Theoretical and cryptographic problems of cybersecurity

UDC 004.056.5

Aspects of blockchain reliability considering its consensus
algorithms

K.S. Gorniak®?, A.M. Kudin'?

! National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institutes,
Institute of Physics and Technology

2 National Bank of Ukraine

Abstract

The reliability of blockchain as an information system is discussed in this article. There were considered two types of
models for blockchain systems. One assumes an almost ideal decentralized network with the probability of a software
crush on an independent nodes, other adds to this approach a probability of the communication channels corruption. We
study consensus algorithms used in blockchain and make assumptions about their reliability and functioning in practice.

Keywords: Blockchain, Consensus protocols, Blockchain reliability

Introduction

Building new information systems can lead to an
actual problem of creating decentralized protocols of
processing information, such that the participants of
the protocol don’t need a centralized service to work
valid. One of the technologies that implement that kind
of protocols is blockchain.

Blockchain is based on the distributed between par-
ticipants of the peer-to-peer network ledger and speci-
fications, so called blockchain consensus protocols, by
which the ledger can be modified.

The ledger is used to record transactions across many
computers so that any involved record cannot be altered
retroactively, without the alteration of all subsequent
blocks. This allows the participants to verify and audit
transactions independently and relatively inexpensively.

Consensus protocols are at the core of distributed
computing and also provide a foundational building
protocol for multi-party cryptographic protocols. Such
protocols must respect two important resiliency proper-
ties, consistency and liveness. Consistency ensures that
all honest nodes have the same view of the log, whereas
liveness requires that transactions will be incorporated
into the log quickly.

All in all blockchain technology is one of the most
promising modern hi-tech technologies for various pro-
cessing of information. The efficiency of its functionali-
ties is based on the resilience of cryptographic systems
in cryptanalysis attacks.

This paper studies some of the consensus protocols
of blockchain for their reliability.

1. Technical overview

Blockchain consensus protocols

Consensus algorithms allow a set of machines to work
as a group that can survive the failures of some of its

participants. Because of this, they play a key role in
building reliable large-scale software systems.

In distributed systems, there is no perfect consen-
sus protocol. The consensus protocol needs to make a
trade-off among consistency, availability and partition
fault tolerance (CAP)[1]. Besides, the consensus proto-
col also needs to address Byzantine Generals Problem
that there will be some malicious nodes deliberately
undermining the consensus process. Next in the sec-
tion there are brief descriptions of three blockchain
consensus protocols that can effectively solve Byzantine
Generals Problem [2] and were taken for research in
this paper.

PoW (Proof of Work)[3]: PoW selects one node to
create a new block in each round of consensus by com-
putational power competition. In the competition, the
participating nodes need to solve a cryptographic prob-
lem. The node who first addresses the puzzle can have
a right to create a new block. It is very difficult to
solve a PoW puzzle. Nodes need to keep adjusting the
value of nonce to get the correct answer, which requires
much computational power. It is feasible for a mali-
cious attacker to overthrow one block in a chain, but as
the valid blocks in the chain increase, the workload is
also accumulated, therefore overthrowing a long chain
requires a huge amount of computational power. PoW
belongs to the probabilistic-finality consensus protocols
since it guarantees eventual consistency.

PBFT (Practical Byzantine Fault Tolerance)[4]:
PBFT is a Byzantine Fault Tolerance protocol with
low algorithm complexity and high practicality in dis-
tributed systems. PBFT contains five phases: request,
pre-prepare, prepare, commit and reply. The primary
node forwards the message sent by the client to the
other three nodes. In the case that node 3 is crashed,
one message goes through five phases to reach a con-
sensus among these nodes. Finally, these nodes reply
to the client to complete a round of consensus. PBFT

Aspects of blockchain reliability considering its consensus algorithms

guarantees nodes maintain a common state and take
a consistent action in each round of consensus. PBFT
achieves the goal of strong consistency, thus it is an
absolute-finality consensus protocol.

