
UDC 004

Extended Vulnerability Feature Extraction Based on Public
Resources

Y. Y. Tatarinova1,2, a, O. I. Sinelnikova2

1Kharkiv National University of Radio Electronics
2Samsung Electronics Ukraine Company LLC

Abstract
The focus of this research is to define a framework that automatically analyses Common Vulnerabilities and Exposures
(CVE) from public and disclosed resources and makes mapping to the target computer system. The current framework
calculates risk assessment and estimates vulnerabilities impact according to the features of the target platform. In this
paper, we describe the main vulnerability feature set, provide approaches for automatic extraction from databases and
open resources. We evaluated and improved each obtaining approaches on the recent set of security vulnerabilities (2018
year database). Comparison obtained results with results of manual expert analysis is proved.

Keywords: information and feature extraction, CVE, vulnerability analysis, security risk assessment

1. Introduction

An increasing number of public resources with dis-
closed vulnerabilities information, security threats and
cyber attacks provides a great opportunity for both
defenders and attackers. Detailed information from
various public sources (National Vulnerability Database
([1]), hacker’s blogs and forums, Web-accessible reposi-
tories, OSINT systems (like [2]), etc.) allows attacker
easy to find and exploit the target. Successful exploita-
tion of a minor component can lead to a compromise of
the entire system . This occurs due to high complexity
and connectivity of components on the target system.
Security subdivisions make risk assessment of the entire
environment to prevent possible cascade threats and its
impact. It is necessary to provide vulnerability analysis
in context of software components interaction on the
target computer system.

Previously, we defined the automatic vulnerability
impact assessment for the target system as a function
(𝐹), which takes an end-point product (𝑃), extracts
vulnerability characteristics set (𝐷𝑖) and automatically
estimate vulnerability impact 𝑊𝑖 as 𝐹 (𝐷𝑖, 𝑃), consider-
ing vulnerability and target computer system properties
[3]. End-point product could be a personal computer,
internet of things (IoT) device, wearable, etc.

Our research describes a new methodology and a
tool that analyses vulnerability according to the re-
lated Web-based information from public sources and
open vulnerability databases, makes analysis and fea-
ture extracting from target computer system, maps
all obtained vulnerability characteristics and estimate
risk assessment. The main idea of our approach is to
build a detailed attack tree scenario, compute impact
values and increase or decrease appropriate parts of
Common Vulnerability Scoring System (CVSS) vector

ayullia.tatarinova@mail.com

by obtained estimation results. Design overview and
model description of this methodology were presented
in our previous paper [3]. Our system architecture con-
sists of two parts: vulnerability features extraction and
impact evaluation. In this paper, we define vulnerability
characteristics set (𝐷), feature extraction approaches
and describe its influence on mapping process to the tar-
get computer system (𝑃). We make results analysis and
compare them with expert evaluation, than highlight
significant features based on the obtained results.

2. Related Work

Our approach consists from two aspects of the prob-
lem: extracting security related information from open
source (blogs, security bulletins, exploits) and linking
and mapping obtained information and vulnerability
features to the target computer system, define signif-
icance and influence degree of each feature. In this
section, we investigate the most valuable approaches
and ways, which were designed to extract different kinds
of vulnerability characteristics.

2.1. Vulnerability information extraction from
open Web resources and vulnerability
databases

There has been a large amount of work that expand
the process of extracting cyber security related infor-
mation about vulnerabilities from open sources. The
most known public resource of security information is
National Vulnerability Database (NVD) [1]. It com-
bines information about security issues from different
resources and represents each vulnerability in struc-
tured format, which includes common names, patches,
links, details and short description. Each vulnerability
in this database represented as Common Vulnerability

Software code vulnerabilities investigation and secure applications development

59

and Exposure name (CVE). All CVEs are categorized
by severity, vulnerability type and attack vector.

Unfortunately, significant amount of key information
remain in unstructured text view. This text often in-
cludes information about which products and versions
are affected, which attack can occurs, which low level
functions contains security issue and even what values
must contain local variables for attack.

Various techniques for knowledge extraction have
been proposed. Mulwald et at [4] describes a framework
that identifies threats and attacks in Web text to detect
security exploit. In Ravendar [5] describes a system,
which automatically extracts cybersecurity terms from
blogs and bulletins using Natural Language Processing
(NLP).

A number of approaches have been proposed to in-
terconnect different data and resources on the Web
by defining relations between schemas, Web links, pub-
lished data to the other existing resources [6]. All above
mentioned information could be linked. Joshi et al. [7]
describes the security ontology with classes for Intrusion
Detection System (IDS).

The recent approaches [8], [9] contain interesting
and perspective risk assessment idea, except that the
authors did not take into account vulnerability infor-
mation from Web resources, build attack graph based
on vulnerability information without consideration of
system call graph.

Combining all mentioned approaches and improving
some parts of them, we could identify and extract vul-
nerability features from open vulnerability databases
and apply it to our system.

2.2. Vulnerability freshness and relevance

There are many tools, software (like Flexera) and Web
resources which are devoted to vulnerabilities patches,
fix, timelines and cycles. In [10] O. Alonso makes
prototype system, that visualizes and make explore
timelines of news archive search using crowdsourcing.
But this research is not applicable for our investigation,
so we try to adopt existing approaches and analytics
tools for determining CVEs freshness, relevance and
the degree of security community interest. Our chosen
approach for retrieving impacts of the time dimension
will be described in the following section.

