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Abstract 
This article is a part of a research endeavor focused on creating a quantum-resistant cryptosystem 

for secure encryption and decryption. Our approach employs a challenging word problem while 

emphasizing cost-effective implementation. Previous research has involved the development of 

encryption schemes based on high-order groups, offering potential security enhancements. The choice 

of the non-abelian group is a critical factor in shaping the encryption algorithms, feasibility of 

implementation, and system parameters. Our central objective is to design a cryptosystem that 

effectively thwarts quantum cryptanalysis. To achieve this, we employ a logarithmic signature along 

with a random cover across an entire finite non-abelian group. Our unique contribution lies in 

optimizing finite group selection, parameters, and circuit solutions for the logarithmic signature to 

meet specific security and implementation criteria. Within this paper, we introduce an encryption 

scheme utilizing automorphisms of the Ree functional field and propose a method for enhancing 

resistance to cryptanalysis through the binding of session keys. 

 

Keywords: MST3 cryptosystem, logarithmic signature, random cover, Ree function field, word 

problem  

__________________________________________________________________________________

Introduction 

In response to advancements in quantum 

computing, the American National Institute of 

Standards and Technology (NIST) initiated the 

process of standardizing cryptographic primitives 

in 2016. These primitives are designed to ensure 

security in the presence of powerful quantum 

computers. NIST aims to finalize these standards 

by the year 2024. An analysis of key and 

signature encapsulation mechanisms reveals 

contradictions concerning the criteria for 

assessing resistance to classical and quantum 

attacks, time and memory costs, and security 

levels. This contradiction primarily arises due to 

the absence of an analysis of the potential for 

quantum attacks on algorithms and the 

relationship between security levels and memory 

and time requirements. To address this 

contradiction, the development of post-quantum 

cryptographic algorithms with a demonstrable 

level of security and reasonable time and 

memory costs is imperative. 

As previously noted in references [1,2,7], the 

stability of contemporary asymmetric 

cryptosystems relies on assumptions about the 

computational complexity of problems such as 

integer factorization and discrete logarithms. The 

emergence of Shor's quantum algorithm, capable 

of solving these problems with polynomial 

complexity in the presence of a quantum 

computer, underscores the urgency of identifying 

new mathematically challenging problems that 

remain computationally complex in the post-

quantum era. 

An essential characteristic of the post-

quantum era in cryptography is the substantial 

uncertainty surrounding the initial data for 

cryptanalysis and countermeasures. This 

uncertainty pertains to the capabilities of 

quantum computers, their mathematical and 

software aspects, as well as the application of 

quantum cryptanalysis to existing 

cryptotransformations and cryptoprotocols, as 

mentioned in reference [7]. Mathematical 

methods of electronic signature (EP) have been 

selected as the primary approaches, undergoing 

extensive scrutiny and justification through 

rigorous research conducted by leading 
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cryptologists and mathematicians. These 

methods have been comprehensively 

documented and subjected to scrutiny during the 

initial phase of the US NIST international 

competition. In a subsequent stage, decisions 

were made to consolidate certain candidates for 

the post-quantum standards in terms of 

encryption and digital signatures. Nine 

candidates were retained for further investigation 

in the second stage: CRYSTALS-DILITHIUM, 

FALCON, GeMSS, LUOV, MQDSS, Picnic, 

QTESLA, Rainbow, and SPHINCS+. Among 

these, three (Dilithium, FALCON, and qTeSLA) 

are based on the stability of algebraic lattices 

(Lattice-based), four (GeMSS, LUOV, MQDSS, 

Rainbow) rely on multivariate transformations 

(multivariate), one (SPHINCS+) is a hash 

function, and one (Picnic) is grounded in the 

stability of the hash function and block stream 

ciphers. As emphasized in reference [7], the 

national post-quantum standard of Ukraine 

should encompass algorithms grounded in 

various types of mathematical transformations 

acknowledged by the global cryptographic 

community as capable of providing the requisite 

level of security in the face of quantum 

cryptanalysis. 

