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Abstract
D. Aggarwal and others have recently proposed a new quantum-resistant asymmetric cryptosystem AJPS [1] which uses

operations modulo a Mersenne number. This paper imposes the restrictions on the public key of this cryptosystem and
ciphertext requirements, and presents the active attack on AJPS and the AJPS cryptosystem usage recommendations.
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Introduction

Asymmetric cryptosystems or public-key cryptosys-
tems are efficient cryptographic data protection systems,
the main advantage of which is the ability for users to
exchange messages without prior agreement on a shared
secret. The security of most asymmetric cryptosystems
is based on the complexity of chosen mathematical
problems. For example, the security of RSA is based
on computational complexity of the integer factoriza-
tion problem, and the security of ElGamal encryption
system is based on the discrete logarithm problem.

In the classical computational model it is considered
that these problems are hard and at the moment there
exist no effective algorithms, which are able to solve
them. But in quantum computation model it is not so,
since there exist algorithms for integer factorization and
calculation of the discrete logarithm [2, 3]. In the past,
these results were not considered as a real danger for
practical cryptosystems, since quantum computers were
not expected to be implement in a foreseeable future.
Considering a significant amount of research on scalable
quantum computers and its influence in recent years,
the need of development of new systems of information
security development becomes apparent. Such systems
have to be able to resist attacks conducted by means
of quantum computing devices.

In 2017, the National Institute of Standards and Tech-
nology (NIST) announced the competition of quantum-
resistant cryptographic primitives [4]. One of the par-
ticipants is the AJPS cryptosystem [1], based on arith-
metic modulo a Mersenne number.

The purpose of this work is to analyze the features
of the AJPS cryptosystem, which uses the operations
modulo a Mersenne number and to search possible
vulnerabilities of this cryptosystem.
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1. Mersenne numbers and their properties

Integers of a special form often allow to perform arith-
metic modulo operations faster [5, 6]. This property is
widely used in practice and explains the large amount
of research of special quick arithmetic.

The Mersenne numbers 𝑀𝑛 of the form 2𝑛 − 1 is one
of the most known types of integers, which was studied
by the mathematicians since the 17th century [7].

These numbers have many advantages for use in prac-
tice. For example, the Mersenne numbers have proper-
ties that allow to simplify the calculations of module
operations. There are algorithms for fast computation
of reduction modulo a Mersenne number, and methods
for fast multiplication and bitwise addition modulo a
Mersenne number [6]. Also, there are some relations
for Hamming weight of numbers modulo a Mersenne
number [1]. Using these relations, we can avoid some
cumbersome calculations in practice. All these facts
explain the popularity of using Mersenne numbers in
some applications.

The Hamming weight of an 𝑛-bit integer 𝑠 is a
total amount of 1’s in binary representation of 𝑠
and is denoted by 𝐻𝑎𝑚(𝑠). Obviously, in this case
0 ≤ 𝐻𝑎𝑚(𝑠) ≤ 𝑛.

Lemma 1. For integers 𝐴,𝐵 ∈ {0, 1}𝑛 and module
𝑀𝑛 = 2𝑛 − 1 the following properties hold:
1) 𝐻𝑎𝑚(𝐴+𝐵 mod 𝑀𝑛) ≤ 𝐻𝑎𝑚(𝐴) +𝐻𝑎𝑚(𝐵);

2) 𝐻𝑎𝑚(𝐴 ·𝐵 mod 𝑀𝑛) ≤ 𝐻𝑎𝑚(𝐴) ·𝐻𝑎𝑚(𝐵);

3) If 𝐴 ̸= 0𝑛, then

𝐻𝑎𝑚(−𝐴 mod 𝑀𝑛) = 𝑛−𝐻𝑎𝑚(𝐴).

Using operations modulo a Mersenne number and
relations for Hamming weight modulo a Mersenne
number, a search problem was constructed, which is
called Mersenne Low Hamming Ratio Search Problem
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(MLHRSP) [1]. It is based on the following claim.