2.3. Extracting feature information from vul-
nerability plain text description

Short plain text description contains the most valu-
able information, which is needed to understand main
idea of attack surface and attack post conditions. There
are several approaches were made to automatic trans-
form plain text description to more structured one
and clearly identify all needed conditions for security
analysis.

Urbanska et al. [11] describes approach of informa-
tion extraction about vulnerability exploitation from
plain text vulnerability description. This approach is

based on designed text filters and rules. Proposed al-
gorithm extracts necessary condition about attacker
actions, but it doesn’t include vulnerability root cause.
Similar approach with using security text related in-
formation was proposed in [12]. These filters based
on additional vulnerability information from NVD site
and dictionary key words lists according to each ex-
tracted entity. Also, Urbanska described Personalized
Attack Graph (PAG) which is manually constructed
from obtained security issue representation.

In [13] authors used two approaches: machine learn-
ing based solution and part-of-speech tagging (POS).
According to experimental results, POS approach is gen-
erally better in identifying attacker action and impact.
Like previous research, [13] does not take into account
vulnerable function names and affected variables.

In [14] Mukherjee extend idea of PAG and formu-
late PAG concepts and define approach for automatic
PAG retrieval. Author proposed unsupervised heuristic-
based approach to parsing security related descriptions
and made inferences based on grammatical patterns and
parts-of-speech for English language with help of public
available tools for sentiment analysis and automatic
entity labeling.

There is no single approach for extracting all sets of
vulnerability characteristics. One kind of vulnerability
feature set such as independent characteristics can be
obtained by applying standard technologies. It could
describe the main vulnerability overview. Another part
of such characteristics as freshness and attack graph
cannot be extracted in a trivial way, so in this part
of the research, we not only define different sets of
vulnerability issue, but also determine most valuable
extracting approaches for each kind of vulnerability
feature.

We made an evaluation of the characteristic influence
on the final result. Because, presence of one set of
vulnerability features could increase impact and proba-
bility of successful attack while the presence of another
feature set could prove system reliability or high attack
complexity.

3. Vulnerability characteristics and informa-
tion retrieval

In this section, we define set of vulnerability char-
acteristics, which will be used for automatic impact
evaluation. Let’s define dangerous of as a set of charac-
teristics:

𝐷𝑖(𝐶𝑉 𝐸𝑖) = (𝑋𝑖, 𝑌𝑖, 𝑍𝑖), (1)

where 𝑋𝑖 -– is a set of static vulnerability charac-
teristics, which independent from target computer sys-
tem and could be obtained via public vulnerability
databases; 𝑌𝑖 – features, that contains detailed vulner-
ability information and could be obtained from public
web resources; 𝑍𝑖 – mapping characteristics, which in-
cludes computer system feature and analysis, evaluation
of 𝑋𝑖 and 𝑌𝑖, recomputing CVSS vector score including
obtained results. Let’s make brief introduction about
each set of vulnerability characteristics and evaluate

Extended Vulnerability Feature Extraction Based on Public Resources

60

importance and influence of each feature from the set
on overall compute system.

Static product independent set of features contain
each vulnerability independently of the source database.
These features are identifier, description, score, list of
affected products, issue type. Full definition we make
in table 1.

Extraction process of these features consists of
database crawling, parsing and mostly depends on what
kind and format vulnerability database is used. The
basis of our assessment is CVSS score vector and its
components (𝐶𝑉 𝑆𝑆𝑏𝑎𝑠𝑒, 𝐶𝑉 𝑆𝑆𝑒𝑥𝑝𝑙, 𝐶𝑉 𝑆𝑆𝑖𝑚𝑝𝑎𝑐𝑡). De-
scription (𝐷𝑒𝑠𝑐𝑟) has potential influence, which de-
pends on the further feature extraction stage. List of
products (𝑃𝑙𝑖𝑠𝑡) could affect decisive role on the map-
ping stage, in case of presence of vulnerable component
on the target system (𝑃).

Vulnerability type (𝑉𝑡𝑦𝑝𝑒) and threat category (𝑉𝑡𝑟𝑒𝑎𝑡)
could be a part of the attack graph to improve evalua-
tion results and help to make more accurate estimation
in case of confirmation of availability security issue on
𝑃 . Main process and technical details of extraction this
set of features we describe in next section.

Security forums, software exploit repositories and
other public web resources could contain exhaustive
information about security issues. Set of such kind of
features (𝑌𝑖) contains all possible entities, which could
be extracted from these resources. Full list of 𝑌𝑖 fea-
tures and their sources are introduced in table 2. These
features mainly related to the attack graph components
and mitigation steps. One of the most relevant feature
is freshness (𝑅𝑒𝑙(𝑡)) which could describe not only secu-
rity community interests, but relevance and feasibility
of issue analysis. We consider references (𝑅𝑒𝑓𝑠) as a
set, which could contain exploits (𝐸𝑥𝑝𝑙) and patches
(𝑃𝑎𝑡𝑐ℎ) subsets. In this paper, we provide main ap-
proaches for extracting this set of features and make
analysis to determine its impact on the final result.

Security news, web content and references added,
modified or deleted continuously over time. Impact of
time dimension on the Web has strong influence in infor-
mation technologies area. Retrieving and understanding
temporal metrics is a challenging task. We try to fo-
cus on how to leverage the time dimension throughout
vulnerability lifecycle and information retrieval. Unfor-
tunately, there were no valuable approaches done to
detect and extract freshness and vulnerability relevance
entities.

