
1National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”,
Institute of Physics and Technology

Abstract
The CRYSTALS-Dilithium digital signature algorithm, which was selected as the prototype of the new
«Vershyna» digital signature algorithm, is analyzed in this paper. The characteristics of the National
Digital Signature Standard Project and the construction of the «Vershyna» algorithm are also presented.
During the analysis of the project, the predicted number of iterations that the algorithm must perform
to create the correct signature was calculated. In addition, basic theoretical information about the
structure of Fiat-Shamir with aborts and its security in quantum and classical models oracle models is
also provided. We obtain our own results on the resistance of the «Vershyna» algorithm to the attack
without the use of a message in classical and quantum oracle models. The resistance of the «Vershyna»
algorithm to a key recovery attack is based on the assumption of the hardness of the MLWE problem,
and the resistance to existential signature forgery is based on the assumption of the hardness of the
MSIS problem. In this work, the expected level of hardness of SIS and LWE problems is calculated, to
which there are reductions from MSIS and MLWE problems.

Keywords: «Vershyna» algorithm, digital signature algorithm, lattice problems, security analysis

1. Introduction

It is well known that the security of most
asymmetric cryptosystems today is based on the
complexity of solving discrete logarithm and
integer factorization problems. There are cur-
rently no known polynomial algorithms for solv-
ing these problems on classical computers. How-
ever, in 1994, the American mathematician Peter
Shor demonstrated that these problems could be
effectively solved in the quantum oracle model [1].
Consequently, with the advent of powerful quan-
tum computers, most of today’s asymmetric cryp-
tosystems can be compromised.

In December 2016, NIST (US National In-
stitute of Standards and Technology) officially
launched the process of developing and standard-
izing new post-quantum public key cryptographic
algorithms. Currently, experts from around the
world are actively developing and verifying the
security of candidates for post-quantum cryptosys-
tems.

Recently, a project of a new National Digi-
tal Signature Standard was proposed, including
the «Vershyna» digital signature algorithm. The

CRYSTALS-Dilithium digital signature algorithm,
one of the algorithms selected in the NIST com-
petition, was used as a prototype for this project.
The goal of this work is to evaluate the security of
the proposed digital signature algorithm, as well
as to examine the component algorithms and the
modes of operation of the standard’s digital signa-
ture scheme.

2. Preliminaries

In the current era, cryptographic primitives
whose security is based on the hardness of com-
plex problems on lattices are considered as poten-
tial replacements for existing cryptosystems, as we
move towards post-quantum algorithms. Typically,
the problems of finding the shortest vector (SVP),
finding the short integer solution (SIS), and learn-
ing with errors (LWE) [2] are chosen as problems
whose complexity will determine the security of
the system. Compared to other analogues with
similar security conditions, primitives from this
category are considered the most promising and
efficient.

Yuliia Lytvynenko1, Andrii Fesenko1

25

Theoretical and cryptographic problems of cybersecurity___

UDC 004.056.55

Cryptanalysis of the «Vershyna» Digital Signature Algorithm

Since «Vershyna» is a digital signature algo-
rithm that uses algebraic lattices, it is crucial to
define the concept of a lattice and its associated
definitions.

𝑚-dimensional lattice is a discrete additive
subgroup of the group R𝑚, which is represented
as a set of integer linear combinations of 𝑛 lin-
early independent vectors {b1, . . . , b𝑛}. That

is, L(B) =

{︂
𝑛∑︀

𝑖=1
𝑥𝑖b𝑖 | 𝑥𝑖 ∈ Z, ∀𝑖 ∈ [1, 𝑛]

}︂
,

where B = [b1, . . . , b𝑛] is called the lattice ba-
sis L, and 𝑛 — lattice rank.

The determinant of the lattice L is called the
value: 𝑑𝑒𝑡(L) =

√︀
𝐷𝑒𝑡(B𝑇B), where 𝐷𝑒𝑡 is the

determinant of the matrix.
Similar to most lattice-based schemes that

use appropriate operations on polynomial rings,
the creators of the Dilithium algorithm chose a
ring that allows efficient implementation of mul-
tiplication by the Number-Theoretic Transforma-
tion (NTT). NTT is essentially a subset of the
Discrete Fourier Transform (FFT), which is used
when working with finite fields. To use NTT, it is
necessary to choose a prime number 𝑞 such that
the group Z*

𝑞 contains an element of order 2𝑛. In
this scenario, the most time-consuming operations
in terms of execution time will be the NTT trans-
formation and its inverse.