Claim 1. Let 𝐹 and 𝐺 be such integers, that the bi-
nary representations of (𝐹 mod 𝑀𝑛) and (𝐺 mod 𝑀𝑛)
both have low Hamming weight ℎ. Then, when we
consider 𝐻 as 𝐹

𝐺 mod 𝑀𝑛, 𝐻 looks pseudorandom,
i.e., it will be hard to distinguish 𝐻 from a random
integer modulo 𝑀𝑛.

Definition 1. (Mersenne Low Hamming Ratio Search
Problem). Given an 𝑛-bit Mersenne number 𝑀𝑛 =
2𝑛 − 1, an 𝑛-bit integer 𝐻 and an integer ℎ, find two
𝑛-bit integers 𝐹 and 𝐺, each of Hamming weight equal
to ℎ, such that:

𝐻 =
𝐹

𝐺
mod 𝑀𝑛.

It is considered that this problem is hard for solving.
MLHRSP is resistant to many known attacks, namely
Meet-in-the-middle attacks, Guess and Win, Lattice-
based attacks etc [8, 9, 10]. Therefore, it is possible to
build a cryptosystem, the security of which will be based
on complexity of MLHRSP. One of such cryptosystems
is AJPS from [1].

2. Description of the AJPS cryptosystem

Next, we describe the basic scheme of encryption for
a single bit 𝑏 ∈ {0, 1}.

Let public parameters of cryptosystem be:
• 𝑀𝑛 = 2𝑛 − 1 – Mersenne number;
• 𝛼 – the security parameter;
• ℎ – fixed integer, such that

( 𝑛ℎ ) ≥ 2𝛼 and 4ℎ2 < 𝑛 ≤ 16ℎ2.

For convenience, we define the set of numbers which
have Hamming weight ℎ modulo a Mersenne number
𝑀𝑛 as:

𝐻𝑀𝑛,ℎ = {𝑥 : 𝐻𝑎𝑚(𝑥 mod 𝑀𝑛) = ℎ}.

Key Generation. Let 𝐹 and 𝐺 be 𝑛-bit random
integers, chosen independently and uniformly from all
𝑛-bit numbers of Hamming weight ℎ:

𝐹,𝐺 ∈ 𝐻𝑀𝑛,ℎ.

The integer 𝐹 is secret parameter of the cryptosystem
and 𝐺 is private (secret) key. Public key 𝐻 is calculated
as

𝐻 =
𝐹

𝐺
mod 𝑀𝑛.

As mentioned earlier, the AJPS cryptosystem al-
lows to encrypt one bit message. So, the plaintext for
encrypting is a value 𝑏 ∈ {0, 1}.

Encryption. The encryption algorithm chooses two
random independent integers 𝐴 and 𝐵 uniformly from
the set 𝐻𝑀𝑛,ℎ. Bit 𝑏 is encrypted as:

𝐶 = (−1)𝑏(𝐴 ·𝐻 +𝐵) mod 𝑀𝑛.

Decryption. The decryption algorithm computes

𝑑 = 𝐻𝑎𝑚(𝐶 ·𝐺 mod 𝑀𝑛).

Then it returns the value of 𝑏, depending on value of 𝑑:

𝑏 =

⎧⎪⎨⎪⎩
0, if 𝑑 ≤ 2ℎ2

1, if 𝑑 ≥ 𝑛− 2ℎ2

⊥ (error), else
.

The correctness of the decryption follows from Lemma
1. To see this, note that

𝐶 ·𝐺 mod 𝑀𝑛 = (−1)𝑏 · (𝐴 · 𝐹 +𝐵 ·𝐺) mod 𝑀𝑛,

which by Lemma 1 has Hamming weight at most 2ℎ2 if
𝑏 = 0, and at least 𝑛− 2ℎ2 if 𝑏 = 1.

3. Restrictions on the public key of the AJPS
cryptosystem

Even relatively secure cryptosystems, that are used
in practice, often appear to have vulnerabilities for
some parameter values. This problem can be solved
by imposing certain restrictions on the choice of public
and/or secret parameters. It is clear that the number
of such vulnerable values should be small, in order not
to accelerate the brute force.