Number of released patches and exploits changes over
time, so we can detect it, and possibly even predict. To
determine function of changing these values over time
𝑅𝑒𝑙(𝑡) it’s necessary to discover and detect time any rel-
evant information appearance ((𝐷𝑎𝑡𝑒𝑡𝑖𝑚𝑒(𝑅𝑒𝑓𝑠)) and
its changes over time:

𝑅𝑒𝑙(𝑡) = 𝑑𝑖𝑓𝑓(𝐷𝑎𝑡𝑒𝑡𝑖𝑚𝑒(𝑅𝑒𝑓𝑠)−
𝐷𝑎𝑡𝑒𝑡𝑖𝑚𝑒.𝑛𝑜𝑤(𝑅𝑒𝑓𝑠)) (2)

In practice, definition (2) becomes a challenge. Each
CVE contains creation date, but very rare public refer-
ence has creation or modification date in web response.

Fig. 1. Common vulnerabilities features extraction
process.

Any mentions about date and time seldom occurs. This
part of analysis is a tedious task and is beyond the
scope of this paper. For current research, we decided
to use less complicated approach.

According to table 3, we define next extraction ap-
proaches for the defined features. 𝐿(𝑐)extracted with
mapping attack graph, product list (𝑃𝑙𝑖𝑠𝑡) and target
system dependency graph from target system 𝑃 . We
get 𝐴𝑡 with the help of analyzing 𝐿(𝑐), 𝐴𝑙 and product
profile 𝑃𝑟(𝑃), 𝑋𝑖, 𝑌𝑖. Public resources features could be
obtained from Google trends and archive search (𝑅𝑒𝑙(𝑡)).
𝑅𝑒𝑓𝑠,𝐸𝑥𝑝𝑙, 𝑃𝑎𝑡𝑐ℎ we extract from NVD parsing, web
search, make references content analysis.

One of the most valuable resource which periodically
visiting and crawling publicly available web pages are
web archives. Web archives store enormous amount
of information [17]. The Wayback Machine [18] is a
digital archive search tool, which was launched by In-
ternet Archive [16], a nonprofit organization. User
is required to specify the URL of a web page to re-
trieve the number of times the URL was crawled by the
Wayback Machine. It does not show how many times
the page was actually updated or when it was created.
We use Wayback archive to determine possible time of
references changing.

The next point is to determine rate of security commu-
nity interest to CVE. We include this feature in impact
estimation process because it could help to compute at-
tack probability and possible attacker’s area of interests.
The Google News Archive is an extension of Google
News that provides a free access to scanned archives of
newspapers and links to other newspaper archives on
the web. Unfortunately, during experiment, this tool
does not give accurate and sufficient results on com-
mon vulnerabilities keyword sets. The Google Trends
that analyzes the popularity of top search queries in
Google search across various regions and languages [15].
All abovementioned features and sources are shown at
figure 1.

One of the most challenge part of our research is
CVE description analysis. Making relation security vul-
nerabilities and determine how they could be exploited
in a systematic manner is a task of Attack Trees (AT)
and Attack Graphs (AG). Traditionally they are used
in networking systems analysis. As mentioned above,
in [11] Urbanska made the definition of PAG, which
was used to analyze threats on a single computer sys-
tem. PAG is a structure that represents interaction
between existing vulnerabilities and user or attacker

Software code vulnerabilities investigation and secure applications development

61

Table 1. Static, product independent characteristics, 𝑋𝑖

Name Description Definition Extraction approaches

Unique identifier Assigned by CVE Num-
bering authority

𝐼𝑑 NVD db parsing

Vulnerability type Potential mistakes which
made in source code or
during design

𝑉𝑡𝑦𝑝𝑒 NVD description (𝐷𝑒𝑠𝑐𝑟)
and CWE id

Treat category Treats and post-
conditions, including
STRIDE

𝑉𝑡𝑟𝑒𝑎𝑡 CWE mapping / NVD
database, 𝐷𝑒𝑠𝑟𝑐

CVSS score Severity, composed of two:
exploit ability and impact

𝐶𝑉 𝑆𝑆𝑏𝑎𝑠𝑒 NVD db parsing

Exploitability Reflect the ease and tech-
nical means by which the
vulnerability can be ex-
ploited

𝐶𝑉 𝑆𝑆𝑒𝑥𝑝𝑙 NDV db parsing

Impact Reflect the direct conse-
quence of a successful ex-
ploit

𝐶𝑉 𝑆𝑆𝑖𝑚𝑝𝑐𝑎𝑡 NVD db parsing

Description Short summary with de-
tails about security issue

𝐷𝑒𝑠𝑐𝑟 NVD db parsing

List of products Products and services
that are compatible with
current CVE

𝑃𝑙𝑖𝑠𝑡 NVD db parsing

Table 2. Characteristics from public resources and news, 𝑌𝑖

Name Description Definition Extraction approaches

References Public references 𝑅𝑒𝑓𝑠 NVD db parsing, web
search

Exploit References with exploit
information, exploitation
steps

𝐸𝑥𝑝𝑙 References analysis, con-
tent analysis, NVD pars-
ing

Patch References with patch in-
formation

𝑃𝑎𝑡𝑐ℎ References analysis, con-
tent analysis

Freshness, relevance Temporal characteristic,
defined by querying in se-
curity community

𝑅𝑒𝑙(𝑡) Google trends, archive
search, [15, 16]

Root cause Vulnerable component
name, module of function

𝐷𝑒𝑠𝑐𝑟 Description analysis,
patch analysis

Table 3. Characteristics of product mapping„ 𝑍𝑖

Name Description Definition Extraction approaches

Affected binaries Includes list of possible
affected binaries accord-
ing to cross dependency
graph

