
UDC 004.056:004.89

Machine Learning Models Stacking in the Malicious Links Detecting

Yevhenii Khukalenko1, Iryna Stopochkina1, Mykola Ilin1

1 National Technical University of Ukraine “Igor Sikorsky KPI”,
Beresteyskyi ave., 37, Kyiv, 03056, Ukraine Solomyanskyi district,

__
Abstract
An analysis of the performance of various classifiers on address and network groups of features was
performed. A new classification model is proposed, which is a stacking of 3 models: kNN, XGBoost
and Transformer. The best model for stacking was experimentally determined: Logistic Regression,
which made it possible to improve the result of the best available model by 3%. The hypothesis that
stacking a larger number of worse models has an advantage over stacking a smaller number of more
productive models on the used data set was confirmed: regardless of the choice of stacking meta-
algorithm, stacking of three models showed better results than stacking two.

Keywords: Malicious URL, Machine Learning, Stacking
__

Introduction

A large number of attacks are implemented
using compromised URLs [1]. Attackers are
constantly improving their methods, using a
variety of techniques to spoof and mask
malicious URLs. Traditional methods of
malicious links detecting, such as spam filters
and antivirus programs, often fail to detect new
attacks or are too sensitive to false positives. As
a result, the need to develop for detecting
malicious links remains relevant. Compromised
URLs used for cyber attacks are called malicious
URLs. A large proportion of all websites are
potentially malicious in nature [2]. Popular types
of attacks using malicious URLs include
autoloading, phishing and social engineering,
and spam [3].

This paper provides a critical analysis of
existing solutions to this problem and proposes a
combination of several of the most successful
malicious link detection models using stacking to
improve accuracy.

1. Characteristics of URLs
1.1. Types of malicious links

According to the classification of Palo-Alto
Networks [4], the following types of malicious

(clearly or potentially) links can be
distinguished:

• command-and-control (C2);
• sites used by malicious software;
• phishing resources;.
• grayware – potentially harmful;
• dynamic-dns – potentially unreliable;
• resources infringing copyright;
• web resources that promote extremism;
• anonymizers – potentially harmful;
• registered by individuals (parked) –

potentially harmful.

1.2. Malicious URLs detecting

The most common method used by many
antivirus groups to detect malicious URLs is the
blacklist method. Blacklists are essentially a
database of URLs that have been confirmed to be
malicious in the past. This database is collected
over time (often through crowdsourcing, e.g.
PhishTank[5]) when a URL is known to be
malicious.

The advantages of the approach are speed and
the absence of the need for additional
calculations. ease of implementation and use and
low false-positive rate (although there is
evidence that blacklisting sometimes suffers
from non-trivial false-positive responses [6]).

The disadvantage of the approach is the
impossibility of maintaining an exhaustive list of

67

Intelligent Data analysis methods in cybersecurity

malicious URLs, as new URLs are generated
every day. Attackers use special techniques to
avoid blacklists by changing the URL to appear
legitimate through obfuscation. Four types of
obfuscations are provided in [7]:

• obfuscation of the host by IP address;
• obfuscation of the host by another domain;
• obfuscation of the host with large host

names;
• masquerading as legitimate domains

(writing with errors).
Attackers use many other methods to avoid

blacklists, including: fast-flux, which
automatically generates proxies to host a web
page, algorithmic generation of new URLs, etc.
[8]. Additionally, attackers can launch more than
one attack at a time to change the attack
signature, making such an attack invisible to
techniques that focus on specific signatures.

To effectively address this problem, specific
machine learning algorithms have also been
developed that either use properties exhibited by
the training data of malicious URLs or recognize
some associated features.

In [9], instead of using traditional blacklist-
based filters or landing page content analysis for
web URLs, the authors study the behavioral
factors of both the URL publisher and the URL
clicker. Link posting behavior was measured via
the Twitter API, while clicker behavior was
measured via the Bitly API. Examples of used
features: number of publications, intensity of
publications, number of links, difference
between peak values of links, etc. The basic idea
is that these behavioral signals may be more
difficult to manipulate than traditional signals.
Authors offer and rate features based on clicks
and posts. The final result of this approach:
precision (0.86), recall (0.86), and AUC (0.92),
using only behavioral factors. The authors
suggest not to consider this approach separately,
but instead emphasize that the integration of
similar features into existing algorithms and
methods should significantly improve the
reliability of the final solution.

In [10], the authors used domain information
about links to recognize phishing pages. One of
the advantages of their method was the use of
domain information to detect phishing sites, as
this important characteristic was not taken into
account in other anti-phishing methods. In this
method, first of all, all direct and indirect links to
the selected site were extracted. Next, using the
source code of the page, all domains associated
with direct links were extracted and placed in the

S1 set. Then the indirect links were extracted and
placed in the S2 set, after that both sets were
combined and only common domains were
extracted, from which the IP addresses of these
domains were subsequently extracted using a
DNS lookup. The result of the study shows that
the accuracy, FP, FN, TN and TR of the
proposed method are 99.62, 0.32, 0.5, 99.5 and
99.67 percent. Despite its advantages such as
accuracy, the dependence of this method on
various external methods such as DNS lookups
and search engines can affect its effectiveness.

In [11], the authors use the design of the
Transformer classifier model to detect malicious
URLs. The authors compare their model with a
number of other models (Decision Tree, Random
Forest, Multilayer perceptron, XGBoost, SVM,
and Auto Encoder) and show that their model is
better in precision, recall, and accuracy than all
other models on their dataset. The final result of
this approach: precision (0.98), recall (0.96), and
accuracy (0.97). The peculiarity of the approach
is that only the URL address is used without pre-
processing. This work can be considered a
continuation of work [12], as it develops the idea
of using sequential models for the classification
of malicious URLs. However, among the
problems of the work, one can single out too
small a set of data for training, testing and
validation, especially considering that the
proposed model is much more computationally
complex than the others considered.

An interesting approach to the problem is also
demonstrated in [13]. This paper presents a
reinforcement learning-based model for
automatic URL-based phishing detection. This
implementation of the deep learning algorithm is
an additional approach to existing phishing
detection methodologies, the advantage of the
system is its greater dynamism and the
possibility of continuous learning. At the same
time, the authors themselves note that the work is
rather a basis for the direction of reinforcement
learning in this field, since the authors use the
basic algorithm of Deep Q Learning and a
limited set of features, namely only URL lexical
features. The final result of this approach:
precision (0.86), recall (0.88), and accuracy
(0.90). The result is worse than other considered
approaches, but the work raises an important
topic of dynamic retraining of models and their
more flexible adaptation to changes in the
behavior of attackers.