When constructing compact signature schemes
using lattices, a discrete Gaussian distribution is
often used. Generating secure random sequences
that are protected against side-channel attacks is
a challenging task and can lead to insecure im-
plementations. Therefore, the developers of the
Dilithium algorithm avoided using of a discrete
Gaussian distribution and preferring a uniform dis-
tribution instead. This distribution is also used
in the «Vershyna» algorithm. Examples of how
to estimate the distance between two distributions
can be found in [3].

The authors of the «Vershyna» algorithm used
the Fiat-Shamir structure with aborts [4]. One of
its notable features is that it requires the gener-
ation of a nonce, a one-time value, for signing.
It is one of the most widely used paradigms in
the construction of post-quantum digital signa-
ture schemes. The Fiat-Shamir transform com-
bines a canonical identification scheme 𝐼𝐷 and
a hash function 𝐻 to obtain a digital signature
scheme 𝐹𝑆 = 𝐹𝑆[𝐼𝐷,𝐻].

2.1. Security

The standard principle for ensuring the se-
curity of digital signatures is security in the UF-
CMA (Unforgeability under Chosen-Message At-
tack): protection against attacks using a chosen
message. In this model, the attacker has access
to the public key and can use the signing oracle
to sign any message of his choice. The goal of
the attacker is to find the correct signature of a
new message without using an oracle. A slightly
stronger security requirement, which is also useful
in some cases, is SUF-CMA (Strong Existential
Unforgeability under Chosen-Message Attack). In
this model, the attacker succeeds if he manages to
create a different signature for the already chosen
message.

It can be shown that in the random oracle
model (ROM), the «Vershyna» algorithm, as well
as Dilithium, exhibit security against SUF-CMA
attacks due to the complexity of solving standard
problems on lattices, namely the MLWE problem
(which is a generalization of the LWE and Ring-
LWE problems) and the MSIS problem (which
is a generalization of the SIS and Ring-SIS prob-
lems). It is also important to consider the secu-
rity of the scheme in the quantum random ora-
cle model (QROM) where an adversary can send
requests to the oracle to compute the hash func-
tion using quantum superposition of the input data.
While the classical proof of security relies on the
“forking lemma” [5], this reduction is generally
not applicable in the QROM model.

The security of the «Vershyna» and Dilithium
algorithms against key recovery attacks is based
on the complexity of the MLWE problem, while
their security against message forgery is based
on the complexity of the SelfTargetMSIS prob-
lem and their security against existential signa-
ture forgery is based on the complexity of the
MSIS problem [6]. The SelfTargetMSIS problem
combines the MSIS problem with a cryptographic
hash function 𝐻 .

Formal description of MLWE, MSIS and
SelfTargetMSIS problems For integers 𝑚, 𝑘
and probability distribution 𝐷 : R𝑞 → [0, 1] ad-
vantage function of algorithm 𝐴 in solving the
𝑀𝐿𝑊𝐸𝑚,𝑘,𝐷 problem over the ring R𝑞 has a

26

___Cryptanalysis of the «Vershyna» Digital Signature Algorithm

value equal to

𝐴𝑑𝑣𝑀𝐿𝑊𝐸
𝑚,𝑘,𝐷 := |𝑃𝑟[𝐴(A, t) = 1 | A← R𝑚×𝑘

𝑞 , t← R𝑚
𝑞]−

− 𝑃𝑟[𝐴(A,As1 + s2) = 1 | A← R𝑚×𝑘
𝑞 , s1 ← 𝐷𝑘,

s2 ← 𝐷𝑚]|.