𝐿(𝑐) Mapping attack graph,
product list (𝑃𝑙𝑖𝑠𝑡) and
target system dependency
graph

Applicability Applicability and avail-
ability of current vulnera-
bility on target computer
system

𝐴𝑙 Analyzing 𝐿(𝑐) with prod-
uct profile 𝑃𝑟(𝑃)/𝑋𝑖, 𝑌𝑖

Attainability Attainability from the en-
try point to root cause

𝐴𝑡 Analyzing
𝐴𝑙, 𝐿(𝑐), 𝑃 𝑟(𝑃)/𝑋𝑖, 𝑌𝑖

Extended Vulnerability Feature Extraction Based on Public Resources

62

actions that lead to successful exploitation. PAG allows
security specialist to quickly and reliably obtain the
necessary information for analysis. In our work, we will
redefine PAG with some changes. Vulnerability attack
graph is defined as hierarchical relationships between
the following components.

Vulnerable component. Presence of vulnerable soft-
ware on the target system is necessary but not enough
to guarantee successful attack. This part of graph could
contain several types of named nodes: software product,
its components (plugins, modules) and subcomponents
(functions), set of affected versions. This a target point
which has communications with users.

User actions. All users divided into attacker and
customer (user type). According to user type, we de-
fine user’s actions as regular and malicious. Regular
customer could lead to security compromise. Malicious
attacker actions could trigger vulnerability. All users
have access label (remote, local) which could increase or
decrease attack complexity in combination with CVSS
vector.

Impact and post-conditions. This node represents po-
tential impact and side effect in case of successful attack.
Nodes labeled as “issue type” or “impact type”. Various
infected software and post-conditions could occur on
the target system. Some of attack graph components
could be absence due to unstructured nature of security
issue description.

Constructing such graph requires approach, which
could automatically retrieve all components from plain
text description. Brief example of attack graph extrac-
tion from vulnerability description shown in the figure
2. Because this part of our research is too large we
describe it in the next part of research.

We defined a set of characteristics, which takes into
account features of target computer system product (𝑃)
for 𝐶𝑉 𝐸𝑖 as 𝑍𝑖. It is the most significant feature set,
which evaluation could help to obtain the final results.
All features from this set could be extracted with the
help of target product profile (𝑃𝑟(𝑃).𝑃𝑟(𝑃) includes
set of features, such as: main architecture, network
infrastructure, common feature set for each existing
binary, critical assets, entry points, etc. Extracting
approaches for 𝑍𝑖 and product profile are the large part
of this research, so we made it out of scope for this
paper and will fully describe in future papers.

4. System architecture
Overall AVIA architecture was described in our previ-

ous paper. Preprocessing phase of vulnerability impact
evaluation system combines two aspects of the problem.
The first is feature extraction from relevant information
about CVE. The second is mapping these features on
target product (𝑃). In this paper, we describe main
approach, which we use for security issue feature ex-
traction.

4.1. Vulnerability features extraction process

We make our investigation around open-source soft-
ware for which we could obtain source code, associ-

ated metadata, and explicit vulnerability information.
Main part of vulnerability information data we col-
lect from NVD data feeds [1]. This database provided
by National Institute of Standards and Technology
(NIST). It contains information collected in structured
format. To obtain 𝑋𝑖 features for 𝐶𝑉 𝐸𝑖 we apply
𝑁𝑉𝐷 −𝐷𝑎𝑡𝑎𝑃 𝑟𝑜𝑐(𝐶𝑉 𝐸𝑖) parsing:

𝑋𝑖 = 𝑁𝑉𝐷 −𝐷𝑎𝑡𝑎− 𝑃𝑟𝑜𝑐(𝐶𝑉 𝐸𝑖) =

(𝐼𝑑, 𝐶𝑉 𝑆𝑆𝑏𝑎𝑠𝑒, 𝑉𝑡𝑟𝑒𝑎𝑡, 𝑉𝑡𝑦𝑝𝑒, 𝐷𝑒𝑠𝑟𝑐). (3)

We extend CVSS score with base CVSS score
(𝐶𝑉 𝑆𝑆𝑏𝑎𝑠𝑒), exploitability score (𝐶𝑉 𝑆𝑆𝑒𝑥𝑝𝑙) and im-
pact (𝐶𝑉 𝑆𝑆𝑖𝑚𝑝𝑎𝑐𝑡). 𝐶𝑉 𝑆𝑆𝑏𝑎𝑠𝑒 is fundamental charac-
teristic of a vulnerability that are constant over time
and user environments, numerical score composed of
two: exploitability and impact.𝐶𝑉 𝑆𝑆𝑒𝑥𝑝𝑙 shows how
easily a vulnerability can be exploited. 𝐶𝑉 𝑆𝑆𝑖𝑚𝑝𝑎𝑐𝑡

shows the result of a successful exploitation of a vul-
nerability referred to as "impacted component" [19].
According to CVSS defini- tion:

𝐶𝑉 𝑆𝑆𝑏𝑎𝑠𝑒 = 𝐶𝑉 𝑆𝑆𝑒𝑥𝑝𝑙 + 𝐶𝑉 𝑆𝑆𝑖𝑚𝑝𝑎𝑐𝑡. (4)

During mapping stage, we will increase or decrease
𝐶𝑉 𝑆𝑆𝑖𝑚𝑝𝑎𝑐𝑡 and 𝐶𝑉 𝑆𝑆𝑒𝑥𝑝𝑙 value with context of target
system features (such as control and data flow map,
attack graph).