An alternative view of the problem is raised
in work [14], where the authors investigate the

___Machine Learning Models Stacking in the Malicious Links Detecting

68

vulnerabilities of existing solutions based on
machine learning and implement an evasion
attack on existing systems. The authors first
themselves create several different solutions
based on machine learning, and then implement
the evasion attack developed in the work. The
work shows that methods based exclusively on
lexical features of URLs have a rather low
reliability against this type of attack, moreover,
even external solutions such as VirusTotal and
PhishTank can be affected by such an attack.

Thus, the existing solutions contain both
positive features and leave a possibilities for
improvement.

1.3. Malicious URL features

To obtain an informative representation of the
URL, the researcher needs to create a set of
features based on domain knowledge and
heuristics. These features can be lexical features
(URL string statistical properties, n-grams, etc.),
host-based features (WHOIS information, host
geolocation properties), etc.

Problems that arise. A very large number of
URLs can be a problem if the researcher has a
large sample at his disposal and new data is
constantly coming in. As a result, the training
time for traditional models may be too high to be
practical. To overcome this problem, it is
possible, for example, to apply the online
learning approach.

Another problem may be caused by the
specificity of certain representations of features.
For example, high sparsity of data in the case of
representing it using a bag of words (BoW)
approach. This data representation can produce a
huge number of features, most of which will
always be zeros, so researchers must either
optimize feature extraction approaches or use
algorithms that can adequately handle the sparse
representation..

Stages of features formation. The first stage
is transformation of URL-address u to the vector
of the features x, where it is possible to consider
several types of information and to use defferent
methods accordingly. The features can vary from
lexical information (URL word length, URL
general length) to the host-based information
(WHOIS, IP-addres, location etc). The second
stage is information processing and formation of
feature vector x. For example, numerical
information can be used as it is, and Bag-of-
Words, which is used to represent textual or

lexical content, must be converted to numerical
data, for example, using word2vec.

After obtaining the feature vector x for the
training data to find the prediction
function , it is usually formulated as
an optimization problem such that detection
accuracy is maximized. Function f is
parametrized by d-dimentional vector with
weight w usually, so that .

Let denotes class label
forecast, made by f function. The number of
mistakes, made by forecast model for all initial
data, is determined as:

 , where – an

indicator that evaluates to 1 if the condition is
true and 0 otherwise. Since the indicator function
is not convex, the optimization can be difficult to
solve.. So often convex loss function is
determined, that is denoted as .
General optimization problem can be formulated
as:

 .

It is possible to use several types of loss
functions including the losses in form:

or function of quadratic losses:

 .
Sometimes a regularization term is also added

to prevent overfitting or to train models with a
minimum number of parameters, in some cases
the loss function is modified based on the
specific data available, for example in the case of
class imbalance, or if the study predicts different
loss estimates for different types of threats.

2. Features engineering and
representation

2.1. Features types

To detect malicious URLs, researchers have
proposed a large number of types of features that
can be used to provide useful information about
the URL. Conventionally, all attributes can be
classified into: blacklist-based attributes, lexical
URL attributes, host-based attributes, content-
based attributes, and others (context and
popularity).

Traditional lexical features are: the most
commonly used lexical features include
statistical properties of the URL string, such as
URL length, length of each component of the
URL (hostname, top-level domain, root domain),
number of special characters, etc. In [15], the

69

Intelligent Data analysis methods in cybersecurity

authors were one of the first to suggest choosing
words from the URL string. The string was
processed so that each segment separated by a
special character (eg "/", ".", "?", "=", etc.) made
up a word. Using all words from all available
URLs, a dictionary was created, meaning each
word became a feature. If the word was present
in the URL, the value of the function would be 1,
otherwise it would be 0. This text processing
model is known as BoW.

Using the BoW model directly results in the
loss of word order information in the URL. In
[16], the authors distinguished the membership
of tokens to the hostname, path, top-level
domain, and root domain by creating separate
dictionaries for each component. This separation
made it possible to partially preserve information
about the order of words. For example, it made it
possible to distinguish the presence of "com" in
the top-level domain from other parts of the
URL. In [17], the authors enriched the lexical
features by considering the use of bigrams, that
is, they build a dictionary where, in addition to
ordinary words, a combination of two words in
the URL is also a feature.

In general, the BoW approach can be seen as
a fuzzy, machine learning-compatible blacklist
implementation. Instead of focusing on the entire
URL string, it assigns URL points based on the
smaller components of the URL string. Although
this approach offers us a large number of
features, it can become problematic when
running complex algorithms on them. For
example, in [16] dataset of 2 million URLs was
collected that have almost the same number of
lexical features. This number can grow even
more if we take into account the characteristics
of bigrams. Paper [13] considered the features of
n-grams (same as bigram, but n can be greater
than 2), and developed a feature selection
scheme based on relative entropy for
dimensionality reduction. A similar method of
distinguishing lexical features was used in work
[18], where the weight of a feature was
calculated according to how often it occurs in
one class than in another.

To avoid blacklisting, hackers can generate
malicious URLs algorithmically. Using BoW for
such URLs is likely to result in poor
performance, as algorithmically generated URLs
may produce words that the model has not seen
before (and thus new features). To detect such
algorithmically generated malicious URLs, you
can try parsing the strings at the character level
to get the signatures. According to research [20],

algorithmically generated domain names and
names generated by people would have a
significantly different alphanumeric distribution.

Advanced lexical features: While traditional
approaches to obtaining lexical features are not
domain-specific and are obtained directly from
the URL string, there are also more sophisticated
lexical features for more informativeness. One of
the goals of such approaches can be, for
example, the derivation of features resistant to
obfuscation, as in [21]. Based on the types of
obfuscation defined in [7], five categories of
features are proposed:

• attributes related to the URL (keywords,
length, etc.);

• domain characteristics (length of the domain
name, whether an IP address is used as a domain
name, etc.);

• attributes related to the directory (length of
the directory, number of subdirectory markers,
etc.);

• attributes of the file name (length of the file
name, number of separators, etc.);

• argument attributes (argument length,
number of variables, etc.).

