of these 
domains were subsequently extracted using a 
DNS lookup. The result of the study shows that 
the accuracy, FP, FN, TN and TR of the 
proposed method are 99.62, 0.32, 0.5, 99.5 and 
99.67 percent. Despite its advantages such as 
accuracy, the dependence of this method on 
various external methods such as DNS lookups 
and search engines can affect its effectiveness. 

In [11], the authors use the design of the 
Transformer classifier model to detect malicious 
URLs. The authors compare their model with a 
number of other models (Decision Tree, Random 
Forest, Multilayer perceptron, XGBoost, SVM, 
and Auto Encoder) and show that their model is 
better in precision, recall, and accuracy than all 
other models on their dataset. The final result of 
this approach: precision (0.98), recall (0.96), and 
accuracy (0.97). The peculiarity of the approach 
is that only the URL address is used without pre-
processing. This work can be considered a 
continuation of work [12], as it develops the idea 
of using sequential models for the classification 
of malicious URLs. However, among the 
problems of the work, one can single out too 
small a set of data for training, testing and 
validation, especially considering that the 
proposed model is much more computationally 
complex than the others considered. 

An interesting approach to the problem is also 
demonstrated in [13]. This paper presents a 
reinforcement learning-based model for 
automatic URL-based phishing detection. This 
implementation of the deep learning algorithm is 
an additional approach to existing phishing 
detection methodologies, the advantage of the 
system is its greater dynamism and the 
possibility of continuous learning. At the same 
time, the authors themselves note that the work is 
rather a basis for the direction of reinforcement 
learning in this field, since the authors use the 
basic algorithm of Deep Q Learning and a 
limited set of features, namely only URL lexical 
features. The final result of this approach: 
precision (0.86), recall (0.88), and accuracy 
(0.90). The result is worse than other considered 
approaches, but the work raises an important 
topic of dynamic retraining of models and their 
more flexible adaptation to changes in the 
behavior of attackers. 

An alternative view of the problem is raised 
in work [14], where the authors investigate the 
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vulnerabilities of existing solutions based on 
machine learning and implement an evasion 
attack on existing systems. The authors first 
themselves create several different solutions 
based on machine learning, and then implement 
the evasion attack developed in the work. The 
work shows that methods based exclusively on 
lexical features of URLs have a rather low 
reliability against this type of attack, moreover, 
even external solutions such as VirusTotal and 
PhishTank can be affected by such an attack.  

Thus, the existing solutions contain both 
positive features and leave a possibilities for 
improvement. 

1.3. Malicious URL features 

To obtain an informative representation of the 
URL, the researcher needs to create a set of 
features based on domain knowledge and 
heuristics. These features can be lexical features 
(URL string statistical properties, n-grams, etc.), 
host-based features (WHOIS information, host 
geolocation properties), etc. 

Problems that arise. A very large number of 
URLs can be a problem if the researcher has a 
large sample at his disposal and new data is 
constantly coming in. As a result, the training 
time for traditional models may be too high to be 
practical. To overcome this problem, it is 
possible, for example, to apply the online 
learning approach. 

Another problem may be caused by the 
specificity of certain representations of features. 
For example, high sparsity of data in the case of 
representing it using a bag of words (BoW) 
approach. This data representation can produce a 
huge number of features, most of which will 
always be zeros, so researchers must either 
optimize feature extraction approaches or use 
algorithms that can adequately handle the sparse 
representation.. 

Stages of features formation. The first stage 
is transformation of URL-address u to the vector 
of the features x, where it is possible to consider 
several types of information and to use defferent 
methods accordingly. The features can vary from 
lexical information (URL word length, URL 
general length) to the host-based information 
(WHOIS, IP-addres, location etc). The second 
stage is information processing and formation of 
feature vector x. For example, numerical 
information can be used as it is, and Bag-of-
Words, which is used to represent textual or 

lexical content, must be converted to numerical 
data, for example, using word2vec. 

After obtaining the feature vector x for the 
training data to find the prediction 
function          , it is usually formulated as 
an optimization problem such that detection 
accuracy is maximized. Function f is 
parametrized by d-dimentional vector with 
weight w usually, so that             .  