Investigating [20], it is easy to notice that there is
no any division or strong classification between vul-
nerability type and attack type. In our research, we
distinguish vulnerability type according to CWE [20]
classification and vulnerability treat category according
to STRIDE [21]: (𝑉𝑡𝑦𝑝𝑒 and 𝑉𝑡𝑟𝑒𝑎𝑡). This delimitation
required for building attack graph and future impact
estimation.

𝑌𝑖 is as a vector of features that could be obtained
from public resources and news as:

𝑌𝑖(𝐶𝑉 𝐸𝑖) = 𝑃𝑢𝑏𝑙𝑖𝑐𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝐶𝑉 𝐸𝑖) =

(𝑅𝑒𝑓𝑠,𝐸𝑥𝑝𝑙, 𝑃𝑎𝑡𝑐ℎ,𝑅, 𝑆𝑟𝑐, 𝑉,𝑅𝑒𝑙(𝑡)). (5)

Full description and grounding were provided in pre-
vious section. In this section we describe extracting
algorithms of such components as security patches, root
cause and data relevance. Other parameters were ob-
tained via NVD CVE entry parsing.

External references (𝑅𝑒𝑓𝑠) for 𝐶𝑉 𝐸𝑖 could be ob-
tained from NIST CVE site [22], Google Search or NVD
database. In our work we use the last approach. So, ex-
ternal references are parsed from 𝑁𝑉𝐷−𝐷𝑎𝑡𝑎−𝑃𝑟𝑜𝑐()
algorithm.

To identify security patches and fixes (𝑃𝑎𝑡𝑐ℎ) in [[23]
authors focused on the most popular version control
systems for open-source software such as Git [24]. To
find Git repositories and collect security fixes, they
matched URLs with such substrings as “git”, “svn”,
“cvs”, “hg” or “mercurial”. Also, in [23] URL paths
were investigated using popular Git web interfaces (cgit,
GitWeb, github and gitlab) and crawled with substring
matching. This approach collects some commits, which

Software code vulnerabilities investigation and secure applications development

63

Fig. 2. CVE-2017-5130 attack graph obtained from description.

are not security fixes or just describe vulnerability, or
may contain proof-of-concept exploits.

In this research we proposed our own method to get
security patches more explicitly. Many of CVE’s exter-
nal references contains commit hash (md5 or sha1). So
we make pattern search for hash appearance in URL,
but it doesn’t provide clear results. In [20] there is
a problem, when some commit doesn’t contain fixes.
To detect patch presence and vulnerability root cause
we analyze URL path content from Git web interface
and detect diff commit patterns. Most of open source
projects with Git web interfaces display changes via
combined diff format with showing a merge [[25]. Ap-
plying patterns which match combined diff format to
CVE’s external references we get list of patches with
source code and root cause. Sometimes references con-
tain other references to patch code. In this case we
make recursive pattern search for security fix. In our
research recursion level equals 1.

Algorithm 1 Feature extraction from public resources
Require: NVD CVE entry, 𝑋𝑖

Ensure: 𝑌𝑘 = {𝑅𝑒𝑓𝑠,𝐸𝑥𝑝𝑙, 𝑃𝑎𝑡𝑐ℎ, 𝑆𝑟𝑐, 𝑉,𝑅𝑒𝑙(𝑡)}
1: 𝑉,𝑅𝑒𝑓𝑠 = 𝑁𝑉𝐷 −𝐷𝑎𝑡𝑎− 𝑃𝑟𝑜𝑐(𝐶𝑉 𝐸)
2: for 𝑟𝑒𝑓 ← 1 in 𝑅𝑒𝑓𝑠 do
3: if 𝑟𝑒𝑓 is 𝑃𝑎𝑡𝑐ℎ() then
4: 𝑝𝑎𝑡𝑐ℎ𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑(𝑟𝑒𝑓 → 𝑐𝑜𝑛𝑡𝑒𝑛𝑡)
5: end if

𝑤𝑎𝑦𝑏𝑎𝑐𝑘𝑟𝑒𝑠 = 𝑊𝑎𝑦𝑏𝑎𝑐𝑘𝑆𝑒𝑎𝑟𝑐ℎ(𝑟𝑒𝑓)
6: if 𝑤𝑎𝑦𝑏𝑎𝑐𝑘𝑟𝑒𝑠 is not empty then
7: 𝑟𝑒𝑙.𝑎𝑝𝑝𝑒𝑛𝑑(𝑤𝑎𝑦𝑏𝑎𝑐𝑘𝑟𝑒𝑠)
8: end if

𝑡𝑟𝑒𝑛𝑑𝑑𝑎𝑡𝑎 = 𝐺𝑜𝑜𝑔𝑙𝑒𝑇𝑟𝑒𝑛𝑑(𝐼𝑑)
9: if 𝑡𝑟𝑒𝑛𝑑𝑑𝑎𝑡𝑎 is not empty then

10: 𝑟𝑒𝑙.𝑎𝑝𝑝𝑒𝑛𝑑(𝑡𝑟𝑒𝑛𝑑𝑑𝑎𝑡𝑎)
11: end if
12: end for

The next step is to determine relevance of found data
(𝑅𝑒𝑙(𝑡)). Most popular approaches how to get temporal
features and process them were described in previous
section. In our research we use web archive search to get
temporal metrics. Unfortunately, web archive search

systems have some drawbacks such as absence results
on huge number of URLs. For our research we use
Wayback Machine Internet Archive [16].