Raft[5]: Raft is a consensus algorithm for managing
a replicated log. In order to enhance understandabil-
ity, Raft separates the key elements of consensus, such
as leader election, log replication, and safety, and it
enforces a stronger degree of coherency to reduce the
number of states that must be considered. Raft also
includes a new mechanism for changing the cluster mem-
bership, which uses overlapping majorities to guarantee
safety.

PoW is a probabilistic-finality protocol, and attackers
need to accumulate a large amount of computational
power or coins (stake) to create a long private chain
to replace a valid chain. For instance, in Bitcoin, a
fraction of the computational power is sufficient for an
attacker to create a longer private chain to successfully
complete a double-spend attack. Hence, if attacker’s
fraction of the computational power is more than or
equal to, the blockchain network will be undermined.
In PBFT, if there are a total of nodes in the network,
the number of normal nodes must exceed, which means
that the number of malicious or crashed nodes must
be less than. Therefore, the fault tolerance of PBFT is
1/3. The fault tolerance of Raft is the same as PoW,
1/2, since Raft is in fact crash-tolerance protocol and
doesn’t actually deal with maliciously intended nodes.

Reliability of software

Reliability of the software can be defined as a resis-
tance or an ability to function smoothly and to restore
the working state after failures have occurred. Stabil-
ity of the system depends on the ability to respond to
undetected errors so that it does not affect reliability[6].

All existing indicators of software reliability can be
divided into two large groups:

1) quantitative indicators of software reliability;
2) qualitative indicators of software reliability.

We only consider quantitative characteristics of soft-
ware reliability, which are:

e Infallibility. It characterizes ability of the software
to perform its functions during exploitation. We
assume that the failure of the program is the re-
sult of the manifestation of a hidden error. The
input and data generated by the program are not
software elements and their reliability is related
to the operation of external devices and hardware.
Only the constants entered by the programmer are
considered as a part of the software.

e Resistance. Software stability determines the abil-
ity of a machine to perform a given function un-
der the conditions of interference (errors, failures,
crushes) occurring in non-program sources (techni-
cal support, initial data).

e Correctness. It characterizes the software’s adapt-
ability to finding and correcting errors and making
changes to it during operation. It is used to char-
acterize programs that are being restored during

operation. Correction indicators are: T}, correction
time, program correction probability for a given
time Py (t), coefficient of readiness K., others.

e Protection. It is an indicator of protection against
third-party software intrusions.

2. Reliability model

Speaking of validity and reliance - blockchain, as a
distributed data base, highly depends on the bound-
aries that are set for its number of honest and corrupted
players of the protocol. Blockchain functionates cor-
rectly due to the consensus algorithm which makes sure
that all nodes in the network will come to a common
solution. In other words it means the algorithm must
solve the Byzantine generals problem, make decisions
despite dealing with m corrupted participants.

“Honesty” is usually understood as an unmistakable
work of a protocol participant that can be defined by
the reliability of a software. Assuming that hardware
part is working correctly, there was considered mathe-
matical model about appearing mistakes in the program
complex during its testing.

There were made next assumptions for building such
model:

e time intervals between mistakes are statistically

independent;

e in the testing process there can be accumulated
big groups of mistakes, that create a queue for a
program correction;

e intensity of finding mistakes remains constant, until
they are not reformed.

We than consider different approaches to the
blockchain model as a distributed system. First model
is taking a conception that the only mistakes, that are
appearing in the system, are faults and crushes in the
members’ software. Such approach helps build a math-
ematical model based on queuing management system.
Another approach fills up the first one by making an
assumption about mistakes in the transmission chan-
nels. Both of the methods consider that there are no
delay when sending a message to another party.

2.1. Modeling blockchain as a queuing
network

As a new reliability prediction model, we are consider-
ing a queuing network with blocking. In such system, a
arrival that finds all channels busy receives a response,
leaves the system, and no longer participates in the
service. In the understanding of the model of detection
of distortions in the PC we consider the actual errors,
which during the operation of the system manifest them-
selves in some nodes (channels). That is, the trap that
came to the channel is interpreted as detecting an error
on the node.