The success of a machine learning model
critically depends on the quality of the training
data and the quality of the feature representation.
Let URL , where denotes the set of х valid
input URLs, the aim of represention the features
is to find a reflection , such that
 , where є d-dimentional
feature vector, which is given to machine
learning model input.

2.2. Solutions using host-based
features

Host-based tags are obtained from the hostname
properties of the URL. They allow us to know
the location, identity, ownership type and
properties of malicious hosts. Article [22]
investigated the effect of several host-based
features on the detection of malicious URLs. One
of the key observations was that attackers were
using URL shortening services and many were
using botnets to host their sites on multiple
machines in multiple countries. Hence, host-
based signatures have become an important
element in detecting malicious URLs. In article
[23] is proposed the use of several host-based
features including: IP address properties,
WHOIS information, location, domain name
properties, and connection speed. IP address

___Machine Learning Models Stacking in the Malicious Links Detecting

70

properties contain attributes derived from the IP
address prefix and the autonomous system
number. WHOIS information includes domain
name registration dates, registrars and
registrants. Location information contains
physical geographic location data - e.g. the
country/city to which the IP address belongs.
Domain name properties include the TTL value,
the presence of certain keywords such as "client"
and "server", whether or not the IP address is in
the hostname, and whether the PTR record is one
of the host's IP addresses. Since many features
are identity-related information, a BoW-like
approach is needed to store them in a numeric
vector where each word corresponds to a specific
concept. As in the case of lexical features, this
approach leads to a large number of features. IP
address signatures are probably more stable, as it
will be difficult for attackers to constantly obtain
new IP addresses for their URLs.

In [24], the authors determine the age of the
domain and the "confidence" of the domain
(depending on the similarity with whitelisted
domains), which helps to determine the
variability of the URL (for example, malicious
URLs using fast flux will have a lower domain
age). It is also possible to use the headers of the
HTTP responses, for example it is possible to use
the age obtained from the timestamp of the last
modified header. It is also possible to use
network layer features in combination with
application layer to build a multi-layer malicious
URL detection mechanism..

2.3. Solutions using content-based
features

Content-based features are obtained after
the entire web page is loaded. Compared to
features based solely on URLs, are "difficult"
because a lot of information needs to be retrieved
and at the same time there may be security
issues. However, with more information about
the content of a web page, it is natural to assume
that this will lead to a better prediction model.
Further, if URL-based features cannot detect a
malicious URL, a more thorough analysis of
content-based features can help in early detection
of threats [25]. Content-based web page features
can be derived primarily from HTML content
and the use of JavaScript. Content-based web
page attributes can be tentatively classified into 5
broad categories: lexical attributes, HTML

document attributes, JavaScript attributes,
ActiveX objects, and attribute relationships. The
authors of [26] propose the approach for
detecting phishing websites using a
comprehensive approach based on machine
learning, using various features of the HTML
Document Object Model (DOM), search engines,
and third-party services. Next, we'll discuss some
of these categories, focusing primarily on HTML
document-level features and JavaScript features.

HTML tags. The first type of features that
can be extracted from an HTML document are
lexical features, they are relatively easy to extract
and preprocess. The next level of complexity of
HTML features are document-level features.
Such signs are various statistical features of the
HTML document, as well as the use of various
functionality. In paper [27] is suggested the use
of such features as: document length, average
word length, number of words, number of unique
words, number of words in a line, number of
NULL characters, use of string concatenation,
asymmetric HTML tags, links to remote source
scripts, and invisible objects. Malicious code is
often encoded in HTML, which involves long
word lengths or heavy use of concatenation, and
so these features can help detect malicious
activity. Similar features with minor variations
have been used by many subsequent researchers,
including [28] (number of iframes, number of
zero-sized iframes, number of lines, number of
hyperlinks, etc.). In paper [29] is also used the
similar features and additionally proposed to use
several more descriptive features that were aimed
at secondary statistical properties of the page.
These include the following features such as the
number of elements with small area, the number
of elements with suspicious content
(suspiciousness is determined by the content
length between the start and end tag), the
presence of duplicate documents, etc. In paper
[29] is developed a delta method where the delta
represented the changes in different versions of a
website. They analyzed whether the change was
malicious or safe.

JavaScript features. Typically, attackers use
JavaScript functions to encrypt or simply hide
malicious code. For example, extensive use of
the eval() and unescape() functions may indicate
the execution of hidden code in HTML. The
authors of [27] use native JavaScript functions to
build a BoW model as features for detecting
malicious URLs. Among all the native functions
of JavaScript, the researchers single out those
that are most often used when performing XSS

71

Intelligent Data analysis methods in cybersecurity

attacks or when spreading malicious software,
they include: escape(), eval(), link(), unescape(),
exec() and search(). The authors of [29] propose
additional heuristic features based on JavaScript
code. In [30], the authors try to detect JavaScript
obfuscation by analyzing JavaScript codes using
n-grams, entropy, and word size. n-grams and
word size are commonly used to study the
statistical distribution of words and symbols.
Regarding the use of entropy, the authors note
that obfuscated strings usually have a lower
entropy compared to normal code. It is also
possible to apply deep learning methods to create
a feature representation from JavaScript code
[31].

Visual features. There have also been
attempts to use images of web pages to
determine the malicious nature of a URL. Most
of them focus on calculating the visual similarity
of the analyzed sites to conditionally safe sites. A
very high level of visual similarity may indicate
that the site is masquerading as another known
site and is a phishing attempt. With recent
advances in deep learning and image recognition,
more effective visual features can be obtained.

2.4. Other features

Context features. In recent years, there has been
an increase in the number of short URL service
providers that allow the original URL to be
represented as a shorter string. This allows URLs
to be shared on social media platforms like
Twitter, where originally long URLs would not
fit within the 140 character limit of a tweet.
Unfortunately, this has also become a popular
obfuscation technique for malicious URLs.
Although URL shortening providers try their best
to avoid generating URL shortenings for
attackers, it is difficult for them to do an
effective job. As a result, a research direction has
recently appeared that takes into account the
contextual features of a URL, that is, the features
of the environment in which a given URL was
distributed. In [32] the contextual information is
used, which was obtained from the tweets in
which the URL was sent. In [33] a click and
traffic data were used to classify short URLs as
malicious or not. Paper [9] proposes a different
direction of malicious identification tools - they
also focus on URLs that are shared in social
networks and direct their attention to detecting
the malicious nature of a URL by analyzing the
behavior of users who shared it and users who

clicked on the address These features are
officially called "Posting-based" and "Click-
based" features.