So, we need to apply complex approach for this chal-
lenge. For each CVE we analyze set of obtained URL
references (𝑅𝑒𝑓𝑠) with Wayback Machine [18]. The
next step is to use Google Trend Analysis application
for each CVE id entry and merge obtained results with
previous step. Unfortunately, Google Trend service has
no any public official API, so during implementation,
we need to use proxy for a huge number of requests.
Full algorithm for extracting 𝑌𝑖 feature set see 1:

Root cause (𝑅) could be obtained only during de-
scription analysis and building attack tree. This part
of our research is out of scope of current paper.

4.2. Binary processing on target product

In this section we fully describe approach, that was
used to analyze binary files. The scope of our research
is Linux-based operation systems for AMD and Intel
processors. On target (𝑃), we investigate executable
and linkable format files (ELF files) (𝐶). For current
research, we include executable and shared object type
of ELF. Kernel object files require future studying.
Every binary file has cross references. They divided into
code cross-references and data cross-references. In this
research we use code cross-references because it’s better
to understand all possible control flows and this could
be done in static analysis way. Data cross-references
should be used during dynamic analysis as an extra
feature. Ida Pro it is the most powerful and accurate
way for computation code cross references. For our work,
we need to compute all possible code references in target
𝑃 . All cross-references are made from one address to
another address. The “from” and “to” addresses may
be either code or data addresses. Addresses defined as
nodes and cross references as the edges of the graph.
We defined own approach to resolve this task.

Set of binary ELF file (𝐶) contains set of executable
ELF 𝐶𝑒𝑥𝑒 and shared object ELF 𝐶𝑠ℎ𝑎𝑟𝑒𝑑 described as:

𝐶 = 𝐶𝑒𝑥𝑒 ∪ 𝐶𝑠ℎ𝑎𝑟𝑒𝑑 = {𝑐1, 𝑐2, ..., 𝑐𝑛}. (6)

Extended Vulnerability Feature Extraction Based on Public Resources

64

𝐼 it is intermediate representation set of each ELF,
which could be obtained during 𝑃𝑟𝑒−𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝐶). This
algorithm returns the representation each binary 𝑐𝑖 as
a set of functions 𝐹 , dependencies 𝐷𝑒𝑝𝑠 and cross-
references graph :

𝐼 = 𝑃𝑟𝑒− 𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝐶) =

𝑛⋃︁
𝑖=1

(𝐹,𝐷𝑒𝑝𝑠, 𝐶𝐹𝐺). (7)

Algorithm 2 Preprocessing ELF file, Pre-Process(C)

Require: List of ELFs, 𝐶
Ensure: 𝑐𝑖 = {𝐹,𝐷𝑒𝑝𝑠, 𝐶𝐹𝐺}
1: for 𝑐𝑖 in 𝐶 do
2: 𝐷𝑒𝑝𝑠 = 𝑟𝑒𝑎𝑑− 𝑑𝑦𝑛𝑎𝑚𝑖𝑐− 𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑐𝑖)
3: 𝐹 = 𝑑𝑒𝑐𝑜𝑚𝑝𝑖𝑙𝑒(𝑐𝑖)
4: for 𝑓𝑖 in 𝐹 do
5: 𝑓𝑖 → 𝑇𝑦𝑝𝑒 = 𝑔𝑒𝑡 − 𝑠𝑦𝑚𝑏𝑜𝑙 − 𝑡𝑦𝑝𝑒(𝑓𝑖 →

𝑁𝑎𝑚𝑒)
6: 𝐶𝐹𝐺.𝑎𝑑𝑑(𝑓𝑖 → 𝑐𝑎𝑙𝑙𝑒𝑟𝑠)
7: 𝐶𝐹𝐺.𝑎𝑑𝑑(𝑓𝑖 → 𝑐𝑎𝑙𝑙𝑒𝑒𝑠)
8: end for
9: end for

We generate two types of cross references: to
symbol(𝑓𝑖 → 𝑐𝑎𝑙𝑙𝑒𝑟𝑠) and cross references from sym-
bol (𝑓𝑖 → 𝑐𝑎𝑙𝑙𝑒𝑒𝑠). Algorithm 2 we designed and
implemented using python ELF package and Capstone
framework.𝑓𝑖 → 𝑐𝑎𝑙𝑙𝑒𝑟𝑠 and 𝑓𝑖 → 𝑐𝑎𝑙𝑙𝑒𝑒𝑠 we detect by
examine each asm instruction and check if it jump or
branch instruction. When we meet branch or jump
instruction – get the address parameter and check its
function. Functions, whose code is not presented within
dynamic linked library or executable – checked in dy-
namic section and marked as exported.

Statically linked binaries contain all of the code for
the libraries that have been linked to the program. As
a result, building call graph for such type of ELF is
different challenge and become out of scope current
paper. Dependency list 𝐷𝑒𝑝𝑠 for each executable 𝑐𝑖
was retrieved by dissecting and examining dynamic
section with tag 𝐷𝑇_𝑁𝐸𝐸𝐷𝐸𝐷, which holds string
table offset to the name of needed library. In order to
distinguish among overloaded functions, compilers gen-
erate unique names with additional characters, which is
used to encode additional information about function.
This decoration called name mangling. All functions
must be demangled before any usage or searching inside
other binaries.