The adequacy of such a model is based on assump-
tions about the indicative distribution of service time
(allowed within the model) and the Poissonian nature
of the application flow, which means the fulfillment
of two properties: the process in the system must be

Theoretical and cryptographic problems of cybersecurity

stationary and future changes should not be affected
by changes in the past.

It is obvious that in the beginning, immediately after
the system is put into operation, the process will not
be stationary, and in the queuing system (as in any dy-
namic system) a so-called «transient», non-stationary
process will arise. However, after a while, this tran-
sient process dies down, and the system switches to
a steady-state, so-called «set» mode, the probabilistic
characteristics of which will no longer depend on time.

In this paper we consider exactly the characteristics
of the limit service mode. To be able to evaluate the
reliability of the model being built, we simplify it (a
complex model cannot be described) by neglecting the
dependency of errors on the PC with each other. This
assumption is possible because modern compilers detect
and correct such errors more often and faster than those
directly related to the logic of the program.

Suppose we have a n channel queued queuing system,
that is, in terms of decentralized protocol, of n network
members. Consider X as a physical system with a finite
number of states:

xo — all channels are free (program error),

x1 — Exactly one channel (single node error),

xr — equals k of channels (faulty nodes on the net-
work),

xr, — all n channels are busy, that is, distortions are
detected on all nodes

The problem now transforms into finding state prob-
abilities pr, (k =0, 1, ..., n) for any moment of time ¢.
It can be solved if we take next assumptions as truth:

1) Flow of applications with density A;

2) service time (exempting the channel from the ap-
plication, i.e eliminating the error) Tjqs: is expo-
nentially distributed with a parameter u = 77%

In other words, this assumptions leads our model to

be a Markov process so the appropriate mathematical
field can be used.

g(t) = pe ", t>0

The parameter p is similar to the parameter A of the
exponential distribution law T" between adjacent simple
flow events:

f)=xe ™M t>0

A makes sense as a flow of applications (errors), and
similarly p can be considered as «release flow density».
In fact, a queue that is constantly busy (program er-
rors constantly appear); then obviously there will be a
simpler stream with density p in this channel.

We determine the probabilities po(t), p1(¢), - . -
to accept the possible states of xg, x1, ..
point in time is true

ipk(t) =1
k=0

We fix the time ¢ and find the probability that at
t + At the system will be in state xy (all queues are

:Pn(t)
., &y. For any

free; all nodes are working correctly), this can happen
in two ways:

A — at the moment ¢, the system was in state xg, and
during At did not change from z; (no application came
in),

B — at t, the system was in the state x;, and during
At the channel was released (i.e. the error was corrected)
and the system went into the state xg.

Using the theorem of summing probabilities:

po(t + At) = P(A) + P(B)

We can find the probability of the event A using the
multiplication theorem. The probability that at ¢ the
system was in the state xq is po(t). The probability
that no request will occur during 6t is e~ 2t Accurate
to the magnitude of the larger order of smallness

e Mt =1 \At

That means that P(A) = po(t)(1 — AAt).
Using similar thoughts to the event B:

eTHAL =1 — uAt
That way we get P(B) = p1(t)(1 — pAt)
polt + At) = po(t)(1 — AAE) + pr(8)(1 —)

Than we transform the last equation into the differ-
ential one:

WO rpo(t) + 1 (1

Similar differential equations are constructed for other
probabilities of states. Take any k (0 <k < n) and find
the probability pg(t + At) that at ¢t + At) the system
will have a state xy,.

Such a probability is calculated as the probability of
the sum of two events rather than two:

A — at t, the system was in state zp and did not
switch from one to another during At

B — at t the system was in state z;_; and switched
to zj during At (application came)

C — at t the system was in state xj11 and switched
to x during At (one queue became free)

By making computations on above mentioned equa-
tions next probabilities are acquired:

P(A) = pi(t)(1 — pk + A)At)
P(B) = pr-1(t)(AA?)