Let’s describe the restriction on the choice of the
public key 𝐻. These are the values of 𝐻, that if values
of 𝐻 and 𝐶 are known, then plaintext (value 𝑏) could
be calculated without knowledge of private key (value
𝐺). It should be noted that values of 𝐻 and 𝐶 are
always known for everyone, since 𝐻 is a public key,
and 𝐶 is a ciphertext, which is transmitted by open
communication channel.

Claim 2. In the AJPS cryptosystem, if the public
key 𝐻 is such that

𝐻𝑎𝑚(𝐻) ≤ 1,

then everyone can deduce the message without knowing
the private key.

Proof. Consider cases where decryption is unambigu-
ous without knowing secret key. To decrypt, find the
value 𝑑:

𝑑 = 𝐻𝑎𝑚(𝐶 ·𝐺 mod 𝑀𝑛) =

= 𝐻𝑎𝑚((−1)𝑏(𝐴 ·𝐻 +𝐵) ·𝐺 mod 𝑀𝑛).

Let’s consider two cases, according to the value of 𝑏:
1) If 𝑏 = 0, then

𝑑 = 𝐻𝑎𝑚((𝐴 ·𝐻 +𝐵) ·𝐺 mod 𝑀𝑛).

Using Lemma 1, we have:

𝑑 = 𝐻𝑎𝑚((𝐴 ·𝐻 +𝐵) ·𝐺 mod 𝑀𝑛)
2
≤

2
≤ 𝐻𝑎𝑚(𝐴 ·𝐻 +𝐵) ·𝐻𝑎𝑚(𝐺)

1
≤

1
≤ (𝐻𝑎𝑚(𝐴 ·𝐻) +𝐻𝑎𝑚(𝐵)) ·𝐻𝑎𝑚(𝐺)

2
≤

2
≤ (𝐻𝑎𝑚(𝐴) ·𝐻𝑎𝑚(𝐻) +𝐻𝑎𝑚(𝐵)) ·𝐻𝑎𝑚(𝐺).

Note: The digit above the sign of inequality shows
which inequality from Lemma 1 was used.

Since on the condition of a cryptosystem the num-
ber 𝐴, 𝐵 and 𝐺 have Hamming weight ℎ, we get
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the following relation:

𝑑 ≤ (ℎ ·𝐻𝑎𝑚(𝐻) + ℎ) · ℎ = ℎ2 ·𝐻𝑎𝑚(𝐻) + ℎ2 =

= ℎ2(𝐻𝑎𝑚(𝐻) + 1).

Recall that in order to get the decrypted bit 0, the
value of 𝑑 must be such that: 𝑑 ≤ 2ℎ2. Thereby,
we have

ℎ2(𝐻𝑎𝑚(𝐻) + 1) ≤ 2ℎ2.

Consequently, unambiguous decrypted bit 𝑏 = 0
with the unknown secret key is possible with the
condition that

𝐻𝑎𝑚(𝐻) ≤ 1.

2) If 𝑏 = 1, then

𝑑 = 𝐻𝑎𝑚(−(𝐴 ·𝐻 +𝐵) ·𝐺 mod 𝑀𝑛).

Using the third condition of Lemma 1, we have:

𝑑 = 𝑛−𝐻𝑎𝑚((𝐴 ·𝐻 +𝐵) ·𝐺 mod 𝑀𝑛).

Similarly, using conditions 1 and 2 of Lemma 1, we
obtain:

𝑑 = 𝑛−𝐻𝑎𝑚((𝐴 ·𝐻 +𝐵) ·𝐺 mod 𝑀𝑛)
2
≥

2
≥ 𝑛− (𝐻𝑎𝑚(𝐴 ·𝐻 +𝐵) ·𝐻𝑎𝑚(𝐺))

1
≥

1
≥ 𝑛− ((𝐻𝑎𝑚(𝐴 ·𝐻) +𝐻𝑎𝑚(𝐵)) ·𝐻𝑎𝑚(𝐺))

2
≥

2
≥ 𝑛− ((𝐻𝑎𝑚(𝐴) ·𝐻𝑎𝑚(𝐻) +𝐻𝑎𝑚(𝐵))×

×𝐻𝑎𝑚(𝐺)).