Let                   denotes class label 
forecast, made by f function. The number of 
mistakes, made by forecast model for all initial 
data, is determined as:         

 
   , where   – an 

indicator that evaluates to 1 if the condition is 
true and 0 otherwise. Since the indicator function 
is not convex, the optimization can be difficult to 
solve.. So often convex loss function is 
determined, that is denoted as          . 
General optimization problem can be formulated 
as:                 

 
   .  

It is possible to use several types of loss 
functions including the losses in form:  

          
 

 
                  

or function of quadratic losses:  
          

 

 
        

 . 
Sometimes a regularization term is also added 

to prevent overfitting or to train models with a 
minimum number of parameters, in some cases 
the loss function is modified based on the 
specific data available, for example in the case of 
class imbalance, or if the study predicts different 
loss estimates for different types of threats. 

2. Features engineering and 
representation 

2.1. Features types 

To detect malicious URLs, researchers have 
proposed a large number of types of features that 
can be used to provide useful information about 
the URL. Conventionally, all attributes can be 
classified into: blacklist-based attributes, lexical 
URL attributes, host-based attributes, content-
based attributes, and others (context and 
popularity).  

Traditional lexical features are: the most 
commonly used lexical features include 
statistical properties of the URL string, such as 
URL length, length of each component of the 
URL (hostname, top-level domain, root domain), 
number of special characters, etc. In [15], the 
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authors were one of the first to suggest choosing 
words from the URL string. The string was 
processed so that each segment separated by a 
special character (eg "/", ".", "?", "=", etc.) made 
up a word. Using all words from all available 
URLs, a dictionary was created, meaning each 
word became a feature. If the word was present 
in the URL, the value of the function would be 1, 
otherwise it would be 0. This text processing 
model is known as BoW. 

Using the BoW model directly results in the 
loss of word order information in the URL. In 
[16], the authors distinguished the membership 
of tokens to the hostname, path, top-level 
domain, and root domain by creating separate 
dictionaries for each component. This separation 
made it possible to partially preserve information 
about the order of words. For example, it made it 
possible to distinguish the presence of "com" in 
the top-level domain from other parts of the 
URL. In [17], the authors enriched the lexical 
features by considering the use of bigrams, that 
is, they build a dictionary where, in addition to 
ordinary words, a combination of two words in 
the URL is also a feature. 

In general, the BoW approach can be seen as 
a fuzzy, machine learning-compatible blacklist 
implementation. Instead of focusing on the entire 
URL string, it assigns URL points based on the 
smaller components of the URL string. Although 
this approach offers us a large number of 
features, it can become problematic when 
running complex algorithms on them. For 
example, in [16] dataset of 2 million URLs was 
collected that have almost the same number of 
lexical features. This number can grow even 
more if we take into account the characteristics 
of bigrams. Paper [13] considered the features of 
n-grams (same as bigram, but n can be greater 
than 2), and developed a feature selection 
scheme based on relative entropy for 
dimensionality reduction. A similar method of 
distinguishing lexical features was used in work 
[18], where the weight of a feature was 
calculated according to how often it occurs in 
one class than in another. 

To avoid blacklisting, hackers can generate 
malicious URLs algorithmically. Using BoW for 
such URLs is likely to result in poor 
performance, as algorithmically generated URLs 
may produce words that the model has not seen 
before (and thus new features). To detect such 
algorithmically generated malicious URLs, you 
can try parsing the strings at the character level 
to get the signatures. According to research [20], 

algorithmically generated domain names and 
names generated by people would have a 
significantly different alphanumeric distribution.  

Advanced lexical features: While traditional 
approaches to obtaining lexical features are not 
domain-specific and are obtained directly from 
the URL string, there are also more sophisticated 
lexical features for more informativeness. One of 
the goals of such approaches can be, for 
example, the derivation of features resistant to 
obfuscation, as in [21]. Based on the types of 
obfuscation defined in [7], five categories of 
features are proposed:  

• attributes related to the URL (keywords, 
length, etc.); 

• domain characteristics (length of the domain 
name, whether an IP address is used as a domain 
name, etc.); 

• attributes related to the directory (length of 
the directory, number of subdirectory markers, 
etc.); 

• attributes of the file name (length of the file 
name, number of separators, etc.); 

• argument attributes (argument length, 
number of variables, etc.). 