After building call graph and getting dependency set
for each binary, the next step is to build global control
flow graph (𝐺):

𝐺 = 𝐺𝑙𝑜𝑏𝑎𝑙𝐺𝑟𝑎𝑝ℎ(𝐼) =
𝑛⋃︁

𝑖=1

(𝐷𝑒𝑝𝑠𝑖, 𝐶𝐹𝐺𝑖). (8)

Graph construction algorithm is to merge each bi-
nary 𝑐𝑖 → 𝐶𝐹𝐺 with taking into account dependencies
(𝐷𝑒𝑝𝑠𝑖). Obtained global graph 𝐺 is mapped to the
attack tree and attack graph for future impact evalua-
tion.

5. Experiments and system evaluation

We used NVD dataset of 2018 and 2016 years for out
experiment. We took dataset of 2016 to prove influence
of information temporal changes and detect possible
area of interest in certain vulnerabilities of security
community and how it changes over time.

Major source (NVD database) represented in .json file
format. Other input resources were in Web page textual
form. All collected features has textual, numerical or
numerical set representation, so we use database storage
and move there all collected data for future processing.

Table 4 is dedicated to patch extraction results be-
cause this is one of the most significant feature in out
set and it was not mentioned in related work. Patch ex-
istence significantly reduces vulnerability impact. NVD
tagging approach lays in patch tags, which could be
extracted during json/xml NVD database parsing. Our
own content analysis approach was fully described in
previous section. Another our approach for patch ex-
traction – it is URL analysis (hash method) is present
in table 4. During result analysis, we noticed, that
combined approach (NVD tagging and content analy-
sis) could provide better results for our future parts of
research.

We decided not to include URL analysis in combined
approach because of high false positive rate. In figure
3, common distribution of vulnerabilities displayed in
appliance with CVSS score system.

During experiment and results calculation, it was no-
ticed that CVE’s references could contain several URLs
with commit and patch information, which devoted to
fixing security issue. We investigated this finding more
in depth. During manual verification it was determined,
that not all detected commits could really contain secu-
rity patch. We need to consider only content analysis
approach to extract root cause (𝑅). At the implemen-
tation phase of 𝑁𝑉𝐷−𝐷𝑎𝑡𝑎−𝑃𝑟𝑜𝑐() we noticed, that
security issue could have more than one CWE item,
sometimes from different security domains, undefined
subdomain or be empty. Only 69% of CVEs contains
CWE mark during parsing NVD database.

We should mention, that number of vulnerabilities,
patches and exploits is proportional to NVD vulnera-
bility CVSS scoring distribution. According to this, we
could define the most significant CVSS score interval in
accordance with histogram peaks. With the advent of
the publication of the vulnerability, there is an increased
amount of data on how to exploit vulnerability. The
amount of such information is much higher than public
information about updates, patches or other security
advisories, but situation changes over time. Figure 3c
and 3d prove that: amount of security advisories and
patches exceed number of found exploits and PoCs, so
we need to consider tem- poral metric as most relevant
during automatic impact evaluation during runtime.

Comparison of approaches for catching temporal met-
rics from vulnerability information are summarized in
table 5. Both tables (4 and 5) show how many times
declared features met in the chosen NVD database
set per year. Table 5 shows, that temporal features

Software code vulnerabilities investigation and secure applications development

65

(a) (b)

(c) (d)

Fig. 3. Patch and exploit statistics by year: 3a - patch and exploit statistics via total number of references by
2018; 3b - comparison of unique CVE’s patches and exploit by October 2018; : 3c - patch and exploit statistics
via total number of references by 2016; 3d - comparison of unique CVE’s patches and exploit for 2016.

Table 4. Retrieving patch information results.

Year Items NVD tagging Content analysis, % URL analysis, % Combined approach, % Total

2018 CVEs 1623 21.7 536 7.18 672 9 1855 24.86 7460
References 1816 9 672 3.51 792 4.14 2123 11.1 19105

2016 CVEs 3749 38 1119 11.38 1274 12.9 4005 40.74 9837
References 5205 12.54 1514 3.64 1626 3.9 5672 13.66 41548

Table 5. Retrieving patch information results.

Item Google trends Wayback machine Total

CVEs 508 6.8% 3413 45.73% 7460
References N/A 4640 24.29% 19105

occurs very rare according to features from public re-
sources and product independent sets. Please, note,
that Google Trend takes as input CVE while Wayback
machine takes URL as input, so to compare results, we
made mapping to CVE surface. During result analy-
sis of Google Trend search, we need to consider, that
this approach shows how world security community

interested in certain vulnerabilities. We made rank-
ing obtained CVEs by CVSS score and received the
distribution that proportionally to overall CVSS distri-
bution over the time. Wayback machine results could
be used to show and analyze changes of security notes.
As we determined, internet archive could give us more
detailed information to retrieve and analyze temporal

Extended Vulnerability Feature Extraction Based on Public Resources

66

metrics. Unfortunately, most urls, which were crawled
by Wayback Machine refer to vendor’s notes or security
advisories.

6. Conclusions and ongoing work
Recently we proposed concept of automatic vulner-

ability impact evaluation framework and proved its
performance on the set of libxml CVEs as an example.
In this research, we define a model with a basic set of
vulnerability characteristics, its extraction approaches
for automatic vulnerability impact evaluation frame-
work. In this paper for the first time, it was proposed
to take into consideration the security community in-
terests and information temporary changes for the risk
assessment. We implemented feature extraction module
which automatically extracts proposed vulnerability fea-
ture set. Obtained results were compared with manual
expert results.