The 𝐴𝑑𝑣𝑀𝑆𝐼𝑆
𝑚,𝑘,𝛾 (𝐴) — advantage function of

algorithm 𝐴 in solving the 𝑀𝑆𝐼𝑆𝑚,𝑘,𝛾 problem
over the ring R𝑞

𝐴𝑑𝑣𝑀𝑆𝐼𝑆
𝑚,𝑘,𝛾 (𝐴) := 𝑃𝑟[(0 < ‖y‖∞ ≤ 𝛾)∧
∧ [I | A] · y = 0 | A← R𝑚×𝑘

𝑞 ,y← 𝐴(A)].

Suppose that 𝐻 : {0, 1}* → 𝐵𝜏 is a crypto-
graphic hash function. Here, 𝐵𝜏 is the set
from which the challenge polynomials 𝑐 are
chosen. All coefficients of the polynomial
take values from the set {−1, 0, 1}, and each
polynomial contains exactly 𝜏 non-zero coeffi-
cients. The 𝐴𝑑𝑣𝑆𝑒𝑙𝑓𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑆𝐼𝑆

𝐻,𝑚,𝑘,𝛾 (𝐴) — advan-
tage function of the algorithm 𝐴 in solving
the 𝑆𝑒𝑙𝑓𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑆𝐼𝑆𝐻,𝑚,𝑘,𝛾 problem over the
ring R𝑞

𝐴𝑑𝑣𝑆𝑒𝑙𝑓𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑆𝐼𝑆
𝐻,𝑚,𝑘,𝛾 (𝐴) := 𝑃𝑟[(‖y‖∞ ≤ 𝛾)∧

∧𝐻([I | A] · y‖𝑀) = 𝑐 | A← R𝑚×𝑘
𝑞 ;(︁

𝑦 :=
[︁𝑟
𝑐

]︁
, 𝑀

)︁
← 𝐴|𝐻>(A)].

If the attacker A has access to the oracle 𝐻 in
the classical model, then there is a reduction that
uses the forking lemma to prove that

𝐴𝑑𝑣𝑆𝑒𝑙𝑓𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑆𝐼𝑆
𝐻,𝑚,𝑘,𝛾 (𝐵) ≈

√︁
𝐴𝑑𝑣𝑀𝑆𝐼𝑆

𝑚,𝑘,2𝛾(𝐴)/𝑄𝐻 ,

where 𝑄𝐻 is the number of classical queries to
oracle 𝐻 . This reduction is standard and implicit
in (classical) proofs of digital signature protection,
whose security is based on the complexity of the
MSIS problem.

The security of the Dilithium algorithm in the
QROM model can be expressed as follows:

𝐴𝑑𝑣𝑠𝑈𝐹−𝐶𝑀𝐴
𝐷𝑖𝑙𝑖𝑡ℎ𝑖𝑢𝑚 (𝐴) ≤ 𝐴𝑑𝑣𝑀𝐿𝑊𝐸

𝑘,𝑙,𝐷 (𝐵)+

+𝐴𝑑𝑣𝑆𝑒𝑙𝑓𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑆𝐼𝑆
𝐻,𝑘,𝑙+1,𝜁 (𝐶) +𝐴𝑑𝑣𝑀𝑆𝐼𝑆

𝑘,𝑙,𝜁′
+ 2−𝛼+1,

where 𝐷 is a uniform distribution over 𝑆𝜂,

𝜁 = 𝑚𝑎𝑥{𝛾1 − 𝛽, 2𝛾2 + 1 + 2𝑑−1𝑤𝑐} ≤ 4𝛾2,

𝜁
′
= 𝑚𝑎𝑥{2(𝛾1 − 𝛽), 4𝛾2 + 2} ≤ 4𝛾2 + 2,

where 𝑤𝑐 is the number of ±1 in the polyno-
mial 𝑐 ∈ 𝐵𝜏 .

There is also another method that can be used
to evaluate the security of a digital signature
scheme — challenge polynomial entropy [3].

In the «Vershyna» algorithm a strategy is pre-
sented in which the probability of deviation is
reduced in order to achieve better efficiency. This
is achieved by varying the number of non-zero
coefficients in the challenge polynomial 𝑐, depend-
ing on the security level. The set 𝐵𝜏 , which is
used to select the polynomial 𝑐, contains poly-
nomials with exactly 𝜏 coefficients of either 1
or −1, and 𝑛− 𝜏 zero coefficients. Since all co-
efficients of the challenge polynomial belong to
the set {−1, 0, 1}, the entropy of the polynomial
is log

(︀
256
𝜏

)︀
+ 𝜏 bits.