The success of a machine learning model 
critically depends on the quality of the training 
data and the quality of the feature representation. 
Let URL  , where   denotes the set of х valid 
input URLs, the aim of represention the features 
is to find a reflection         , such that 
      , where       є d-dimentional 
feature vector, which is given to machine 
learning model input.  

2.2. Solutions using host-based 
features 

Host-based tags are obtained from the hostname 
properties of the URL. They allow us to know 
the location, identity, ownership type and 
properties of malicious hosts. Article [22] 
investigated the effect of several host-based 
features on the detection of malicious URLs. One 
of the key observations was that attackers were 
using URL shortening services and many were 
using botnets to host their sites on multiple 
machines in multiple countries. Hence, host-
based signatures have become an important 
element in detecting malicious URLs. In article 
[23] is proposed the use of several host-based 
features including: IP address properties, 
WHOIS information, location, domain name 
properties, and connection speed. IP address 
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properties contain attributes derived from the IP 
address prefix and the autonomous system 
number. WHOIS information includes domain 
name registration dates, registrars and 
registrants. Location information contains 
physical geographic location data - e.g. the 
country/city to which the IP address belongs. 
Domain name properties include the TTL value, 
the presence of certain keywords such as "client" 
and "server", whether or not the IP address is in 
the hostname, and whether the PTR record is one 
of the host's IP addresses. Since many features 
are identity-related information, a BoW-like 
approach is needed to store them in a numeric 
vector where each word corresponds to a specific 
concept. As in the case of lexical features, this 
approach leads to a large number of features. IP 
address signatures are probably more stable, as it 
will be difficult for attackers to constantly obtain 
new IP addresses for their URLs.  

In [24], the authors determine the age of the 
domain and the "confidence" of the domain 
(depending on the similarity with whitelisted 
domains), which helps to determine the 
variability of the URL (for example, malicious 
URLs using fast flux will have a lower domain 
age). It is also possible to use the headers of the 
HTTP responses, for example it is possible to use 
the age obtained from the timestamp of the last 
modified header. It is also possible to use 
network layer features in combination with 
application layer to build a multi-layer malicious 
URL detection mechanism.. 

 

2.3. Solutions using content-based 
features 

Content-based features are obtained after 
the entire web page is loaded. Compared to 
features based solely on URLs, are "difficult" 
because a lot of information needs to be retrieved 
and at the same time there may be security 
issues. However, with more information about 
the content of a web page, it is natural to assume 
that this will lead to a better prediction model. 
Further, if URL-based features cannot detect a 
malicious URL, a more thorough analysis of 
content-based features can help in early detection 
of threats [25]. Content-based web page features 
can be derived primarily from HTML content 
and the use of JavaScript. Content-based web 
page attributes can be tentatively classified into 5 
broad categories: lexical attributes, HTML 

document attributes, JavaScript attributes, 
ActiveX objects, and attribute relationships. The 
authors of [26] propose the approach for 
detecting phishing websites using a 
comprehensive approach based on machine 
learning, using various features of the HTML 
Document Object Model (DOM), search engines, 
and third-party services. Next, we'll discuss some 
of these categories, focusing primarily on HTML 
document-level features and JavaScript features. 

HTML tags. The first type of features that 
can be extracted from an HTML document are 
lexical features, they are relatively easy to extract 
and preprocess. The next level of complexity of 
HTML features are document-level features. 
Such signs are various statistical features of the 
HTML document, as well as the use of various 
functionality. In paper [27] is suggested the use 
of such features as: document length, average 
word length, number of words, number of unique 
words, number of words in a line, number of 
NULL characters, use of string concatenation, 
asymmetric HTML tags, links to remote source 
scripts, and invisible objects. Malicious code is 
often encoded in HTML, which involves long 
word lengths or heavy use of concatenation, and 
so these features can help detect malicious 
activity. Similar features with minor variations 
have been used by many subsequent researchers, 
including [28] (number of iframes, number of 
zero-sized iframes, number of lines, number of 
hyperlinks, etc.). In paper [29] is also used the 
similar features and additionally proposed to use 
several more descriptive features that were aimed 
at secondary statistical properties of the page. 
These include the following features such as the 
number of elements with small area, the number 
of elements with suspicious content 
(suspiciousness is determined by the content 
length between the start and end tag), the 
presence of duplicate documents, etc. In paper 
[29] is developed a delta method where the delta 
represented the changes in different versions of a 
website. They analyzed whether the change was 
malicious or safe. 