One of the approaches to developing a 

cryptosystem resistant to quantum attacks 

involves utilizing a challenging word problem, a 

concept implemented in MST (Multiple 

Signatures and Thresholds) cryptosystems, 

which are founded on logarithmic signatures and 

random coverages [1,2]. Initial attempts to create 

cryptosystems based on logarithmic signatures 

and coverages date back to the late 1970s, with 

the most significant advancements occurring in 

the 21st century within the realm of public key 

cryptography. Over this period, various forms of 

cryptosystems based on logarithmic signatures 

and coverages have been proposed, 

encompassing encryption schemes, electronic 

signature schemes, and random number 

generation mechanisms. The authors of reference 

[2] acknowledge the pertinence of this approach 

to post-quantum cryptography. Crucial 

objectives within this domain encompass 

devising novel methodologies for constructing 

logarithmic signatures, achieving enhanced 

efficiency in terms of computational 

performance in cryptosystems, and devising 

tamper-resistant schemes. One notable advantage 

of implementing such cryptosystems lies in the 

simplicity of group operations for the majority of 

finite groups, potentially resulting in high 

calculation speeds. Nonetheless, challenges 

persist, including the substantial size of 

signatures, leading to large public key sizes, 

detailed cryptographic analyses, and 

optimization of implementation costs. 

This article constitutes part of a dissertation 

research effort aimed at creating a quantum-

resistant cryptosystem for directional encryption 

and decryption, relying on the utilization of a 

challenging word problem while optimizing 

implementation costs. The foundation of this 

endeavor is the MST cryptosystem, built upon 

logarithmic signatures and random coverages 

within multiparameter groups. The primary 

scientific and practical achievements of this 

project encompass the development of 

methodologies and algorithms for directional 

encryption and decryption based on the MST 

cryptosystem, implemented within finite groups 

of substantial order, software implementations of 

these algorithms, testing, and cost estimates to 

meet confidentiality requirements. 

Our research corpus comprises over a dozen 

papers [1-10]. One approach to establishing 

quantum-resistant cryptosystems, predicated on 

the word problem, hinges on the utilization of 

permutation groups. Several enhancements have 

been proposed, grounded in a distinct form of 

factorization of finite groups termed logarithmic 

signatures. The most recent variant, MST3, 

proposed on the Suzuki group algebra, has been 

examined. We assessed the feasibility of 

constructing an MST3 cryptosystem based on 

groups of higher order than Suzuki. Our efforts 

culminated in the construction of an MST3 

cryptosystem predicated on generalized Suzuki 

groups, as well as groups of automorphisms of 

functional fields within multiparameter groups. 

Previous findings in cryptanalysis have indicated 

that computations within group algebra can 

introduce vulnerabilities in implementations. 

Previous works have seen us devise encryption 

schemes rooted in high-order groups, which hold 

the potential to enhance the security attributes of 

our proposal. 

The fundamental structure of the MST3 

cryptosystem comprises three essential 

components: a logarithmic signature, a random 

covering, and a finite non-abelian group, wherein 

the first two elements are nested. 

A logarithmic signature constitutes a 

structured collection of data vectors with 

representations within a finite group, 

characterized by the property that calculating the 

vector sum (the sum of group elements) is 
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straightforward, and group factorization for the 

logarithmic signature on the group is tractable if 

one possesses the logarithmic signature. 

However, group factorization for a logarithmic 

signature on a group becomes a challenging 

problem for those without access to the 

logarithmic signature. 

A random cover, defined as an array of 

random vectors (long-term key), serves the 

purpose of concealing the logarithmic signature. 

The selection of the final non-Abelian group 

hinges on the feasibility of mapping the vectors 

of the logarithmic signature and the vectors of 

the random coverage onto the entire group. 

Structural modifications within such a 

cryptosystem are conceivable across all three 

constituent elements. Notably, the construction 

of the array of logarithmic signature vectors 

assumes significance, with a parameter known as 

log signature type exerting a significant influence 

on the size of the log signature array. Concerns 

arise about cryptoresistance when implementing 

a minimum-size logarithmic signature, as 

indicated by existing estimates. 

Random coverages are intrinsically associated 

with the logarithmic signature vectors, and their 

size is directly proportional to the dimensions of 

the logarithmic signature array. 

The selection of the ultimate non-abelian 

group plays a pivotal role in determining the 

encryption algorithms, implementation feasibi-

lity, and the parameters of the cryptosystem. 