If the value of 𝑐
′ ∈ 𝐵𝜏 is fixed, an attacker can

create a forged signature by choosing a value of 𝑧
′

that satisfies the condition

‖𝑧′‖∞ < 𝛾1 − 𝛽,

and then checking for equality

𝑐
′
= 𝐻(𝑀‖𝐻𝑖𝑔ℎ𝐵𝑖𝑡ℎ(A𝑧

′ − 𝑐
′
t, 2𝛾2)).

Here, 𝐻𝑖𝑔ℎ𝐵𝑖𝑡𝑠𝑞 is a function that selects the
highest part of a polynomial, 𝐻 is a hash function,
𝑀 is a message, 𝛽, 𝛾1 and 𝛾2 are parameters of
the «Vershyna» algorithm.

As the entropy of 𝑧
′

surpasses that of 𝑐
′
,

the attack’s time complexity in the classical
model (ROM) will be 𝒪

(︀
log

(︀
256
𝜏

)︀
+ 𝜏

)︀
. More-

over, Grover’s algorithm [7] can be used to ob-
tain a quadratic speedup with time complex-

ity 𝒪
(︂√︁

log
(︀
256
𝜏

)︀
+ 𝜏

)︂
in the QROM, by con-

sidering the equation for 𝑐
′

as a function of 𝑧
′
.

3. Comments on the National Standard
project with «Vershyna» algorithm

The National Standard project with the algo-
rithm «Vershyna» consists of the following com-
ponents:

1) A section containing scope, regulatory cita-
tions, acronyms and abbreviations, and gen-
eral provisions.

2) Algorithms used to generate asymmetric key
pairs and to create and validate a digital signa-
ture. All algorithms are presented in pseudo
code.

3) System and additional parameters along with
the purpose and formulas for calculations.

4) Precalculations for NTT transformations
(direct and inverse) for values 𝑛 = 256
and 𝑛 = 512.

27

Theoretical and cryptographic problems of cybersecurity___

5) Test vectors for the hash func-
tion (DSTU 7564:2014), for gen-
erating pseudo-random sequences
(DSTU 8845:2019), for key generation
(the first and last components of the ma-
trix A, the vectors s1, s2, t0, t1 and actually
the asymmetric keys themselves), for digital
signature generation and validation. All
test vectors are available for 4 modes of
operation of the algorithm.

6) References.
Let’s outline the main provisions and some

differences of the «Vershyna» algorithm from
Dilithium.

3.1. Options

As already mentioned, the authors of the «Ver-
shyna» algorithm project modified the Dilithium
algorithm and added 2 sets of parameters for new
security levels. The first 2 sets of parameters are
borrowed from the Dilithium algorithm. Thus, the
«Vershyna» algorithm offers 4 modes of operation
depending on the desired level of cryptographic
security. A proper security analysis is required for
these additional parameter sets.

We will clarify the parameters of the algorithm
«Vershyna»:

1) 𝑛 — degree of polynomials;
2) 𝑞 — the module by which all coefficients of

polynomials are reduced;
3) 𝑙 — size of the vector 𝑠1;
4) 𝑘 — size of the vector 𝑠2;
5) 𝜂 defines the range of values for the coeffi-

cients of the polynomials that make up the
vectors 𝑠1 and 𝑠2 that are part of the private
key;

6) 𝜔 determines the maximum number of units
in the matrix h;

7) 𝛽 — the parameter used to calculate the trans-
formation rate;

8) 𝛾1 — the parameter used to calculate the
masking vector;

9) 𝛾2 — a parameter used to compute the norm
of transformations and to compute the low-
order and high-order bits of the polynomials;

10) 𝑑 — the number of bits for the set of the low-
order part of the components of the vector t0
that is part of the public key;

11) 𝐻𝐴𝑆𝐻_𝑂𝐶𝑇𝐸𝑇𝑆 — the number of octets
in the hash value;

12) 𝑆𝐸𝐸𝐷_𝑂𝐶𝑇𝐸𝑇𝑆 — the number of octets
in pseudorandom sequences.