JavaScript features. Typically, attackers use 
JavaScript functions to encrypt or simply hide 
malicious code. For example, extensive use of 
the eval() and unescape() functions may indicate 
the execution of hidden code in HTML. The 
authors of [27] use native JavaScript functions to 
build a BoW model as features for detecting 
malicious URLs. Among all the native functions 
of JavaScript, the researchers single out those 
that are most often used when performing XSS 
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attacks or when spreading malicious software, 
they include: escape(), eval(), link(), unescape(), 
exec() and search( ). The authors of [29] propose 
additional heuristic features based on JavaScript 
code. In [30], the authors try to detect JavaScript 
obfuscation by analyzing JavaScript codes using 
n-grams, entropy, and word size. n-grams and 
word size are commonly used to study the 
statistical distribution of words and symbols. 
Regarding the use of entropy, the authors note 
that obfuscated strings usually have a lower 
entropy compared to normal code. It is also 
possible to apply deep learning methods to create 
a feature representation from JavaScript code 
[31]. 

Visual features. There have also been 
attempts to use images of web pages to 
determine the malicious nature of a URL. Most 
of them focus on calculating the visual similarity 
of the analyzed sites to conditionally safe sites. A 
very high level of visual similarity may indicate 
that the site is masquerading as another known 
site and is a phishing attempt. With recent 
advances in deep learning and image recognition, 
more effective visual features can be obtained. 

2.4. Other features 

Context features. In recent years, there has been 
an increase in the number of short URL service 
providers that allow the original URL to be 
represented as a shorter string. This allows URLs 
to be shared on social media platforms like 
Twitter, where originally long URLs would not 
fit within the 140 character limit of a tweet. 
Unfortunately, this has also become a popular 
obfuscation technique for malicious URLs. 
Although URL shortening providers try their best 
to avoid generating URL shortenings for 
attackers, it is difficult for them to do an 
effective job. As a result, a research direction has 
recently appeared that takes into account the 
contextual features of a URL, that is, the features 
of the environment in which a given URL was 
distributed. In [32] the contextual information is 
used, which was obtained from the tweets in 
which the URL was sent. In [33] a click and 
traffic data were used to classify short URLs as 
malicious or not. Paper [9] proposes a different 
direction of malicious identification tools - they 
also focus on URLs that are shared in social 
networks and direct their attention to detecting 
the malicious nature of a URL by analyzing the 
behavior of users who shared it and users who 

clicked on the address These features are 
officially called "Posting-based" and "Click-
based" features. 

Signs of popularity. Some other features 
have been developed as heuristic approaches to 
measure the popularity of a URL. One of the 
earliest approaches using statistical methods to 
detect malicious URLs [7] was aimed at 
probabilistic identification of the importance of 
manually selected features. These include page-
based attributes (page rank, quality, etc.), 
domain-based attributes (presence in domain 
whitelisting), type-based attributes (types of 
obfuscation), and word-based attributes 
(presence of keywords such as "confirm" , 
"banking", etc.). Also, an important category of 
research on this topic is the study of link graphs 
between different addresses. 

All considered before features have their 
advantages and disadvantages, and while some 
of them are very informative, the methods of 
obtaining them can be difficult or unprofitable to 
implement. Similarly, different features have 
different preprocessing challenges. 

3. Stacking method and models 
3.1. The main ideas 

This work proposes to combine the strengths 
of existing algorithms and approaches to feature 
extraction from URLs by combining models 
using the stacking method. 