As of 2019, comprehensive coverage of the 

Group Factorization Problem (GFP) pertaining to 

cryptosystems MST1, MST2, MST3, and 

eMST3, incorporating the construction of 

logarithmic signatures, is provided in reference 

[1]. The authors introduce an innovative 

enhancement to the eMST3 cryptosystem, which 

is based on the amalgamation of random 

coverages and logarithmic signatures. It is 

underscored that quantum resistance hinges upon 

the insolubility of the Group Factorization 

Problem (GFP) concerning the logarithmic 

signature within the Suzuki 2-group. The 

improvement in the eMST3 algorithm leads to a 

modification in the public key, rendering 

multiple ciphertexts independent of each other 

and simplifying the encryption process. In 

comparison to the eMST3 scheme, the proposed 

method is versatile, exhibits superior efficiency, 

and can be applied to file and image encryption. 

Reference [2] provides an overview of 

directional encryption algorithms applicable to 

cryptosystems such as PGM, MST2, MST3, 

electronic signatures based on MST**, and a 

pseudorandom number generator, MSTg. 

Additionally, an exemplar of MST3 encryption 

rooted in the Suzuki 2-group is presented. 

In [3], a comprehensive framework for the 

construction of Strongly Aperiodic Logarithmic 

Signatures (SALS) for elementary abelian p-

groups is established. The introduction of SALS 

significantly broadens the spectrum of manual 

logarithmic signatures employed within the 

MST3 cryptosystem. These signatures possess 

characteristics that align with well-known 

categories of transversal or fusion transversal 

logarithmic signatures. It is posited that the 

property of "aperiodicity" plays a pivotal role in 

assessing the stability of MST cryptosystems. 

Reference [4] delves into the issue of the 

existence of minimal logarithmic signatures for 

finite simple groups. The concept of minimality 

determines the nestedness of the logarithmic 

signature within the group without redundancy. 

Given that the construction of the logarithmic 

signature in the MST cryptosystem is centered 

around the group's core, it can be inferred that 

the core of the group is not excessively 

populated. This consideration influences the 

selection of the non-Abelian group for MST 

cryptosystem construction. 

Reference [5] introduces an antiquantum 

MST3 PKE scheme tailored for remote sensing 

images. This scheme incorporates the use of a 

collision-resistant hash function, which enhances 

its resistance to quantum attacks. In comparison 

to prior MST encryption schemes, the proposed 

scheme exhibits heightened efficiency, as 

indicated by the authors. 

Reference [6] provides estimates of the 

quantum resources required for potential attacks 

on AES-128, AES-192, and AES-256, along 

with quantum strategies for identifying Grover-

based keys for AES encryption. In quantum 

computing, Grover's algorithm is invoked once 

an event is fixed, such as the key under 

investigation, and progressively refines 

measurement accuracy through iterations. The 

precise fixation of the sought-after event is 

pivotal, as it serves as the starting point for 

subsequent procedures. It is conceivable that the 

methodology employed in quantum analysis 

could find application in the development of the 

MST cryptosystem. 

Reference [7] delves into the challenges 

related to post-quantum standards and the 

coordination thereof with national cryptographic 

standards. The meticulous implementation of 
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encryption algorithms and digital signatures 

within grid-based systems is examined in depth. 

The foundational hypothesis of this study 

revolves around the notion that the problem of 

group factorization remains insoluble when 

applied to a logarithmic signature complemented 

by a random covering within a finite non-

Abelian group. The intricate word problem 

serves as the cornerstone of MST cryptosystems 

and mitigates unknown attacks with reduced 

brute force complexity in the latest iteration of 

MST3. This forms a promising foundation for 

constructing a cryptosystem within the MST 

framework for the post-quantum era. 

The central concept of this study is the 

development of a cryptosystem for encryption 

and decryption that exhibits resistance to 

quantum cryptanalysis. This is achieved through 

the propagation of a logarithmic signature, 

coupled with a random overlay, across the 

entirety of a finite non-Abelian group. The 

fundamental architecture of the MST3 

cryptosystem incorporates a logarithmic 

signature with a random overlay situated at the 

core of the Suzuki 2-group. The selection of the 

Suzuki finite group is justified by its possession 

of the largest conceivable center among extant 

multiparameter finite groups. Calculations 

conducted within this center are commutative, 

facilitating the factorization of logarithmic 

signature group elements during decryption. 