Signs of popularity. Some other features
have been developed as heuristic approaches to
measure the popularity of a URL. One of the
earliest approaches using statistical methods to
detect malicious URLs [7] was aimed at
probabilistic identification of the importance of
manually selected features. These include page-
based attributes (page rank, quality, etc.),
domain-based attributes (presence in domain
whitelisting), type-based attributes (types of
obfuscation), and word-based attributes
(presence of keywords such as "confirm" ,
"banking", etc.). Also, an important category of
research on this topic is the study of link graphs
between different addresses.

All considered before features have their
advantages and disadvantages, and while some
of them are very informative, the methods of
obtaining them can be difficult or unprofitable to
implement. Similarly, different features have
different preprocessing challenges.

3. Stacking method and models
3.1. The main ideas

This work proposes to combine the strengths
of existing algorithms and approaches to feature
extraction from URLs by combining models
using the stacking method.

Stacking involves training an algorithm to
combine the predictions of several other machine
learning algorithms. First, all other algorithms
are trained using the available data, then the
combinator algorithm is trained to make a final
prediction using all the predictions of the other
algorithms as additional input. In practice, the
logistic regression model is often used as a
combinator. An illustration of what staking looks
like in practice can be seen in Figure 1.

Stacking usually provides better performance
than any one of the trained models [34]. It is
successfully used both for learning with a teacher
and for learning without a teacher.

In contrast to the more traditional methods of
ensemble boosting and bagging (boosting,
bagging), it is better to use algorithms of
different "nature" for stacking, i.e., those that
have different assumptions about the data model.

As can be seen from the existing works, there
are quite a lot of signs that can be obtained from
a single URL using third-party services such as

___Machine Learning Models Stacking in the Malicious Links Detecting

72

whois. However, due to the computational and
engineering complexity of obtaining some
features, their number should not be too large.

Figure 1: Visualization of models stacking

Also, from examples of existing approaches,

we can see that with the help of neural networks,
we can transmit the URL itself as an independent
set of features.

3.2. Features and dataset

Tables 1,2 provide a description of the
characteristics used in the development of the
algorithm.

Table 1
Address-based features
Features Description

Using the IP Address The IP address is used
instead of the domain
name (sometimes
converted to 16-bit form)

Dot Count Number of subdomains
Digit Count Number of digits in URL
Special Character Count Using the symbols from

set (';', '+=', '_', '?', '=', '&',
'[', ']')

Hyphen Count Hyphen usage (rarely
used in benign URLs)

Double Slash Count The marker of redirection
Single Slash Count The number of single

slashes in the address
URL Length URL length (a long URL

may be needed to hide
the suspicious part)

Table 2.
Network features
Features Description

Resolved IP count The number of IP
addresses that can be
resolved for the URL
domain

Name server count The number of name
servers serving the
domain

Name server IP count The number of IP

Features Description

addresses these name
servers are associated
with.

Registered Date Registration date (whois)
Expiration Date Validity (whois)
Update Date Date last updated (whois)

A dataset containing 96,018 instances was
used for the work, of which 48,009 were reliable
and 48,009 were phishing. The data are obtained
from the Aalto University Datasets service. The
dataset itself is presented with additional
characteristics, but the work only uses URLs in
their pure form and the class label, other
characteristics have been removed.

All further processing, analysis, training and
evaluation of models took place in the Python.

For each of the sets of characteristics, a
number of experiments were conducted with
different models. Each model was evaluated
according to several criteria, after which the best
model was selected at each step by averaging.

3.3. Models assessment

Models are evaluated on three dimensions:
Precision (1), Recall (2) and AUC. The
evaluation procedure is cross-validation with the
parameter k=5.

 (1)
 (2)

The basis of the method is the division of the
existing training set of data into k approximately
equal blocks, for example k=5. Then on k−1, that
is, on 4 blocks, the model is trained, and the 5th
block is used for testing. The procedure is
repeated k times, while on each pass a new block
is selected for testing, and training is performed
on the others. Cross-validation has an important
advantage over using one set for training and one
for testing the model: if you estimate the original
error of the model at each pass and agree it
across all passes, the resulting estimate will be
more reliable.

For all types of features the best results have
XGBoost і Random Forest, які дорівнюють
відповідно 0,88 і 0,87. The worst result has
SVM - 0,80 (Figure 2).

For lexical features of the address string the
best estimations for all three parameters have
kNN and Random Forest with AUC (0,813,
0,810), the worst is SVM with 0.705 (Figure 3).

73

Intelligent Data analysis methods in cybersecurity

For address string network features the results
show that the XGBoost and Random Forest
algorithms have better scores for all three
parameters, the AUC of these algorithms are
0.872 and 0.860, respectively. And the worst
result shows the SVM algorithm with a result of
0.789 (Figure 4).

Thus, we choose two first-level algorithms for
stacking - kNN and XGBoost for use on address
characteristics and network characteristics,
respectively. The final goal of this work is to
build a combined classifier using the stacking
method to improve the metrics of existing simple
classifiers. Based on the results of testing on
different sets of characteristics, the best
intermediate classifiers - kNN and XGBoost -
were determined. As the third classifier in the
ensemble, we will use a completely different
classifier based on the neural network
architecture of the transformer described in [11].

Let's set a conditional initial precision from
which we will start: the Tranfsormer model on
our data set showed the following results:
precision (0.91), recall (0.89), and AUC (0.9).
Accordingly, this is the result that we will try to
improve by stacking models.

Also we test the assumption that a larger
number of specialized models can be better than
a smaller number of large models, even in spite
of worse intermediate results.

The next step is to choose a model that will
be a stacking model. Three models participate in
this stack: the transformer model trained only on
the text of URL addresses, the kNN model for
lexical features, and the XGBoost model for
network features. The results of stacking three
models by different top-level models are shown
in Figure 5.

During the experiment, it was established that
thanks to the new classification scheme, there is
an improvement in such parameters as AUC,
precision, and recall. A fixed metric boost is
available for most second-level algorithms. The
Logistic Regression algorithm showed the best
result with an AUC increase of 3%.