Stacking involves training an algorithm to 
combine the predictions of several other machine 
learning algorithms. First, all other algorithms 
are trained using the available data, then the 
combinator algorithm is trained to make a final 
prediction using all the predictions of the other 
algorithms as additional input. In practice, the 
logistic regression model is often used as a 
combinator. An illustration of what staking looks 
like in practice can be seen in Figure 1. 

Stacking usually provides better performance 
than any one of the trained models [34]. It is 
successfully used both for learning with a teacher 
and for learning without a teacher.  

In contrast to the more traditional methods of 
ensemble boosting and bagging (boosting, 
bagging), it is better to use algorithms of 
different "nature" for stacking, i.e., those that 
have different assumptions about the data model. 

As can be seen from the existing works, there 
are quite a lot of signs that can be obtained from 
a single URL using third-party services such as 
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whois. However, due to the computational and 
engineering complexity of obtaining some 
features, their number should not be too large. 

 

 
  

Figure 1: Visualization of models stacking 
 
Also, from examples of existing approaches, 

we can see that with the help of neural networks, 
we can transmit the URL itself as an independent 
set of features. 

3.2.  Features and dataset  

Tables 1,2 provide a description of the 
characteristics used in the development of the 
algorithm.  
 
Table 1  
Address-based features 
Features Description 

Using the IP Address The IP address is used 
instead of the domain 
name (sometimes 
converted to 16-bit form) 

Dot Count Number of subdomains 
Digit Count Number of digits in URL 
Special Character Count Using the symbols from 

set (';', '+=', '_', '?', '=', '&', 
'[', ']') 

Hyphen Count Hyphen usage (rarely 
used in benign URLs) 

Double Slash Count The marker of redirection 
Single Slash Count The number of single 

slashes in the address 
URL Length URL length (a long URL 

may be needed to hide 
the suspicious part) 

 
Table 2.  
Network features 
Features Description 

Resolved IP count The number of IP 
addresses that can be 
resolved for the URL 
domain 

Name server count The number of name 
servers serving the 
domain 

Name server IP count The number of IP 

Features Description 

addresses these name 
servers are associated 
with. 

Registered Date Registration date (whois) 
Expiration Date Validity  (whois) 
Update Date Date last updated (whois) 
 

A dataset containing 96,018 instances was 
used for the work, of which 48,009 were reliable 
and 48,009 were phishing. The data are obtained 
from the Aalto University Datasets service. The 
dataset itself is presented with additional 
characteristics, but the work only uses URLs in 
their pure form and the class label, other 
characteristics have been removed. 

All further processing, analysis, training and 
evaluation of models took place in the Python. 

For each of the sets of characteristics, a 
number of experiments were conducted with 
different models. Each model was evaluated 
according to several criteria, after which the best 
model was selected at each step by averaging. 

3.3. Models assessment  

Models are evaluated on three dimensions: 
Precision (1), Recall (2) and AUC. The 
evaluation procedure is cross-validation with the 
parameter k=5. 

                                  (1) 
                                    (2) 

The basis of the method is the division of the 
existing training set of data into k approximately 
equal blocks, for example k=5. Then on k−1, that 
is, on 4 blocks, the model is trained, and the 5th 
block is used for testing. The procedure is 
repeated k times, while on each pass a new block 
is selected for testing, and training is performed 
on the others. Cross-validation has an important 
advantage over using one set for training and one 
for testing the model: if you estimate the original 
error of the model at each pass and agree it 
across all passes, the resulting estimate will be 
more reliable.  

For all types of features the best results have 
XGBoost і Random Forest, які дорівнюють 
відповідно 0,88 і 0,87. The worst result has 
SVM - 0,80 (Figure 2).  

For lexical features of the address string the 
best estimations for all three parameters have 
kNN and Random Forest with AUC (0,813, 
0,810 ), the worst is SVM with 0.705 (Figure 3). 
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For address string network features the results 
show that the XGBoost and Random Forest 
algorithms have better scores for all three 
parameters, the AUC of these algorithms are 
0.872 and 0.860, respectively. And the worst 
result shows the SVM algorithm with a result of 
0.789 (Figure 4). 