Group calculations in this configuration are two-

parameter, yielding a logarithmic signature with 

lesser computational power than that of the 

group itself. The strength of the logarithmic 

signature directly governs the security of the 

cryptosystem. To enhance the security of the 

MST3 cryptosystem without altering the power 

of the Suzuki 2-group, one potential approach is 

to extend the logarithmic signature to encompass 

the entire two-parameter group. 

The novelty inherent in our approach to 

addressing the challenge of constructing a 

quantum-resistant cryptosystem lies in the 

optimization of finite group selection, 

parameters, and circuit solutions for the 

logarithmic signature, all aimed at achieving 

specified characteristics for security and 

implementation. Within this article, we explore 

an encryption scheme utilizing a group of 

automorphisms of the Ree functional field and 

propose a method for binding session keys to 

enhance resistance against cryptanalysis. 

Our proposal 

The implementation of the MST cryptosystem 

on the group of automorphisms of the Ree 

function field is predicated on the premise that 

optimal implementation and robust secrecy 

attributes can be achieved within a high-order 

multivariate group.  

The group of automorphisms of the Ree 

function field is formally defined over a finite 

field qF , 2 13 sq  , where \{0}s N  and 0 3sq   

[10]. 

The Ree function field F over K  is defined as 

( , , )S K x y z , where  

0 02
( ), ( ).

q qq q q qy y x x x z z x x x       

It has 3 1N q   rational places and genus 

0 03 ( 1)( 1) / 2g q q q q    .   

The automorphism group A  of F  is the Ree 

group Ree( )q  and has order 
3 3Ree( ) ( 1)( 1)q q q q   . 

Let P
 denote the unique pole x  in F . Let 

 ( ) : ( )A P A P P A       . 

( )A P  consists of all automorphisms , , ,a b c d  

with , , , , 0a b c d K a  , which are defined as  

0 0

0 0 0 0

1

, , ,

2 1 1 2

:
q q

a b c d

q q q q

x ax b

y a y ab x c

z a z a b y ab x d

 

 




  


  

 

We have 3( ) ( 1)A P q q   , and the subgroup 

( )A P  is a maximal subgroup of A .  

Each element of  A P  can be uniquely 

expressed. 

    ( , ) : \ 0 , , ,q q qA P S a,b,c d a F F c b d F

    

, 

where  ( , ) , , ,S a,b,c d a b c d  and group 

operation is defined as 

   





0 0 0 0 0

0

1 1 1 1 2 2 2 2

1 2 1

1 2 2 1 2 2 1 2 1 2 2 2 1 2 2 2 1

2 1

2 1 2

, , , , , ,

, , ,
q q q q q

q

S a b c d S a b c d

S a a a b b a c a b b c a b b a b c

a d d

 



 

   

 

 

The identity is the 4-triple  1,0,0,0  and the 

inverse of  ,S a,b,c d  is 

    

  

0
0

0
0 0 0

11 ( 1)1 1 1

2 1
(2 1) (2 1)1

, ,

.

q
q

q
q q q

S a,b,c d S a , a b, a b a c

a b a b c a d

    


   

  

  
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The encryption scheme founded upon the 

automorphism group of the Ree function field 

was introduced in reference [13]. Furthermore, 

the proposed algorithm's correctness has been 

substantiated through practical evaluation. 

In the context of cryptanalysis of the 

encryption scheme, our investigation will 

encompass an examination of both the key 

generation and encryption phases. 

Input: a large group on the field qF , 2

03q q , 

0 3sq   

    ( , ) : \ 0 , , ,q q qA P S a,b,c d a F F c b d F

    

. 

Choose a tame logarithmic signatures 

 ( ) 1( ) ( ) ( )
,...,k k s k ij k

B B b     ,    
( )ij k

b A P  of 

type  1( ) ( ),...,k s kr r , 1, ( )i s k , ( )1, i kj r , 
( )ij k qb F , 

1,3k  . Group element  
( )ij k

b  has a value in only 

one coordinates b , c  or d , respectively.  

Select a random covers 

   
1 2 3 4( ) 1( ) ( ) ( ) ( ) ( ) ( )( )

,..., , , ,k k s k ij ij k ij k ij k ij kk
A A a S a a a a     

 of the same type as 
( )k , where  ija A P , 

 
1 2 3 4( ) ( ) ( ) ( ), , , \ 0ij k ij k ij k ij k qa a a a F , 1,3k  . 