P(C) = pr+1(t) (nAt)
We than can calculate all probabilities p,,(t) and get
a common system:

5l = —Apo(t) + ppr (t)

5= = Pe—1(OA — (A + kp)pi + p(k + 1)prsa ()

dt =)‘pn—l(t) - n,u)pn

To find the boundary probabilities (system states
probabilities in the set mode), all the probabilities at

Aspects of blockchain reliability considering its consensus algorithms

their boundaries are replaced by pg, p1,...,Pn, and all
derivatives become zero. The resulting system is no
longer a system of differential but algebraic equations.

=Apo + pp1 =0
Apo — (A + p)p1 + 2up2 =0

Apn—g = (A + (n = D)p)pn—1 + nppn =0
Apn—l - nﬂ)pn =0

Solving the second system by its unknown variables
from the first equation pg, p1,...,pn, we obtain:

A
P1 = —D 1
1= 2o W
N T e g @
P2 = % Do w)p1) = 2#2100

The value of & = 2 is the estimated density of re-
quests flow, that is, the average number of applications
that arrive at the average time of service of one ap-
plication. In the model of error considered, this value
indicates the average number of errors that occur over
the average time required to correct a single distortion.

Then oo = Amy, where m; is the average service time

of one application. In new notation, the formula for p;
takes the form

k
«a
Pk = EPO (3)
Expressing all probabilities of py through a:
1
Po = —
ak
K
k=0
Oék
P = nk! ’.
> G
i=0
Thus, by obtaining probabilities
po(t),p1(t),...,pn(t), we can find the average

number of corrupted nodes among all participants of
the decentralized protocol, that is, they had a detected
error that led to a malfunction.

Let £ be a random variable that takes 0,1,2,...,n.
Each possible value of k means that x; with probability
pr (working with k nodes) fails on the system. Then
the mathematical expectation of a random variable &
is the average number of unfair nodes.

n
ME=>"kp
k=0

For each of the three blockchain consensus algorithms

we evaluate probable meaning of the variables: m;

— the average error correction time and A — the flux

density of occurring errors: Hyperledger Fabric (IBM) —

uses PBFT consensus, permissioned blockchain, closed

software, m;y = 2 — 3 months, A = 7 — 8 errors per
month;

Bitcoin is a public blockchain with open (free) soft-
ware, uses PoW, m; = 6 months, A = 10 — 15 errors
per month;

Quorum (JP Morgan) is a private open source
blockchain built on the Ethereum platform, uses Raft
algorithm, m; = 4 months, A = 7 — 8 errors per month.

Knowing the restrictions on the number of dishonest
nodes, in which the algorithm works correctly, and the
average number of nodes with failures, it is possible
to find the minimum number of nodes for the normal
operation of the protocol for the three protocols, which
were discussed (pic. 1, 2, 3).

Quorum(Raft)
30,0000

|
53
25,0000

20,0000
15,0000
10,0000

5,0000

0,0000
it 0 30 20 50 60 i 80 %0 100

Fig. 1. Quorum. The average number of dishonest
nodes, depending on the n number of all nodes

HyperLedger Fabric (PBFT)

23,0000

180000
130000
80000
30000

2,0000

Fig. 2. Hyperledger Fabric. The average number of
dishonest nodes, depending on the n number of all nodes

BitCoin (Proof of Work)
90000

80,000

70,000

60,000 e
50,000 ~

20000

30,000 .a-".
20,000
10000

0,000
20) 0 3 100 120 140 160

Fig. 3. Bitcoin. The average number of dishonest nodes,
depending on the n number of all nodes

Theoretical and cryptographic problems of cybersecurity

The graphs show that, although the limit on the
number of dishonest nodes in the Proof of Work algo-
rithm (< 1/2n) is weaker than for the PBFT algorithm
(< 1/3n), the Hyperledger Fabric system requires fewer
nodes to build consensus, that is, it comes to the correct
working of the protocol rather than the Bitcoin network.
This observation occurs because Hyperledger Fabric is
a Linux Foundation project run by highly qualified pro-
fessional teams and is client-specific, so bug fixes are
faster than open source systems like Bitcoin.