Let's also compare these results with the
stacking of two models: Transformer model and
XGBoost classifier trained on all available
features to test whether it is better to use more
small models for stacking.

The results of stacking two models with
different top-level models are shown in Figure 6.

During the experiment, we saw that, on
average, stacking 3 smaller models turned out to
be more effective on our data than stacking two

larger ones, although it should be noted that this
result is not guaranteed to be preserved for other
data sets and other subject areas (Figure 7).

As a result of the experiment, it was found
that the developed stacking model shows better
results than the Transformer model on all types
of malicious links, but slightly worse results on
safe URLs, that is, the developed model can
potentially give more false positive answers. It is
also interesting that the models work best on
phishing links, which can be explained by the
fact that the training data set mostly consisted of
such links (Figure 8).

The AUC comparison of the models is shown
in Figure 9, all model names are abbreviated to
first letters, column names are in the format
"[lexical feature model]_[network feature
model]" .

As you can see from the results, the "choose
the best model at each step" approach is a good
starting point for stacking, but not the best. 9 out
of 42 different combinations of models showed a
better result. The combination of XGBoost +
Logistic Regression showed the greatest
increase, namely +1.7% to AUC.

Conclusions

Analysis of the performance of different
classifiers on two groups of features - lexical and
network features, allowed choosing the best
model of the first level for each set of features:
for lexical features - kNN with AUC=0.813; for
network - XGBoost with AUC=0.872. A general
model was built on the entire set of features: the
best was XGBoost with AUC= 0.884. A new
classification model was built, which is a
stacking of 3 models: two pre-trained kNN and
XGBoost models, and the Transormer model,
which showed the best result on the available
data.

The best model for stacking was determined,
it turned out to be the Logistic Regression model
with a result of 0.927.

Validation of the proposed model was
performed on an independent data set with a
different distribution and the performance of the
model on different types of malicious links was
investigated. The advantage of the developed
model is preserved even on independent data, but
it should be noted that the performance of all
models drops slightly. It was also determined
that the model detects phishing sites the best, and
spam sites - the worst.

___Machine Learning Models Stacking in the Malicious Links Detecting

74

Figure 2: AUC values for models trained on all features

Figure 3: AUC values for address string lexical features

Figure 4: AUC values for address string network features

75

Intelligent Data analysis methods in cybersecurity

Figure 5: AUC values for different 3-model stacking algorithms

Figure 6: AUC of the two models

Figure 7: Comparison of stacking performance of 2nd and 3rd models

___Machine Learning Models Stacking in the Malicious Links Detecting

76

Figure 8: Comparison of models on different link types

Figure 9: Comparison of AUC for all possible combinations of two first-level models

References

[1] Hong J. The State of Phishing Attacks
[Electronic resource] / Jason Hong. – 2012.
– URL:
https://www.researchgate.net/publication/22
0424515_The_State_of_Phishing_Attacks.

[2] Malicious Web Pages Detection Based on
Abnormal Visibility Recognition
[Electronic resource] / [B. Liang, J. Huang,
F. Liu та ін.]. – 2009. – URL:
https://www.researchgate.net/publication/22
4545611_Malicious_Web_Pages_Detection
_Based_on_Abnormal_Visibility_Recogniti
on.

[3] Patil D. Survey on Malicious Web Pages
Detection Techniques [Electronic resource]
/ D. Patil, J. Patil. – 2015. – URL:
https://www.researchgate.net/publication/28
7359077_Survey_on_Malicious_Web_Page
s_Detection_Techniques.

[4] Malicious URL Categories [Electronic
resource] – URL:
https://docs.paloaltonetworks.com/pan-os/9-
1/pan-os-admin/url-filtering/url-
categories/url-category-best-practices.

[5] PhishTank [Electronic resource] – URL:
https://phishtank.org/.

[6] Sinha S. Shades of grey: On the
effectiveness of reputation-based
“blacklists” [Electronic resource] / S. Sinha,
M. Bailey, F. Jahanian. – 2008. – URL:
https://www.researchgate.net/publication/22

77

Intelligent Data analysis methods in cybersecurity

https://www.researchgate.net/publication/220424515_The_State_of_Phishing_Attacks
https://www.researchgate.net/publication/220424515_The_State_of_Phishing_Attacks
https://www.researchgate.net/publication/224545611_Malicious_Web_Pages_Detection_Based_on_Abnormal_Visibility_Recognition
https://www.researchgate.net/publication/224545611_Malicious_Web_Pages_Detection_Based_on_Abnormal_Visibility_Recognition
https://www.researchgate.net/publication/224545611_Malicious_Web_Pages_Detection_Based_on_Abnormal_Visibility_Recognition
https://www.researchgate.net/publication/224545611_Malicious_Web_Pages_Detection_Based_on_Abnormal_Visibility_Recognition
https://www.researchgate.net/publication/287359077_Survey_on_Malicious_Web_Pages_Detection_Techniques
https://www.researchgate.net/publication/287359077_Survey_on_Malicious_Web_Pages_Detection_Techniques
https://www.researchgate.net/publication/287359077_Survey_on_Malicious_Web_Pages_Detection_Techniques
https://docs.paloaltonetworks.com/pan-os/9-1/pan-os-admin/url-filtering/url-categories/url-category-best-practices
https://docs.paloaltonetworks.com/pan-os/9-1/pan-os-admin/url-filtering/url-categories/url-category-best-practices
https://docs.paloaltonetworks.com/pan-os/9-1/pan-os-admin/url-filtering/url-categories/url-category-best-practices
https://phishtank.org/
https://www.researchgate.net/publication/224354096_Shades_of_grey_On_the_effectiveness_of_reputation-based_blacklists

4354096_Shades_of_grey_On_the_effective
ness_of_reputation-based_blacklists.

[7] A framework for detection and
measurement of phishing attacks [Electronic
resource] / [S. Garera, N. Provos, M. Chew
та ін.]. – 2007. – URL:
https://www.researchgate.net/publication/22
8619297_A_framework_for_detection_and_
measurement_of_phishing_attacks.

[8] Domain Generation Algorithms detection
through deep neural network and ensemble
[Electronic resource] / [S. Li, T. Huang, Z.
Qin та ін.]. – 2019. – URL:
https://www.researchgate.net/publication/33
3060399_Domain_Generation_Algorithms_
detection_through_deep_neural_network_an
d_ensemble.