Choose 
0( ) 1( ) ( ), ,..., ( ) \k k s kt t t A P Z , 

 
1 2 3 4( ) ( ) ( ) ( ) ( ), , ,i k i k i k i k i kt S t t t t , (k) jit F  , 

0, (k)i s , 1,4j  , 1,3k  . Let’s s(1) 0(2)t t , 

s(2) 0(3)t t . 

Construct a homomorphism 
kf , 1,3k   

defined by  

    1 1 2 3 4 1 2 3, , , 1, , ,f S a a a a S a a a , 

    2 1 2 3 4 2 3, , , 1,0, ,f S a a a a S a a , 

    3 1 2 3 4 3, , , 1,0,0,f S a a a a S a . 

Let's do the following calculations  

   1

( ) 1( ) ( ) ( 1)( ) ( )( ) ( )
,...,k k s k i k k ij ij i kk k

h h t f a b t 


   

, 

where 1,3k  , 1, ( )i s k , ( )1, i kj r , 

   

 0 0

1 2 1 1 3

1 (1) (1)

2

(1) (1) (1) (1) (1) (1) (1) (1)1, , , ,

ij ij

q q

ij ij ij ij ij ij ij ij

f a b

S a b a a b a b a



  

 

     
2 32 (2) (2) (2)(2) (2)

1,0, , ,ij ij ij ij ijf a b S a b a   

     
33 (3) (3)(3) (3)

1,0,0,ij ij ij ijf a b S a b  . 

An output public key  , ( , )k k kf   , and a 

private key 
 

 ( ) ( ) ( ), ,...,k 0 k s kt t 
 

, 1,3k  . 

Encryption. Let’s define a message 

 m A P ,  1 2 3 4, , ,m S m m m m ,  1 \ 0qm F , 

2 3 4, , qm m m F , the public key  , ( , )k k kf   , 

1,3k  , 
1 2 3, ,

qF
R R R R Z   

Compute 

       1 1 1 2 2 3 3' ' ' 'y R m R R R m         , 

       

        

    
1 2

3

2 1 1 2 2 3 3

(1) 1 (1) 1 (2) 2 (2) 2

(3) 3 (2) 3

' ' ' '

, , ,

.

y R R R R

S a R R a R R

a R R

   

 



   

     

 

  

In this context, the components are 

ascertained through cross-computations within 

the group operation of the product of ( ) ( ),...,0 k s kt t  

and the product of    ( ) ( )jk k k ka R R . 

Compute  

     
13 1 1 1 (1) 1' 1, , ,y f R S a R    ,  

       
2 34 2 2 2 (2) 2 (2) 2' 1,0, ,y f R S a R a R  , 

     
35 3 3 3 (3) 3' 1,0,0,y f R S a R  . 

Output  1 2 3 4 5, , , ,y y y y y . 

This encryption scheme exhibits a notable 

vulnerability. In the proposed instantiation of the 

algorithm, we have 
1R  and 

2R  as encryption 

keys. These elements are unrelated and permit a 

sequential key recovery attack. The keys can be 

restored on the basis of calculating the  ' 'k kR  

for each 1,3k   and comparing it with the 3y , 4y ,

5y  according to the values of the corresponding 

coordinates. 

     
13 1 1 1 (1) 1' 1, , ,y f R S a R    , 

       
2 34 2 2 2 (2) 2 (2) 2' 1,0, ,y f R S a R a R  , 

     
35 3 3 3 (3) 3' 1,0,0,y f R S a R  . 

The complexity of key recovery attack of

2 3( , , )1R R R R  is equivalent to 3q . 

In the revised implementation of the 

cryptosystem, we have modified the encryption 

algorithm to establish a binding between the keys 

of the logarithmic signatures, thereby fortifying 

it against a sequential recovery attack. Our 

proposal entails the utilization of the group of 

automorphisms associated with the Ree function 

field for encryption on the entire group

   ( , )A P S a,b,c d   while incorporating the 
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bound keys
1 2 3( , , )R R R R . In such case, the 

brute force attack complexity is equivalent to 3q . 

Our first step is a key generation stage. 

Input: a large group on the field qF , 2

03q q , 

0 3sq   

    ( , ) : \ 0 , , ,q q qA P S a,b,c d a F F c b d F

    

. 