3.2. Hash functions and pseudorandom
sequence generation

To obtain test vectors for the «Vershyna» al-
gorithm, the algorithm of the national hashing
standard DSTU 7564:2014 («Kupina») is used as
a hash function. However, the developers them-
selves point out that in fact other valid algorithms
can be used to compute the hash value. One such
example is the SHAKE-256 hash function.

To generate pseudorandom sequences, the al-
gorithm of the national stream encryption stan-
dard DSTU 8845:2019 («Strumok») was cho-
sen instead of the SHAKE-128 hash function.
Other approved algorithms, such as AES and
SHAKE-256, can also be used to compute pseudo-
random sequences. Depending on the chosen algo-
rithm, the size of the block is determined in octets,
since pseudorandom sequences in the «Vershyna»
algorithm are constructed in blocks. Thus, the au-
thors specify that the block size for the «Strumok»
cipher is 128 bits, for AES — 64 bits, and for
SHAKE-256 — 136 bits.

3.3. Algorithms of «Vershyna» Digital Sig-
nature

All algorithms are presented in the form of
pseudo code, which is not always convenient for
implementation. On the one hand, this is good
for programmers. However, all implementations
must conform to the pseudo code defined in the
standard. This makes it impossible to choose an
algorithm implementation that, for example, uses
less memory or works faster. After all, different
algorithm implementations are suitable for differ-
ent situations and you should not limit yourself
to just one. Developers have tried to choose the
best algorithm, but mathematics improves and bet-
ter and faster schemes for performing the same
operations will appear.

In addition, some preliminary calculations are
used in the «Vershyna» algorithm:

1) 𝜌 — a random string for the matrix A;
2) 𝜌1 — random string for vectors s1, s2;
3) 𝑘𝑒𝑦 — a random string that is part of the

private key 𝑠𝑘;
4) 𝑧256, 𝑧256_, 𝑧512, 𝑧512_ — arrays

that are used for direct and inverse

28

___Cryptanalysis of the «Vershyna» Digital Signature Algorithm

𝑁𝑇𝑇 transformations and, accordingly,
the value 𝑛256_ = 256−1 (mod 𝑞)
and 𝑛512_ = 512−1 (mod 𝑞), which
are also used for 𝑁𝑇𝑇 transformations.

Preliminary calculations speed up the algo-
rithm, but increase the amount of memory re-
quired, which can be critical on devices with lim-
ited memory.

3.4. Creating a digital signature

The «Vershyna» algorithm provides 2 vari-
ants of signature creation: one for the same mes-
sage and different for the same message. This
is achieved by introducing the variable 𝑣𝑎𝑟𝑖𝑎𝑛𝑡
and using a random component of a certain length
when choosing a variant with different signatures.

4. Analysis of characteristics and secu-
rity levels of the «Vershyna»algorithm

Calculation of key and signature lengths and
the expected number of iterations.

One of the most important features of a digital
signature scheme is the size of the key and the
calculated signature. If there are two signature
schemes with the same level of security, it is better
to choose the scheme with the smaller specified
sizes. All sizes are measured in octets (bytes).
To do this, use the function: 𝑂𝐶𝑇𝐸𝑇𝑆(𝑥) — a
function that calculates the minimum number of
octets sufficient to write a variable consisting of a
given number of bits 𝑥.

Using the formulas (1), (2) and (3) it is possible
to calculate the required values. The total size of
the public key is:

𝑃𝐾_𝑂𝐶𝑇𝐸𝑇𝑆 = 𝑆𝐸𝐸𝐷_𝑂𝐶𝑇𝐸𝑇𝑆+

+𝑂𝐶𝑇𝐸𝑇𝑆(𝑘 · 𝑛 · (𝑙𝑜𝑔2𝑞 − 𝑑)). (1)

The total size of the private key is:

𝑆𝐾_𝑂𝐶𝑇𝐸𝑇𝑆 = 2 · 𝑆𝐸𝐸𝐷_𝑂𝐶𝑇𝐸𝑇𝑆+

+𝐻𝐴𝑆𝐻_𝑂𝐶𝑇𝐸𝑇𝑆+ (2)