Given that

𝐻𝑎𝑚(𝐴) = 𝐻𝑎𝑚(𝐵) = 𝐻𝑎𝑚(𝐺) = ℎ,

we have the following relation for 𝑑:

𝑑 ≥ 𝑛− ℎ2(𝐻𝑎𝑚(𝐻) + 1).

Since for an unambiguous decryption of the bit
𝑏 = 1 value of 𝑑 must satisfy the inequality

𝑑 ≥ 𝑛− 2ℎ2,

then we get inequality

𝑛− ℎ2(𝐻𝑎𝑚(𝐻) + 1) ≥ 𝑛− 2ℎ2.

Thus, an unambiguous decryption of bit 1 with an
unknown secret key is possible under the condition

𝐻𝑎𝑚(𝐻) ≤ 1.

So, when 𝐻𝑎𝑚(𝐻) ≤ 1, then anyone can determine the
value of bit 𝑏 without the knowledge of the private key.

Corollary 1. To prevent attacks that use the vulner-
ability described in Claim 2, the public key 𝐻 of the
AJPS cryptosystem must be such that:

𝐻𝑎𝑚(𝐻) ≥ 1.

Obviously 𝐻𝑎𝑚(𝐻) ̸= 0, consequently the restriction
on the public key of the AJPS cryptosystem 𝐻 is:

𝐻𝑎𝑚(𝐻) ̸= 1.

Also, there is a similar restriction on the multiplica-
tive inverse of 𝐻 modulo a Mersenne number. This
restriction is based on the following vulnerability.

Claim 3. If public key of the AJPS cryptosystem 𝐻
is such that

𝐻𝑎𝑚(𝐻−1 mod 𝑀𝑛) ≤ 1,

then everyone can define the message without knowl-
edge of the private key.

Proof. To prove this restriction, it is necessary to
express the private key through a public one. Because
of

𝐻 =
𝐹

𝐺
mod 𝑀𝑛,

we get:

𝐻 ·𝐺 = 𝐹 mod 𝑀𝑛;

𝐺 = 𝐻−1 · 𝐹 mod 𝑀𝑛.

We use the relation obtained for 𝐺 in the formula for 𝑑:

𝑑 = 𝐻𝑎𝑚(𝐶 ·𝐺 mod 𝑀𝑛) =

= 𝐻𝑎𝑚((−1)𝑏(𝐴 ·𝐻 +𝐵) ·𝐺 mod 𝑀𝑛) =

= 𝐻𝑎𝑚((−1)𝑏(𝐴 ·𝐻 +𝐵) ·𝐻−1 · 𝐹 mod 𝑀𝑛) =

= 𝐻𝑎𝑚((−1)𝑏(𝐴 ·𝐻 ·𝐻−1 +𝐵 ·𝐻−1) · 𝐹 mod 𝑀𝑛) =

= 𝐻𝑎𝑚((−1)𝑏(𝐴+𝐵 ·𝐻−1) · 𝐹 mod 𝑀𝑛).

Similarly to the proof of Claim 1, we consider two cases,
use lemma 1 and take into account the fact that

𝐻𝑎𝑚(𝐴) = 𝐻𝑎𝑚(𝐵) = 𝐻𝑎𝑚(𝐹 ) = ℎ.

1) Case 𝑏 = 0:

𝑑 = 𝐻𝑎𝑚((𝐴+𝐵 ·𝐻−1) · 𝐹 mod 𝑀𝑛)
2
≤

2
≤ 𝐻𝑎𝑚(𝐴+𝐵 ·𝐻−1 mod 𝑀𝑛) ·𝐻𝑎𝑚(𝐹 )

1
≤

1
≤ (𝐻𝑎𝑚(𝐴) +𝐻𝑎𝑚(𝐵 ·𝐻−1 mod 𝑀𝑛))×

×𝐻𝑎𝑚(𝐹 )
2
≤

2
≤ (𝐻𝑎𝑚(𝐴) +𝐻𝑎𝑚(𝐵)×𝐻𝑎𝑚(𝐻−1 mod 𝑀𝑛))×

×𝐻𝑎𝑚(𝐹 ) =

= (ℎ+ ℎ ·𝐻𝑎𝑚(𝐻−1 mod 𝑀𝑛)) · ℎ =

= ℎ2(1 +𝐻𝑎𝑚(𝐻−1 mod 𝑀𝑛)).