Thus, we choose two first-level algorithms for 
stacking - kNN and XGBoost for use on address 
characteristics and network characteristics, 
respectively. The final goal of this work is to 
build a combined classifier using the stacking 
method to improve the metrics of existing simple 
classifiers. Based on the results of testing on 
different sets of characteristics, the best 
intermediate classifiers - kNN and XGBoost - 
were determined. As the third classifier in the 
ensemble, we will use a completely different 
classifier based on the neural network 
architecture of the transformer described in [11]. 

Let's set a conditional initial precision from 
which we will start: the Tranfsormer model on 
our data set showed the following results: 
precision (0.91), recall (0.89), and AUC (0.9). 
Accordingly, this is the result that we will try to 
improve by stacking models. 

Also we test the assumption that a larger 
number of specialized models can be better than 
a smaller number of large models, even in spite 
of worse intermediate results. 

The next step is to choose a model that will 
be a stacking model. Three models participate in 
this stack: the transformer model trained only on 
the text of URL addresses, the kNN model for 
lexical features, and the XGBoost model for 
network features. The results of stacking three 
models by different top-level models are shown 
in Figure 5. 

During the experiment, it was established that 
thanks to the new classification scheme, there is 
an improvement in such parameters as AUC, 
precision, and recall. A fixed metric boost is 
available for most second-level algorithms. The 
Logistic Regression algorithm showed the best 
result with an AUC increase of 3%. 

Let's also compare these results with the 
stacking of two models: Transformer model and 
XGBoost classifier trained on all available 
features to test whether it is better to use more 
small models for stacking. 

The results of stacking two models with 
different top-level models are shown in Figure 6.  

During the experiment, we saw that, on 
average, stacking 3 smaller models turned out to 
be more effective on our data than stacking two 

larger ones, although it should be noted that this 
result is not guaranteed to be preserved for other 
data sets and other subject areas (Figure 7). 

As a result of the experiment, it was found 
that the developed stacking model shows better 
results than the Transformer model on all types 
of malicious links, but slightly worse results on 
safe URLs, that is, the developed model can 
potentially give more false positive answers. It is 
also interesting that the models work best on 
phishing links, which can be explained by the 
fact that the training data set mostly consisted of 
such links (Figure 8). 

The AUC comparison of the models is shown 
in Figure 9, all model names are abbreviated to 
first letters, column names are in the format 
"[lexical feature model]_[network feature 
model]" .  

As you can see from the results, the "choose 
the best model at each step" approach is a good 
starting point for stacking, but not the best. 9 out 
of 42 different combinations of models showed a 
better result. The combination of XGBoost + 
Logistic Regression showed the greatest 
increase, namely +1.7% to AUC. 

Conclusions 

Analysis of the performance of different 
classifiers on two groups of features - lexical and 
network features, allowed choosing the best 
model of the first level for each set of features: 
for lexical features - kNN with AUC=0.813; for 
network - XGBoost with AUC=0.872. A general 
model was built on the entire set of features: the 
best was XGBoost with AUC= 0.884. A new 
classification model was built, which is a 
stacking of 3 models: two pre-trained kNN and 
XGBoost models, and the Transormer model, 
which showed the best result on the available 
data.  

The best model for stacking was determined, 
it turned out to be the Logistic Regression model 
with a result of 0.927.  

Validation of the proposed model was 
performed on an independent data set with a 
different distribution and the performance of the 
model on different types of malicious links was 
investigated. The advantage of the developed 
model is preserved even on independent data, but 
it should be noted that the performance of all 
models drops slightly. It was also determined 
that the model detects phishing sites the best, and  
spam sites - the worst. 
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Figure 2: AUC values for models trained on all features 

 
Figure 3: AUC values for address string lexical features 

 

 
Figure 4: AUC values for address string network features 
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Figure 5: AUC values for different 3-model stacking algorithms 
 

 
Figure 6: AUC of the two models 

 

 
 

Figure 7: Comparison of stacking performance of 2nd and 3rd models 
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Figure 8: Comparison of models on different link types 

 

 
Figure 9: Comparison of AUC for all possible combinations of two first-level models 
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