[9] Chao C. Detecting Spam URLs in Social
Media via Behavioral Analysis [Electronic
resource] / C. Chao, J. Caverlee. – 2015. –
URL:
https://www.researchgate.net/publication/30
2021309_Detecting_Spam_URLs_in_Social
_Media_via_Behavioral_Analysis.

[10] Gowtham R. An efficacious method for
detecting phishing webpage through Target
Domain Identification [Electronic resource]
/ R. Gowtham, I. Krishnamurthi, K. Kumar.
– 2014. – URL:
https://www.researchgate.net/publication/26
0006990_An_efficacious_method_for_detec
ting_phishing_webpage_through_Target_D
omain_Identification.

[11] Pingfan X. A Transformer-based Model to
Detect Phishing URLs [Electronic resource]
/ X. Pingfan. – 2021. – URL:
https://arxiv.org/abs/2109.02138.

[12] URLNet: Learning a URL Representation
with Deep Learning for Malicious URL
Detection [Electronic resource] / [H. Le, Q.
Pham, D. Sahoo та ін.]. – 2018. – URL:
https://www.researchgate.net/publication/32
3118482_URLNet_Learning_a_URL_Repre
sentation_with_Deep_Learning_for_Malicio
us_URL_Detection.

[13] Chatterjee M. Deep Reinforcement
Learning for Detecting Malicious Websites
[Electronic resource] / M. Chatterjee, A.
Siami Namin. – 2019. – URL:
https://www.researchgate.net/publication/33
3309352_Deep_Reinforcement_Learning_f
or_Detecting_Malicious_Websites.

[14] Sabir B. An Evasion Attack against ML-
based Phishing URL Detectors [Electronic
resource] / B. Sabir, M. Ali Babar, R. Gaire.
– 2020. – URL:
https://www.researchgate.net/publication/34
1477958_An_Evasion_Attack_against_ML-
based_Phishing_URL_Detectors.

[15] Kolari P. SVMs for the Blogosphere: Blog
Identification and Splog Detection
[Electronic resource] / P. Kolari, T. Finin,
A. Joshi. – 2006. – URL:
https://www.researchgate.net/publication/22
1250881_SVMs_for_the_Blogosphere_Blo
g_Identification_and_Splog_Detection.

[16] Identifying suspicious URLs: An
application of large-scale online learning
[Electronic resource] / [J. Ma, L. Saul, S.
Savage та ін.]. – 2009. – URL:
https://www.researchgate.net/publication/22
1345258_Identifying_suspicious_URLs_An
_application_of_large-
scale_online_learning.

[17] Lexical feature based phishing URL
detection using online learning [Electronic
resource] / [A. Blum, B. Wardman, T.
Solorio та ін.] // Proceedings of the ACM
Conference on Computer and
Communications Security. – 2010. – URL:
https://www.researchgate.net/publication/22
1609867_Lexical_feature_based_phishing_
URL_detection_using_online_learning.

[18] Malicious web page detection based on on-
line learning algorithm [Electronic resource]
/ [W. Zhang, Y. Ding, Y. Tang та ін.] //
Proceedings - International Conference on
Machine Learning and Cybernetics. – 2011.
– URL:
https://www.researchgate.net/publication/22
1544821_Malicious_web_page_detection_b
ased_on_on-line_learning_algorithm

[19] Detecting Algorithmically Generated
Malicious Domain Names [Electronic
resource] / [S. Yadav, A. Reddy, S. Ranjan
та ін.] // Proceedings of the ACM
SIGCOMM Internet Measurement
Conference, IMC. – 2010. – URL:
https://www.researchgate.net/publication/22
0269670_Detecting_Algorithmically_Gener
ated_Malicious_Domain_Names.

___Machine Learning Models Stacking in the Malicious Links Detecting

78

https://www.researchgate.net/publication/228619297_A_framework_for_detection_and_measurement_of_phishing_attacks
https://www.researchgate.net/publication/228619297_A_framework_for_detection_and_measurement_of_phishing_attacks
https://www.researchgate.net/publication/228619297_A_framework_for_detection_and_measurement_of_phishing_attacks
https://www.researchgate.net/publication/333060399_Domain_Generation_Algorithms_detection_through_deep_neural_network_and_ensemble
https://www.researchgate.net/publication/333060399_Domain_Generation_Algorithms_detection_through_deep_neural_network_and_ensemble
https://www.researchgate.net/publication/333060399_Domain_Generation_Algorithms_detection_through_deep_neural_network_and_ensemble
https://www.researchgate.net/publication/333060399_Domain_Generation_Algorithms_detection_through_deep_neural_network_and_ensemble
https://www.researchgate.net/publication/302021309_Detecting_Spam_URLs_in_Social_Media_via_Behavioral_Analysis
https://www.researchgate.net/publication/302021309_Detecting_Spam_URLs_in_Social_Media_via_Behavioral_Analysis
https://www.researchgate.net/publication/302021309_Detecting_Spam_URLs_in_Social_Media_via_Behavioral_Analysis
https://www.researchgate.net/publication/260006990_An_efficacious_method_for_detecting_phishing_webpage_through_Target_Domain_Identification
https://www.researchgate.net/publication/260006990_An_efficacious_method_for_detecting_phishing_webpage_through_Target_Domain_Identification
https://www.researchgate.net/publication/260006990_An_efficacious_method_for_detecting_phishing_webpage_through_Target_Domain_Identification
https://www.researchgate.net/publication/260006990_An_efficacious_method_for_detecting_phishing_webpage_through_Target_Domain_Identification
https://arxiv.org/abs/2109.02138
https://www.researchgate.net/publication/323118482_URLNet_Learning_a_URL_Representation_with_Deep_Learning_for_Malicious_URL_Detection
https://www.researchgate.net/publication/323118482_URLNet_Learning_a_URL_Representation_with_Deep_Learning_for_Malicious_URL_Detection
https://www.researchgate.net/publication/323118482_URLNet_Learning_a_URL_Representation_with_Deep_Learning_for_Malicious_URL_Detection
https://www.researchgate.net/publication/323118482_URLNet_Learning_a_URL_Representation_with_Deep_Learning_for_Malicious_URL_Detection
https://www.researchgate.net/publication/333309352_Deep_Reinforcement_Learning_for_Detecting_Malicious_Websites
https://www.researchgate.net/publication/333309352_Deep_Reinforcement_Learning_for_Detecting_Malicious_Websites
https://www.researchgate.net/publication/333309352_Deep_Reinforcement_Learning_for_Detecting_Malicious_Websites
https://www.researchgate.net/publication/341477958_An_Evasion_Attack_against_ML-based_Phishing_URL_Detectors
https://www.researchgate.net/publication/341477958_An_Evasion_Attack_against_ML-based_Phishing_URL_Detectors
https://www.researchgate.net/publication/341477958_An_Evasion_Attack_against_ML-based_Phishing_URL_Detectors
https://www.researchgate.net/publication/221250881_SVMs_for_the_Blogosphere_Blog_Identification_and_Splog_Detection
https://www.researchgate.net/publication/221250881_SVMs_for_the_Blogosphere_Blog_Identification_and_Splog_Detection
https://www.researchgate.net/publication/221250881_SVMs_for_the_Blogosphere_Blog_Identification_and_Splog_Detection
https://www.researchgate.net/publication/221345258_Identifying_suspicious_URLs_An_application_of_large-scale_online_learning
https://www.researchgate.net/publication/221345258_Identifying_suspicious_URLs_An_application_of_large-scale_online_learning
https://www.researchgate.net/publication/221345258_Identifying_suspicious_URLs_An_application_of_large-scale_online_learning
https://www.researchgate.net/publication/221345258_Identifying_suspicious_URLs_An_application_of_large-scale_online_learning
https://www.researchgate.net/publication/221609867_Lexical_feature_based_phishing_URL_detection_using_online_learning
https://www.researchgate.net/publication/221609867_Lexical_feature_based_phishing_URL_detection_using_online_learning
https://www.researchgate.net/publication/221609867_Lexical_feature_based_phishing_URL_detection_using_online_learning
https://www.researchgate.net/publication/221544821_Malicious_web_page_detection_based_on_on-line_learning_algorithm
https://www.researchgate.net/publication/221544821_Malicious_web_page_detection_based_on_on-line_learning_algorithm
https://www.researchgate.net/publication/221544821_Malicious_web_page_detection_based_on_on-line_learning_algorithm
https://www.researchgate.net/publication/220269670_Detecting_Algorithmically_Generated_Malicious_Domain_Names
https://www.researchgate.net/publication/220269670_Detecting_Algorithmically_Generated_Malicious_Domain_Names
https://www.researchgate.net/publication/220269670_Detecting_Algorithmically_Generated_Malicious_Domain_Names