Thus, for the unambiguous decryption it is neces-
sary that

ℎ2(1 +𝐻𝑎𝑚(𝐻−1 mod 𝑀𝑛)) ≤ 2ℎ2,

that means

ℎ2(1 +𝐻𝑎𝑚(𝐻−1 mod 𝑀𝑛)− 2) ≤ 0.

And, consequently, we get the constraint

𝐻𝑎𝑚(𝐻−1 mod 𝑀𝑛) ≤ 1.

2) Case 𝑏 = 1:

𝑑 = 𝐻𝑎𝑚(−(𝐴+𝐵 ·𝐻−1) · 𝐹 mod 𝑀𝑛)
3
=

3
= 𝑛−𝐻𝑎𝑚((𝐴+𝐵 ·𝐻−1) · 𝐹 mod 𝑀𝑛)

2
≥

2
≥ 𝑛− (𝐻𝑎𝑚(𝐴+𝐵 ·𝐻−1 mod 𝑀𝑛) ·𝐻𝑎𝑚(𝐹 ))

1
≥

1
≥ 𝑛− ((𝐻𝑎𝑚(𝐴) +𝐻𝑎𝑚(𝐵 ·𝐻−1 mod 𝑀𝑛))×

×𝐻𝑎𝑚(𝐹 ))
2
≥
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2
≥ 𝑛− ((𝐻𝑎𝑚(𝐴) +𝐻𝑎𝑚(𝐵)×

×𝐻𝑎𝑚(𝐻−1 mod 𝑀𝑛)) ·𝐻𝑎𝑚(𝐹 )) =

= 𝑛− ((ℎ+ ℎ ·𝐻𝑎𝑚(𝐻−1 mod 𝑀𝑛)) · ℎ) =
= 𝑛− ℎ2(1 +𝐻𝑎𝑚(𝐻−1 mod 𝑀𝑛)).

For unambiguous decryption we need:

𝑛− ℎ2(1 +𝐻𝑎𝑚(𝐻−1 mod 𝑀𝑛)) ≥ 𝑛− 2ℎ2.

Again we get the constraint

𝐻𝑎𝑚(𝐻−1 mod 𝑀𝑛) ≤ 1.

Consequently, in case when 𝐻𝑎𝑚(𝐻−1 mod 𝑀𝑛) ≤ 1,
everyone can decrypt the message without knowledge
of the private key.

Corollary 2. To prevent attacks that use the vulner-
ability described in Claim 3, the public key 𝐻 of the
AJPS cryptosystem must be such that:

𝐻𝑎𝑚(𝐻−1 mod 𝑀𝑛) ≥ 1.

Obviously 𝐻𝑎𝑚(𝐻−1 mod 𝑀𝑛) ̸= 0, consequently the
restriction on the public key of the AJPS cryptosystem
𝐻 is:

𝐻𝑎𝑚(𝐻−1 mod 𝑀𝑛) ̸= 1.

Thus, the public key of the cryptosystem can’t be
whatever value. This value must satisfy certain condi-
tions. Therefore, after the key generation procedure,
it is necessary to check the public key for secure cryp-
tosystem usage.

The complexity of attacks, based on Claim 2, is 𝑂(𝑛).
And the complexity of attacks, based on Claim 3, is
𝑂(𝑛2).

4. Requirements for the ciphertext of the
AJPS cryptosystem

Many cryptosystems have weak ciphertext values
that must be avoided for security reasons. The AJPS
cryptosystem isn’t the exception. If there is a certain
dependence between the Hamming weight of ciphertext
and the Hamming weight of the public key in AJPS,
then AJPS is not secured. One of such vulnerabilities
is described below.