Declared feature set provides full-scale base to make
result complete and reliable for attack tree and rule
based automation impact evaluation. Additional fea-
tures, such as root cause and attack tree will be obtained
with the help of natural language processing techniques
(named entity recognition) and will be described in the
next research article. The weight of temporal metrics
should be recomputed according to obtained experiment
results. In this study we concluded, that declared tem-
poral metric has the most significant influence during
impact evaluation and should be analyzed with the help
of time series analysis algorithms.

References
[1] N. I. of Standards and T. (NIST)., “National vul-

nerability database.” https://nvd.nist.gov.
[2] J. Matherly, “Shodan.” https://www.shodan.io/.
[3] Y. Tatarinova, “Avia: Automatic vulnerability im-

pact assessment on the target system,” pp. 364–368,
08 2018.

[4] V. Mulwad, W. Li, A. Joshi, T. Finin, and
K. Viswanathan, “Extracting information about
security vulnerabilities from web text,” in Proceed-
ings of the 2011 IEEE/WIC/ACM International
Conferences on Web Intelligence and Intelligent
Agent Technology-Volume 03, pp. 257–260, IEEE
Computer Society, 2011.

[5] R. Lal, “Information Extraction of Security related
entities and concepts from unstructured text.,”
Master’s thesis, May 2013.

[6] C. Bizer, T. Heath, and T. Berners-Lee, “Linked
data: The story so far,” in Semantic services, in-
teroperability and web applications: emerging con-
cepts, pp. 205–227, IGI Global, 2011.

[7] A. P. Joshi, “Linked data for software security
concepts and vulnerability descriptions,” tech. rep.,
Maryland Univ Baltimore Country Baltimore Md
dept of Computer Science And . . . , 2013.

[8] M. U. Aksu, K. Bicakci, M. H. Dilek, A. M. Ozbayo-
glu, et al., “Automated generation of attack graphs

using nvd,” in Proceedings of the Eighth ACM
Conference on Data and Application Security and
Privacy, pp. 135–142, ACM, 2018.

[9] M. U. Aksu, M. H. Dilek, E. İ. Tatlı, K. Bicakci,
H. İ. Dirik, M. U. Demirezen, and T. Aykır, “A
quantitative cvss-based cyber security risk assess-
ment methodology for it systems,” in 2017 Inter-
national Carnahan Conference on Security Tech-
nology (ICCST), pp. 1–8, IEEE, 2017.

[10] O. Alonso, “Time-based exploration of news
archives,”

[11] M. Urbanska, I. Ray, A. E. Howe, and M. Roberts,
“Structuring a vulnerability description for compre-
hensive single system security analysis,”

[12] A. Joshi, R. Lal, T. Finin, and A. Joshi, “Extract-
ing cybersecurity related linked data from text,” in
2013 IEEE Seventh International Conference on
Semantic Computing, pp. 252–259, IEEE, 2013.

[13] S. Weerawardhana, S. Mukherjee, I. Ray, and
A. Howe, “Automated extraction of vulnerability
information for home computer security,” in Inter-
national Symposium on Foundations and Practice
of Security, pp. 356–366, Springer, 2014.

[14] S. Mukherjee, A Heuristic-Based Approach to Au-
tomatically Extract Personalized Attack Graph Re-
lated Concepts from Vulnerability Descriptions.
PhD thesis, Colorado State University, 2017.

[15] “Google trends.” https://trends.google.com/
trends/?geo=US.

[16] “Internet archive search.” https://web.archive.
org/.

[17] N. Kanhabua, R. Blanco, K. Nørvåg, et al.,
“Temporal information retrieval,” Foundations and
Trends® in Information Retrieval, vol. 9, no. 2,
pp. 91–208, 2015.

[18] “Wayback machine.” https://en.wikipedia.
org/wiki/Wayback_Machine.

[19] “Cvss explained.” https://www.beyondsecurity.
com/vulnerability_assessment_
requirements_cvss_explained.html.

[20] “Common weakness enumeration.” https://cwe.
mitre.org/.

[21] “Application threat modeling..” https:
//www.owasp.org/index.php/Application_
Threat_Modeling.

[22] MITRE, “Common vulnerabilities and exposures.”
https://cve.mitre.org/.

[23] F. Li and V. Paxson, “A large-scale empirical study
of security patches,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Com-
munications Security, pp. 2201–2215, ACM, 2017.

[24] “Git.” https://git-scm.com/.

[25] “Git documentation.” https://git-scm.com/
docs/git-diff.

Software code vulnerabilities investigation and secure applications development

67

https://nvd.nist.gov
https://www.shodan.io/
https://trends.google.com/trends/?geo=US
https://trends.google.com/trends/?geo=US
https://web.archive.org/
https://web.archive.org/
https://en.wikipedia.org/wiki/Wayback_Machine
https://en.wikipedia.org/wiki/Wayback_Machine
https://www.beyondsecurity.c om/vulnerability_assessment_requirements_cvss_explained.html
https://www.beyondsecurity.c om/vulnerability_assessment_requirements_cvss_explained.html
https://www.beyondsecurity.c om/vulnerability_assessment_requirements_cvss_explained.html
https://cwe.mitre.org/
https://cwe.mitre.org/
https://www.owasp.org/index.php/Application_Threat_Modeling
https://www.owasp.org/index.php/Application_Threat_Modeling
https://www.owasp.org/index.php/Application_Threat_Modeling
https://cve.mitre.org/
https://git-scm.com/
https://git-scm.com/docs/git-diff
https://git-scm.com/docs/git-diff