+𝑂𝐶𝑇𝐸𝑇𝑆(𝑛 · ((𝑙 + 𝑘) · 𝑙𝑜𝑔2(2𝜂 + 1) + 𝑘 · 𝑑)).
The total size of the digital signature is:

𝐷𝑆_𝑂𝐶𝑇𝐸𝑇𝑆 = 𝑆𝐸𝐸𝐷_𝑂𝐶𝑇𝐸𝑇𝑆+ (3)

+𝑂𝐶𝑇𝐸𝑇𝑆(𝑙𝑜𝑔2(2𝛾1) · 𝑛 · 𝑙) + 𝜔 + 𝑘 · 𝑛/256.
At first glance, it may seem that we have long

keys and a signature. However, the method used
in the Dilithium digital signature scheme and later

borrowed by the authors of «Vershyna» is one of
the most optimal of all.

The expected number of iterations needed to
generate the correct signature is also important.
This characteristic is calculated by the formula:

𝐸𝑥𝑝. 𝑟𝑒𝑝𝑠 ≈ 𝑒𝑛·𝛽(𝑙/𝛾1+𝑘/𝛾2).

All the results of calculations according to
these formulas are given in the first block of the
table 1.

4.1. Resistance of the «Vershyna» algo-
rithm to possible attacks

We will consider the method of evaluating the
resistance of the «Vershyna» algorithm to a forgery
attack without using a message. That is, the en-
tropy value of the challenge polynomial 𝑐 ∈ 𝐵𝜏 is
used.

Let’s recall the entropy formula used to calcu-
late the values in the second block of the table 1:

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = log

(︂
256

𝜏

)︂
+ 𝜏 .

The value of entropy corresponds to the num-
ber of attack resistance bits in the ROM model.
More specifically, the complexity is 𝒪(𝐸𝑛𝑡𝑟𝑜𝑝𝑦).
In the QROM model, the complexity is reduced
by the possibility of using Grover’s algorithm.

As already mentioned, the resistance of
the «Vershyna» algorithm to various attacks
depends on the complexity of such prob-
lems as MLWE, SelfTargetMSIS, and MSIS.
The 𝑀𝐿𝑊𝐸𝑙,𝑘,𝐷 problem for some distribu-
tion 𝐷 can be considered as a LWE problem of di-
mensions 𝑛 · 𝑙 and 𝑛 · 𝑘. There is also a reduction
of the SelfTargetMSIS problem to the MSIS prob-
lem and thus to the SIS problem, with changing
parameters.

The most famous algorithm for finding very
short non-zero vectors in lattices is the Blok-
Korkin-Zolotarev (BKZ) algorithm proposed by
Schnorr and Eichner in 1991.

The BKZ algorithm with block size 𝑏 makes
calls to the algorithm that solves the problem of
finding the shortest vector in the lattice of dimen-
sion 𝑏 (SVP). The security of the «Vershyna» al-
gorithm depends on the need to run the BKZ al-
gorithm with a large block size 𝑏 and on the fact
that the complexity of solving the SVP problem
is exponential over 𝑏. The most efficient classi-
cal algorithm for solving the SVP problem runs

29

Theoretical and cryptographic problems of cybersecurity___

Table 1
Output sizes, expected number of iterations, and security of the «Vershyna» algorithm

Mode 128/64 256/128 384/192 512/256

𝑝𝑘 𝑠𝑖𝑧𝑒 (𝑏𝑦𝑡𝑒𝑠) 1312 1952 4528 5824
𝑠𝑘 𝑠𝑖𝑧𝑒 (𝑏𝑦𝑡𝑒𝑠) 2355 3740 8673 10271
𝑠𝑖𝑔 𝑠𝑖𝑧𝑒 (𝑏𝑦𝑡𝑒𝑠) 2420 3293 6612 10552
𝐸𝑥𝑝. 𝑟𝑒𝑝𝑠 4.25 5.1 3.2 6.55

Classical forgery attack 194 226 386 512
Quantum forgery attack 97 113 193 256

BKZ block-size 𝑏 to break SIS 417 602 1720 2318
Best Known Classical bit-cost 121 176 503 677
Best Known Quantum bit-cost 110 159 456 614

BKZ block-size 𝑏 to break LWE 422 622 1496 2312
Best Known Classical bit-cost 123 181 437 676
Best Known Quantum bit-cost 111 164 396 613

in time ≈ 20.292·𝑏. The most efficient quantum
algorithm for solving the SVP problem runs in
time ≈ 20.265·𝑏. We can hope to improve the ex-
ecution time to ≈ 20.2075·𝑏. Currently, no more
efficient algorithm for solving the SVP problem
has been found.