Choose a tame logarithmic signatures 

 ( ) 1( ) ( ) ( )
,...,k k s k ij k

B B b     ,    
( )ij k

b A P  of 

type  1( ) ( ),...,k s kr r , 1, ( )i s k , ( )1, i kj r , 
( )ij k qb F , 

1,3k  . Group element  
( )ij k

b  has a value in only 

one coordinates b , c  or d , respectively.  

For example    ( )(1)
1, ,0,0

aij ij kb S b . 

Select a random covers 

   ( ) 1( ) ( ) ( ) ( ) ( ) ( )( )
,..., , , ,

a b c dk k s k ij ij k ij k ij k ij kk
A A a S a a a a     

 of the same types as 
( )k , where  ija A P , 

 ( ) \ 0ij k qa F , 0, (k)i s , ( )1, i kj r , 1,3k  . 

Choose  ( ) ( ) ( ) ( ) ( ), , ,
a b c di k i k i k i k i kt S t t t t

 

i( ) ( ) \kt A P Z ,  ( ) ( ) ( ) ( ), , , / 0
a b c di k i k i k i k qt t t t F , 

0, (k)i s , 1,3k  .  

Let’s s( 1) 0( )k kt t  , 1,3k  . 

Construct a homomorphisms defined by  

    1 , , , 1, , ,f S a b c d S b c d , 

    2 , , , 1,0, ,f S a b c d S c d , 

    3 , , , 1,0,0,f S a b c d S d . 

Let's do the following calculations  

   1

(k) 1(k) (k) ( 1)(k) (k)(k) (k)
,..., s i k ij ij ih h t f a b t 


    , 

1, (k)i s , (k)1, ij r , 1,3k   

and 

   

 0 0

1 (1) (1)

2

(1) (1) (1) (1) (1) (1) (1) (1)1, , , ,
b b c b b b b d

ij ij

q q

ij ij ij ij ij ij ij ij

f a b

S a b a a b a b a



  

 

     2 (2) (2) (2)(2) (2)
1,0, , ,

c c dij ij ij ij ijf a b S a b a   

     3 (3) (3)(3) (3)
1,0,0,

d dij ij ij ijf a b S a b  . 

An output public key  , ( , )k k kf   , and a 

private key 
 

 ( ) ( ) ( ), ,...,k 0 k s kt t 
 

, 1,3k  . 

The next step is encryption stage. 

Input: a message  m A P , 

 1 2 3 4, , ,m S m m m m ,  1 \ 0qm F , 
2 3 4, , qm m m F  

and the public key 
1 2, , , ( , )k k kf f f   

 
, 1,3k  . 

Output: a ciphertext  1 2 3, ,y y y  of the 

message m . 

Choose a random 
1 2 3( , , )R R R R , k Z

R Z , 

1,3k  . 

Let's set the encryption key through the 

mapping  

1 2 3 1 2 3' ( , , ) ( ', ', ')R R R R R R R  .  

Compute 

       1 1 1 2 2 3 3' ' ' ' ' ' ' 'y R m R R R m         . 

Compute component
2y . 

       

    

  

(1) (2)

(3)

1 1 2 2 3 3

(1) (2)

(1) (1) (2) (2)

1, 1,

(3)

(3) (3)

1,

' ' '

1, , ,

.

b b c c

i i

c c

i

s s

ij ij ij ij

i j R i j R

s

ij ij

i j R

R R R R

S a a

a

   

 



   

 

   

   

 

 



     In this context, the components are 

ascertained through cross-computations within 

the group operation of the product of ( ) ( ),...,0 k s kt t  

and the product of    ( ) ( )k k k ka R R . 

          2 2 3 3 1 3 3 1 2 2' ' 'y R f R f R f R      

,  

where 

    
( )

( )

1 ( )

1,

' 1, ,0,0
b

i k

s k

k k ij k

i j R

f R S a
 

  , 2,3k   

    
( )

( )

2 ( )

1,

' 1,0, ,0
c

i k

s k

k k ij k

i j R

f R S a
 

  , 3k   

and 

 

 

(1) (1)

(2) (3)

(3)

(1) (1)3

2 ( ) (1)

1 1, 1,

(2) (3)

(2) (2) (3)

1, 1,

(3)

(3) (3)

1,

1, ,

,

.

b b

i i

c c c

i i

d d

i

s s

ij k ij

k i j R i j R

s s

ij ij ij

i j R i j R

s

ij ij

i j R

y S a

a a

a







    

   

 


  




  


 




  

 



 

Compute component 3y . 