Claim 4. Let 𝐶 be ciphertext obtained by encryption
in the AJPS cryptosystem with the public key 𝐻 and
the private key 𝐺. If at least one of the following
conditions is satisfied:

∙ 𝐻𝑎𝑚(𝐶 ·𝐻−1 mod 𝑀𝑛) ≤ 2ℎ;

∙ 𝐻𝑎𝑚(−𝐶 ·𝐻−1 mod 𝑀𝑛) ≤ 2ℎ,

where 𝐻−1 mod 𝑀𝑛 is a multiplicative inverse of 𝐻
modulo a Mersenne number; (−𝐶 mod 𝑀𝑛) — additive
inverse of 𝐶 modulo a Mersenne number, then anyone
can decrypt the message without knowledge of the
private key.

Proof. Previously we obtained that:

𝑑 = 𝐻𝑎𝑚(𝐶 ·𝐻−1 · 𝐹 mod 𝑀𝑛).

• Using Lemma 1 and the fact that 𝐻𝑎𝑚(𝐹 ) = ℎ,
we obtain

𝑑 = 𝐻𝑎𝑚(𝐶 ·𝐻−1 · 𝐹 mod 𝑀𝑛)
2
≤

2
≤ 𝐻𝑎𝑚(𝐶 ·𝐻−1 mod 𝑀𝑛) ·𝐻𝑎𝑚(𝐹 ) =

= 𝐻𝑎𝑚(𝐶 ·𝐻−1 mod 𝑀𝑛) · ℎ.
Thus, if

𝐻𝑎𝑚(𝐶 ·𝐻−1 mod 𝑀𝑛) ≤ 2ℎ,

then bit of the message will be decrypted and it
will be equal to 0.

• Let’s express 𝑑 via the additive inverse of 𝐶 modulo
a Mersenne number:

𝑑 = 𝐻𝑎𝑚(𝐶 ·𝐻−1 · 𝐹 mod 𝑀𝑛) =

= 𝐻𝑎𝑚(−(−𝐶) ·𝐻−1 · 𝐹 mod 𝑀𝑛)
3
=

3
= 𝑛−𝐻𝑎𝑚((−𝐶) ·𝐻−1 · 𝐹 mod 𝑀𝑛)

2
≥

2
≥ 𝑛−𝐻𝑎𝑚(−𝐶 ·𝐻−1 mod 𝑀𝑛) ·𝐻𝑎𝑚 𝐹 =

= 𝑛−𝐻𝑎𝑚(−𝐶 ·𝐻−1 mod 𝑀𝑛) · ℎ.
So, in case when

𝐻𝑎𝑚(−𝐶 ·𝐻−1 mod 𝑀𝑛) ≤ 2ℎ,

a bit of message will be decrypted and it will be
equal to 1.

Corollary 3. To prevent attacks using the vulnerabil-
ity described in Claim 4, we need to validate obtained
ciphertext 𝐶 after the encryption procedure. If at least
one of the following conditions is satisfied:

∙ 𝐻𝑎𝑚(𝐶 ·𝐻−1 mod 𝑀𝑛) ≤ 2ℎ;

∙ 𝐻𝑎𝑚(−𝐶 ·𝐻−1 mod 𝑀𝑛) ≤ 2ℎ,

then the decryption of the message is possible without
using the private key and the encryption procedure
must be repeated again for the initial message value.

The decryption algorithm computes value

𝑑 = 𝐻𝑎𝑚(𝐶 ·𝐺 mod 𝑀𝑛),

and due to this fact vulnerabilities may occur at a
certain value of Hamming weight of the ciphertext.
These vulnerabilities allow the attacker to decrypt
the message without the knowledge of the private key.
Let’s consider these vulnerabilities.

Claim 5. Let 𝐶 be the ciphertext obtained by encryp-
tion using the AJPS cryptosystem with a public key
𝐻 and private key 𝐺. If at least one of the following
conditions is satisfied:

∙ 𝐻𝑎𝑚(𝐶 mod 𝑀𝑛) ≤ 2ℎ;

∙ 𝐻𝑎𝑚(−𝐶 mod 𝑀𝑛) ≤ 2ℎ,

where (−𝐶 mod 𝑀𝑛) is an additive inverse of 𝐶
modulo a Mersenne number, then anyone can decrypt
the message without the knowledge of the private key.
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Proof. During the decryption we calculate value of
𝑑:

𝑑 = 𝐻𝑎𝑚(𝐶 ·𝐺 mod 𝑀𝑛).