The third and fourth blocks of the table 1 show
the results of calculations of the expected level of
complexity of solving the SIS and LWE problems
in the classical (Best Known Classical bit-cost)
and quantum (Best Known Quantum bit-cost) com-
putational models. An estimate of the complexity
level of solving these problems by the most ef-
fective algorithm currently known (Best Plausible
bit-cost) is also given. Since there are 2 types of
attacks when solving the LWE problem (primal
attack and dual attack), table 1 shows the smaller
of the two possible values.

5. Conclusions

This work examines the design of the «Ver-
shyna» algorithm, as well as the characteristics
of the National Digital Signature Standard project.
The length of the private and public keys and the
signature size were evaluated. In addition, in this
work, we have determined the expected number of
iterations of the «Vershyna» algorithm required to
create a valid signature. The security of the «Ver-
shyna» algorithm is also analyzed. We estimated
the number of blocks used in the BKZ algorithm

to solve LWE and SIS problems, and the complex-
ity of solving the relevant problems using classical
and quantum computing models.

References

[1] Shor P. W. Polynomial-Time Algorithms for
Prime Factorizationand Discrete Logarithms
on a Quantum Computer. — 1994.

[2] Lattice Based Cryptography for Begin-
ners. / Dong Pyo Chi, Jeong Woon Choi,
Jeong San Kim, and Taewan Kim.

[3] Zhongxiang Zheng, Anyu Wang,
Lingyue. Qin. Rejection Sampling Revisit:
How to Choose Parameters in Lattice-Based
Signature.

[4] Vadim Lyubashevsky. Fiat-Shamir with aborts:
Applications to lattice and factoring-based sig-
natures.

[5] Pointcheval David, Stern Jacques. Security ar-
guments for digital signatures and blind signa-
tures. — 2000.

[6] Exploiting Determinism in Lattice-based
Signatures - Practical Fault Attacks on
pqm4 Implementations of NIST candidates. /
Prasanna Ravi, Mahabir Prasad Jhanwar,
James Howe, Anupam Chattopadhyay, and
Shivam. Bhasin. — 2019.

[7] Lov Kumar Grover. A fast quantum mechani-
cal algorithm for database search. — 1996.

30

___Cryptanalysis of the «Vershyna» Digital Signature Algorithm

	Contents_Vol 5_002_2023.pdf
	001_1_Yanko.pdf
	001_2_Ustymenko.pdf
	001_3_Fesenko.pdf
	1 Introduction
	2 Preliminaries
	2.1 Security

	3 Comments on the National Standard project with «Vershyna» algorithm
	3.1 Options
	3.2 Hash functions and pseudorandom sequence generation
	3.3 Algorithms of «Vershyna» Digital Signature
	3.4 Creating a digital signature

	4 Analysis of characteristics and security levels of the «Vershyna» algorithm
	4.1 Resistance of the «Vershyna» algorithm to possible attacks

	5 Conclusions

	001_4_Kotukh.pdf
	002_1_Hrynchenko.pdf
	002_2_Kurinnyi.pdf
	1 Main notations
	2 The main problems related to systems of linear restrictions
	3 The complexity of the SLR partial cases
	4 Algorithms for finding solutions of the system of linear restrictions

	002_3_Polutsyganova.pdf
	002_4_Ovcharuk.pdf
	002_4_Ovcharuk.pdf
	003_1_Kuz.pdf
	003_2_Alekseichuk.pdf
	004_1_Stasiuk.pdf
	004_2_Nafiiev.pdf
	004_3_Lande.pdf
	First_second_pages_TACS_5_002_2023.pdf
	Contents_Vol 5_002_2023.pdf
	011_Kotukh.pdf
	003_2_Alekseichuk.pdf