          1 1 1 2 2 2 2 3 3' ' 'R f R f R f R      , 

       3 1 3 3 1 2 2' 'y R f R f R    , 

where 

    
( )

( )

1 ( ) ( ) ( )

1,

' 1, , ,
b c d

i k

s k

k k ij k ij k ij k

i j R

f R S a a a
 

  , 

1k   
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    
( )

( )

2 ( ) ( )

1,

' 1,0, ,
c d

i k

s k

k k ij k ij k

i j R

f R S a a
 

  , 

2,3k   

and 

( )

( ) ( )

( )3

3 ( )

1 1,

( ) ( )3 3

( ) ( )

2 1, 2 1,

1, ,

, .

b

i k

c d

i k i k

s k

ij k

k i j R

s k s k

ij k ij k

k i j R k i j R

y S a

a a

  

     


 





  




 

   

 

Output  1 2 3, ,y y y . 

Let’s decrypt. Input: a ciphertext  1 2 3, ,y y y  

and private key  ( ) ( ) ( ), ,...,k 0 k s kt t 
 

, 1,3k  . 

To decrypt a message m , we need to restore 

random numbers 2 3( , , )1R R R R .  

Compute  

(1)

(1)
1 1

1 2 3 0(1) 2 3 (3) (1)

1,

( , , ) 1, , ,
a

i

s

s ij

i j R

D R R R t y y t S  

 

 
    

 
 


 

Restore 
1R  with  

(1)

(1)

(1) 1 (1)

1,
b

i

s

ij

i j R

R 
 

   using 

 
1

(1) 1R


, because 
1  is simple. For further 

calculation, it is necessary to remove the 

component  1 1' R  from 
2y  and  1 1' R  from 

3y  

Compute  

 

   

(k)

(2) (3)

(k)3
1(1)

2 1 1 2 ( )

2 1,

(2) (3)

(2) (2) (3) (3)

1, 1,

' 1, ,

,

b

i

c c d d

i i

s

ij k

k i j R

s s

ij ij ij ij

i j R i j R

y R y S a

a a



 



  

   


  





   




 

 
 

and 

   
( )

( ) ( )

( )3
1(1)

3 1 1 1 3 ( )

2 1,

( ) ( )3 3

( ) ( )

2 1, 2 1,

' 1, ,

, .

a

i k

b c

i k i k

s k

ij k

k i j R

s k s k

ij k ij k

k i j R k i j R

y f R y S a

a a




  

     

 


 




 

   

 

Repeat the calculations for 2 3( , )D R R  

 

  
(2) (3)

1
(1) (1) 1

2 3 0(2) 2 3 (3)

(2) (3)

(2) (3) (3)

1, 1,

( , )

1,0, , .
c d d

i i

s

s s

ij ij ij

i j R i j R

D R R t y y t

S a 




   

 


 




 
 

Restore 2R  with  
(1)

(2)

(2) 2 (1)

1,
c

i

s

ij

i j R

R 
 

   using 

 
1

(2) 2R


, because 2  is simple. Remove the 

component  2 2' R  from (1)

2y  and   1 2 2'f R  

from (1)

3y . 

 

 

(k)

(3) (3)

(k)3
1(2) (1)

2 2 2 2 ( )

2 1,

(3) (3)

(3) (3) (3)

1, 1,

' 1, ,

,

b

i

c d d

i i

s

ij k

k i j R

s s

ij ij ij

i j R i j R

y R y S a

a a







  

   


  





   




 

 

 

and  

  

 

(k)

(3) (3)

(k)3
1(2) (1)

3 2 2 2 3 ( )

2 1,

(3) (3)

(3) (3) (3)

1, 1,

' 1, ,

, .

b

i

c d d

i i

s

ij k

k i j R

s s

ij ij ij

i j R i j R

y f R y S a

a a







  

   


  





   




 

 

 

Compute  

 
1

(2) (2) 1

3 0(3) 2 3 (3)( ) sD R t y y t


 , 

 
(3)

(3)
1

(2) (2) 1

3 0(3) 2 3 (3) (3)

1,

( ) 1,0,0, .
d

i

s

s ij

i j R

D R t y y t S 




 

 
   

 
 



Restore 
3R  with  (3) 3R  using  

1

(3) 3R


.  