• Using Lemma 1 and taking into account that
𝐻𝑎𝑚(𝐺) = ℎ, we have

𝑑 = 𝐻𝑎𝑚(𝐶 ·𝐺 mod 𝑀𝑛)
2
≥

2
≥ 𝐻𝑎𝑚(𝐶 mod 𝑀𝑛) ·𝐻𝑎𝑚(𝐺) =

= 𝐻𝑎𝑚(𝐶 mod 𝑀𝑛) · ℎ.
So, if

𝐻𝑎𝑚(𝐶 mod 𝑀𝑛) ≤ 2ℎ,

then value 𝑏 is decrypted, and it equals 0.
• Lets represent value 𝑑 via the additive inverse of 𝐶

modulo a Mersenne number and apply Lemma 1:

𝑑 = 𝐻𝑎𝑚(−(−𝐶) ·𝐺 mod 𝑀𝑛)
3
=

𝑛−𝐻𝑎𝑚(−𝐶 ·𝐺 mod 𝑀𝑛)
2
≥

2
≥ 𝑛−𝐻𝑎𝑚(−𝐶 mod 𝑀𝑛) ·𝐻𝑎𝑚(𝐺) =

= 𝑛−𝐻𝑎𝑚(−𝐶 mod 𝑀𝑛) · ℎ.
In this case, if

𝐻𝑎𝑚(−𝐶 mod 𝑀𝑛) ≤ 2ℎ,

then value 𝑏 can be decrypted, and equals 1.

Corollary 4. To prevent attacks that use the vul-
nerability described in Claim 5, after the encryption
procedure ciphertext 𝐶 must be checked. Namely, it
should be checked whether at least one of the following
conditions is satisfied:

∙ 𝐻𝑎𝑚(𝐶 mod 𝑀𝑛) ≤ 2ℎ;

∙ 𝐻𝑎𝑚(−𝐶 mod 𝑀𝑛) ≤ 2ℎ.

If at least one of the conditions is satisfied, then
the decryption of message is possible without the
knowledge of the private key, and the encryption
procedure must be repeated again for the initial
message.

The complexity of attacks, based on Claim 4, is
𝑂(𝑛2). And the complexity of attacks, based on Claim
5, is 𝑂(𝑛).

Using the results presented in Corollaries 1-4, we can
formulate some general recommendations of the AJPS
cryptosystem usage.

Claim 6. We should check the following conditions
in order to avoid attacks on the AJPS cryptosystem.
1) Before encryption (conditions for the value of the

public key):

∙ 𝐻𝑎𝑚(𝐻) ̸= 1;

∙ 𝐻𝑎𝑚(𝐻−1 mod 𝑀𝑛) ̸= 1;

If at least one of the above conditions is not satis-
fied, we need to choose new values of 𝐹 and 𝐺 and
calculate a new value of 𝐻. If all conditions are

met, then the public key can be used to encrypt
messages.

2) After encryption (conditions for the ciphertext, and
for the relation with ciphertext and public key):

∙ 𝐻𝑎𝑚(𝐶 mod 𝑀𝑛) > 2ℎ;

∙ 𝐻𝑎𝑚(−𝐶 mod 𝑀𝑛) > 2ℎ;

∙ 𝐻𝑎𝑚(𝐶 ·𝐻−1 mod 𝑀𝑛) > 2ℎ;

∙ 𝐻𝑎𝑚(−𝐶 ·𝐻−1 mod 𝑀𝑛) > 2ℎ.

If at least one of the above conditions is not satis-
fied, we need to repeat the encryption procedure
again.

If all conditions are met, the ciphertext can be sent to
the recipient.

The step-by-step implementation of key generation,
encryption, decryption and necessary checks in the
AJPS cryptosystem are schematically shown on the
Figure 1.

Fig. 1. Step-by-step applying procedures in AJPS

Remark. If conditions from 2) are not satisfied, we
should not choose a new value of the public key. Since
each procedure of the encryption uses new values 𝐴 and
𝐵, then we get another value of 𝐶 after next encryption.