[20] Anh L. Phishdef: URL names say it all
[Electronic resource] / L. Anh, M. Athina,
F. Michalis // IEEE INFOCOM. – 2010. –
URL:
https://www.researchgate.net/publication/46
584584_Phishdef_URL_names_say_it_all.

[21] McGrath D. Behind Phishing: An
Examination of Phisher Modi Operandi
[Electronic resource] / D. McGrath, M.
Gupta. – 2008. – URL:
https://www.researchgate.net/publication/22
0831975_Behind_Phishing_An_Examinatio
n_of_Phisher_Modi_Operandi.

[22] Ma J. Beyond blacklists: learning to detect
malicious Web sites from suspicious URLs
[Electronic resource] / J. Ma, L. Saul, S.
Savage. – 2009. – URL:
https://www.researchgate.net/publication/22
1653642_Beyond_blacklists_learning_to_de
tect_malicious_Web_sites_from_suspicious
_URLs.

[23] Protect Sensitive Sites from Phishing
Attacks Using Features Extractable from
Inaccessible Phishing URLs [Electronic
resource] / [W. Chu, B. Zhu, F. Xue та ін.]
// IEEE International Conference on
Communications. – 2013. – URL:
https://www.researchgate.net/publication/26
4293197_Protect_Sensitive_Sites_from_Phi
shing_Attacks_Using_Features_Extractable
_from_Inaccessible_Phishing_URLs.

[24] Prophiler: A fast filter for the large-scale
detection of malicious web pages
[Electronic resource] / [D. Canali, M. Cova,
G. Vigna та ін.]. – 2011. – URL:
https://www.researchgate.net/publication/22
1023059_Prophiler_A_fast_filter_for_the_l
arge-
scale_detection_of_malicious_web_pages.

[25] CANTINA: A content-based approach to
detecting phishing web sites [Electronic
resource] / [Y. Zhang, J. Hong, L. Cranor та
ін.]. – 2007. – URL:
https://www.researchgate.net/publication/22
1023659_CANTINA_A_content-
based_approach_to_detecting_phishing_we
b_sites.

[26] Malicious web content detection by
machine learning [Electronic resource] / [H.
Yung-Tsung, C. Yimeng, C. Tsuhan та ін.]
// Expert Syst. Appl.. – 2010. – URL:
https://www.researchgate.net/publication/22
0219014_Malicious_web_content_detection
_by_machine_learning.

[27] Detecting Malicious Web Links and
Identifying Their Attack Types [Electronic
resource] / [C. Hyunsang, Z. Bin, L. Heejo
та ін.] // Proceedings of the 2nd USENIX
Conference on Web Application
Development. – 2011. – URL:
https://dl.acm.org/doi/10.5555/2002168.200
2179.

[28] Automating URL Blacklist Generation with
Similarity Search Approach [Electronic
resource] / [S. Bo, A. Mitsuaki, Y. Takeshi
та ін.] // IEICE Transactions on Information
and Systems. – 2016. – URL:
https://www.researchgate.net/publication/29
9542431_Automating_URL_Blacklist_Gen
eration_with_Similarity_Search_Approach.

[29] Choi Y. Automatic detection for javascript
obfuscation attacks in web pages through
string pattern analysis [Electronic resource]
/ Y. Choi, T. Kim, S. Choi // International
Journal of Security and its Applications. –
2010. – URL:
https://www.researchgate.net/publication/28
9641814_Automatic_detection_for_javascri
pt_obfuscation_attacks_in_web_pages_thro
ugh_string_pattern_analysis.

[30] Yao W. A deep learning approach for
detecting malicious JavaScript code
[Electronic resource] / W. Yao, C. Wan-
dong, W. Peng-cheng // Security and
Communication Networks. – 2016. – URL:
https://www.researchgate.net/publication/29
4283262_A_deep_learning_approach_for_d
etecting_malicious_JavaScript_code.