We obtain 
1 2 3 1 2 3' ( , , ) ( ', ', ')R R R R R R R   and 

recovery the message  
1

1 2 3 1' ', ', 'm R R R y


  .  

Conclusions and security check 

Our assessment of such an attack remains 

applicable to the implementation of the MST3 

cryptosystem, irrespective of the non-

commutative group employed, and necessitates a 

distinct analysis. This attack entails numerous 

intricacies that are interconnected with 

vulnerabilities in the logarithmic signature and 

potentially the group operation. 

Let us examine a brute-force attack aimed at 

key recovery, for which three potential schemes 

exist. By selecting 
1 2 3( , , )R R R R  try to decipher 

the text 

       1 1 1 2 2 3 3' ' ' ' ' ' ' ' 'y R m R R R m         . 

The covers 

   ( ) ( ) ( ) ( ) ( )( )
, , ,

a b c dk ij ij k ij k ij k ij kk
a S a a a a    are 

chosen randomly, and their values are 

determined through multiplication within a group 

devoid of coordinate constraints. The resultant 

vector  ' 'R  depends on all of its components 

     1 1 2 2 3 3' ' , ' ' , ' 'R R R   . Enumeration of key 

values 1 2 3( , , )R R R R  has an estimation of 

complexity. For a practical attack, the message m  

is also unknown and has uncertainty to choose 

from 3q . This renders a brute-force attack on a 

key unfeasible. If we consider an attack model 

with known plaintext, the complexity of a brute-
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force attack on the ciphertext remains unchanged 

and is equivalent to 3q .  

Brute force attack on the cyphertext 
2y . 

Select 
1 2 3( , , )R R R R  to match 

2y . The vector 
2y  

has a following definition over the components 

 'i iR  

 

 

(1) (1)

(2) (3)

(3)

(1) (1)3

2 ( ) (1)

1 1, 1,

(2) (3)

(2) (2) (3)

1, 1,

(3)

(3) (3)

1,

1, ,

,

b b

i i

c c c

i i

d d

i

s s

ij k ij

k i j R i j R

s s

ij ij ij

i j R i j R

s

ij ij

i j R

y S a

a a

a







    

   

 


  




  


 




  

 



 

The values of the coordinates
2y are defined 

by calculations over the vectors 

     1 1 2 2 3 3' , ' , 'R R R   . The keys 
1 2 3, ,R R R  are 

bound and changes in any of them leads to 

change 
2y . The brute force attack on key 

1 2 3( , , )R R R R  has a complexity equal to 3q . 

Brute force attack on the ciphertext 
3y . Select 

1 2 3( , , )R R R R  to match 
3y . The vector 

3y  has a 

following definition over the components 

 'i iR   

( )

( ) ( )

( )3

3 ( )

1 1,

( ) ( )3 3

( ) ( )

2 1, 2 1,

1, ,

, .

b

i k

c d

i k i k

s k

ij k

k i j R

s k s k

ij k ij k

k i j R k i j R

y S a

a a

  

     


 





  




 

   

 

The values of the coordinates 2y are defined 

by calculations over the vectors 

     1 1 2 2 3 3' , ' , 'R R R   . The keys 
1 2 3, ,R R R  are 

bound and changes in any of them leads to 

change 
2y . The brute force attack on key 

1 2 3( , , )R R R R  has a complexity equal to 3q . 

Brute force attack on the  ( ) ( ),...,0 k s kt t . The 

brute force attack on  ( ) ( ),...,0 k s kt t  is a general for 

the MST cryptosystems and for the calculation in 

the field qF  over the group center  Z G  has an 

optimistic complexity estimation equal to q . For 

the proposed algorithm all calculations are 

executed on whole group 3G q  and is a such 

case the complexity of the brute force attack on 

 ( ) ( ),...,0 k s kt t  will be equal to 3q .  

Our proposition involves employing the 

automorphism group of the Ree function field for 

full group  A P encryption along with associated 

keys 
1 2 3( , , )R R R R  and evaluating the 

complexity of a brute-force attack. We have 

enhanced the encryption algorithm to establish 

key bindings within the logarithmic signature, 

thereby fortifying it against sequential recovery 

attacks. The complexity of a brute-force attack 

for key recovery is assessed as 3q . The 

examination of selected text attacks also warrants 

consideration. 
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