The following recommendations for using the AJPS
cryptosystem allow us to prevent the weak keys occur-
rence and to avoid some types of attacks, for example,
an active attack.

Active attack is an attack in which an eavesdropper
has the ability to modify transmitted messages and to
insert its own messages instead.

One of the types of active attacks on the cryptosystem
are forgery attacks.

Forgery attack is an active attack in which an eaves-
dropper does not expect true ciphertext from the sender,
but immediately generates fake ciphertext and sends it
to the recipient. The attack is considered successful
if the recipient accepts a fake message as the sender’s
message. The attack is successful, even if the recip-
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ient receives one more ciphertext later (true ciphertext).

Claim 7. Forgery attack is successful for the AJPS
cryptosystem: regardless of the private key, if the eaves-
dropper sends a message 𝐶1 such that

𝐻𝑎𝑚(𝐶1 mod 𝑀𝑛) ≤ 2ℎ,

then the recipient decrypts it as a bit 0. And if the
eavesdropper sends 𝐶2 such that

𝐶2 = −𝐶1 mod 𝑀𝑛,

then the recipient decrypts it as a bit 1. The complexity
of this attack is 𝑂(𝑛).

Proof. Obviously, we need to consider two cases: the
case when the eavesdropper wants to send a ciphertext,
which the recipient will decrypt as 0, and the case when
the recipient will decrypt the ciphertext as 1.
1) If 𝑏 = 0, then the eavesdropper chooses a ciphertext

𝐶1, for which the following inequality holds true:

𝐻𝑎𝑚(𝐶1 mod 𝑀𝑛) ≤ 2ℎ.

Then the eavesdropper sends this ciphertext to the
recipient. And the recipient decrypts:

𝑑 = 𝐻𝑎𝑚(𝐶1 ·𝐺 mod 𝑀𝑛),

By the Lemma 1:

𝑑 = 𝐻𝑎𝑚(𝐶1 ·𝐺 mod 𝑀𝑛)
2
≤

2
≤ 𝐻𝑎𝑚(𝐶1 mod 𝑀𝑛) ·𝐻𝑎𝑚(𝐺) =

= 𝐻𝑎𝑚(𝐶1 mod 𝑀𝑛) · ℎ ≤ 2ℎ2.

Since 𝑑 ≤ 2ℎ2, then 𝑏 = 0.
2) If 𝑏 = 1, then the eavesdropper chooses ciphertext

𝐶2 = −𝐶1 mod 𝑀𝑛,

where 𝐶1 — ciphertext from 1), and sends it. Then

𝑑 = 𝐻𝑎𝑚(𝐶2 ·𝐺 mod 𝑀𝑛),

and by Lemma 1, we have:

𝑑 = 𝐻𝑎𝑚(𝐶2 ·𝐺 mod 𝑀𝑛) =

= 𝐻𝑎𝑚(−𝐶1 ·𝐺 mod 𝑀𝑛)
3
=

3
= 𝑛−𝐻𝑎𝑚(𝐶1 ·𝐺 mod 𝑀𝑛) ≥ 𝑛− 2ℎ2.

Since 𝑑 ≥ 𝑛− 2ℎ2, that 𝑏 = 1.

In this way, the eavesdropper without knowledge
of the private key is able to send the ciphertext with
the selected encrypted message, that will be properly
decrypted by the recipient.

Conclusions
This paper analyzes the new public-key cryptosystem

AJPS, which is one of the participants in the NIST
quantum-resistant cryptography competition. The
AJPS cryptosystem relies on the arithmetic modulo
Mersenne numbers and uses operations in rings of inte-
gers modulo Mersenne number. This work introduces
restrictions of cryptosystem public key, namely the re-

strictions of the Hamming weight of a public key and
the restrictions of the Hamming weight of multiplicative
inverse of a public key. Also ciphertext requirements
were obtained in this work. If these requirements are
not met, then a forgery attack will be successful for the
cryptosystem. Aside from that, this paper illustrates
the AJPS cryptosystem usage recommendations con-
sidering all found vulnerabilities about possibility of
active attacks.
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