[31] Lee S. Warningbird: Detecting Suspicious
URLs in Twitter Stream [Electronic
resource] / S. Lee, J. Kim. – 2012. – URL:
https://www.researchgate.net/publication/22
8517184_WARNINGBIRD_Detecting_Sus
picious_URLs_in_Twitter_Stream.

[32] Click Traffic Analysis of Short URL Spam
on Twitter [Electronic resource] / [D. Wang,
S. Navathe, L. Liu та ін.]. – 2013. – URL:
https://www.researchgate.net/publication/26
1201832_Click_Traffic_Analysis_of_Short
_URL_Spam_on_Twitter.

[33] Wolpert D. Stacked generalization
[Electronic resource] / David Wolpert //
Neural Networks. – 1992. – URL:
https://www.sciencedirect.com/science/artic
le/abs/pii/S0893608005800231.

79

Intelligent Data analysis methods in cybersecurity

https://www.researchgate.net/publication/46584584_Phishdef_URL_names_say_it_all
https://www.researchgate.net/publication/46584584_Phishdef_URL_names_say_it_all
https://www.researchgate.net/publication/220831975_Behind_Phishing_An_Examination_of_Phisher_Modi_Operandi
https://www.researchgate.net/publication/220831975_Behind_Phishing_An_Examination_of_Phisher_Modi_Operandi
https://www.researchgate.net/publication/220831975_Behind_Phishing_An_Examination_of_Phisher_Modi_Operandi
https://www.researchgate.net/publication/221653642_Beyond_blacklists_learning_to_detect_malicious_Web_sites_from_suspicious_URLs
https://www.researchgate.net/publication/221653642_Beyond_blacklists_learning_to_detect_malicious_Web_sites_from_suspicious_URLs
https://www.researchgate.net/publication/221653642_Beyond_blacklists_learning_to_detect_malicious_Web_sites_from_suspicious_URLs
https://www.researchgate.net/publication/221653642_Beyond_blacklists_learning_to_detect_malicious_Web_sites_from_suspicious_URLs
https://www.researchgate.net/publication/264293197_Protect_Sensitive_Sites_from_Phishing_Attacks_Using_Features_Extractable_from_Inaccessible_Phishing_URLs
https://www.researchgate.net/publication/264293197_Protect_Sensitive_Sites_from_Phishing_Attacks_Using_Features_Extractable_from_Inaccessible_Phishing_URLs
https://www.researchgate.net/publication/264293197_Protect_Sensitive_Sites_from_Phishing_Attacks_Using_Features_Extractable_from_Inaccessible_Phishing_URLs
https://www.researchgate.net/publication/264293197_Protect_Sensitive_Sites_from_Phishing_Attacks_Using_Features_Extractable_from_Inaccessible_Phishing_URLs
https://www.researchgate.net/publication/221023059_Prophiler_A_fast_filter_for_the_large-scale_detection_of_malicious_web_pages
https://www.researchgate.net/publication/221023059_Prophiler_A_fast_filter_for_the_large-scale_detection_of_malicious_web_pages
https://www.researchgate.net/publication/221023059_Prophiler_A_fast_filter_for_the_large-scale_detection_of_malicious_web_pages
https://www.researchgate.net/publication/221023059_Prophiler_A_fast_filter_for_the_large-scale_detection_of_malicious_web_pages
https://www.researchgate.net/publication/221023659_CANTINA_A_content-based_approach_to_detecting_phishing_web_sites
https://www.researchgate.net/publication/221023659_CANTINA_A_content-based_approach_to_detecting_phishing_web_sites
https://www.researchgate.net/publication/221023659_CANTINA_A_content-based_approach_to_detecting_phishing_web_sites
https://www.researchgate.net/publication/221023659_CANTINA_A_content-based_approach_to_detecting_phishing_web_sites
https://www.researchgate.net/publication/220219014_Malicious_web_content_detection_by_machine_learning
https://www.researchgate.net/publication/220219014_Malicious_web_content_detection_by_machine_learning
https://www.researchgate.net/publication/220219014_Malicious_web_content_detection_by_machine_learning
https://dl.acm.org/doi/10.5555/2002168.2002179
https://dl.acm.org/doi/10.5555/2002168.2002179
https://www.researchgate.net/publication/299542431_Automating_URL_Blacklist_Generation_with_Similarity_Search_Approach
https://www.researchgate.net/publication/299542431_Automating_URL_Blacklist_Generation_with_Similarity_Search_Approach
https://www.researchgate.net/publication/299542431_Automating_URL_Blacklist_Generation_with_Similarity_Search_Approach
https://www.researchgate.net/publication/289641814_Automatic_detection_for_javascript_obfuscation_attacks_in_web_pages_through_string_pattern_analysis
https://www.researchgate.net/publication/289641814_Automatic_detection_for_javascript_obfuscation_attacks_in_web_pages_through_string_pattern_analysis
https://www.researchgate.net/publication/289641814_Automatic_detection_for_javascript_obfuscation_attacks_in_web_pages_through_string_pattern_analysis
https://www.researchgate.net/publication/289641814_Automatic_detection_for_javascript_obfuscation_attacks_in_web_pages_through_string_pattern_analysis
https://www.researchgate.net/publication/294283262_A_deep_learning_approach_for_detecting_malicious_JavaScript_code
https://www.researchgate.net/publication/294283262_A_deep_learning_approach_for_detecting_malicious_JavaScript_code
https://www.researchgate.net/publication/294283262_A_deep_learning_approach_for_detecting_malicious_JavaScript_code
https://www.researchgate.net/publication/228517184_WARNINGBIRD_Detecting_Suspicious_URLs_in_Twitter_Stream
https://www.researchgate.net/publication/228517184_WARNINGBIRD_Detecting_Suspicious_URLs_in_Twitter_Stream
https://www.researchgate.net/publication/228517184_WARNINGBIRD_Detecting_Suspicious_URLs_in_Twitter_Stream
https://www.researchgate.net/publication/261201832_Click_Traffic_Analysis_of_Short_URL_Spam_on_Twitter
https://www.researchgate.net/publication/261201832_Click_Traffic_Analysis_of_Short_URL_Spam_on_Twitter
https://www.researchgate.net/publication/261201832_Click_Traffic_Analysis_of_Short_URL_Spam_on_Twitter
https://www.sciencedirect.com/science/article/abs/pii/S0893608005800231
https://www.sciencedirect.com/science/article/abs/pii/S0893608005800231