Although Quorum has open source and similar bitcoin
restrictions on unfair nodes (in the sense of failures)
(< 1/2n), it is fairly quickly negotiated between the
parties by using Ethereum, which has a high level of
security, and a closed blockchain that guarantees control
by a centralized organization, and therefore we have a
fairly quick fix to the distortions in the software.

2.2. Modeling bitcoin with communica-
tion channels’ faults

In the situation above, it is assumed unrealistically
that all messages are transmitted without error. Al-
though noisy channels with zero error capacity exist,
there is more practical interest in the opposite.

Transmission errors are unavoidable, especially given
the presence in any communication channel of noise,
which is the sum total of random signals that inter-
fere with the communication signal. In order to take
the inevitable transmission errors into account, some
adjustment in encoding schemes is necessary. We con-
sider a simple model of transmission in the presence of
noise, the binary symmetric channel. Binary indicates
that this channel transmits only two distinct charac-
ters, generally interpreted as 0 and 1, while symmetric
means that errors are equally probable regardless of
which character is transmitted. The probability that
a character is transmitted without error is labeled p,
hence, the probability of error is 1 - p.

We also assume that information data is transporting
without delays in time, so it can simplify describing the
model. Excluding time delays rises the probability that
the first winner of solving the puzzle will be the first to
transmit their block successfully to the others.

Therefore, time will be considered as a main value
for reliability of blockchain. We say that blockchain is
not reliable when time for agreeing on a new block is
higher than some known limit 7', so it contradicts the
ability of a system to perform given functions under
the conditions of interference (errors, failures, crushes).

The situation when time limit is surpassed just by
network not being able to generate a new block for some
t > Timit 18 too unrealistic to take into account. This
comes from the fact that bitcoin network is constantly
changing the difficulty of the solving problem so the
block can be found in an appropriate time interval (10
minutes).

For the practical interest is taken a situation where
a block B can’t be agreed upon by the majority of
the nodes, i.e. more than the half of participants of
the protocol don’t have block B in their digital ledgers
and every six validation blocks that goes after can’t be
agreed upon by majority too.

We assume that a block B generated by a partic-
ular miner will not be included into another node’s
blockchain if: 1) that node is malicious; 2) that node
has crushed due to the software failure; 3) miner who
solved the puzzle was not able to transmit found block
to that node due to the corrupted communication chan-
nel. The summary number of such nodes must be higher
than the half number of all protocol participants for
all six blocks in a row, so that the first one will not
be agreed upon for the time surpassing an established
hour.

Conclusions

We discussed the reliability of the operation of
blockchain systems in this paper. Reliability should be
introduced as an opportunity to preserve the proper
functioning of blockchain under the influence of random,
natural phenomena. In particular, the solution of the
problem of blockchain reliability considering errors in
software, which appeared during development and were
not detected during testing, was considered. The unre-
liability characteristics for Byzantine, Raft and POW
blockchains consensus protocols were obtained.

References

[1] P. Kernfeld, “How bitcoin loses to the cap theo-
rem,” https://paulkernfeld.com/2016/01/15 /bitcoin-
cap-theorem. htm.

[2] M. P. Leslie Lamport and R. Shostak, “The byzan-
tine generals problem,” ACM Transactions on Pro-
gramming Languages and Systems, vol. 3, pp. 382—
401, 7 1982.

[3] “Consensuspedia: An encyclopedia of 30+
consensus algorithms. a complete list/-
comparison of all consensus algorithms,”

https://hackernoon.com/consensuspedia-
an-encyclopedia-of-29-consensus-algorithms-
€9c4b4b7d0Sf.

[4] M. Castro and B. Liskov, “Practical byzantine
fault tolerance,” in Proceedings of the Third Sympo-
sium on Operating Systems Design and Implementa-
tion, OSDI 99, (Berkeley, CA, USA), pp. 173-186,
USENIX Association, 1999.

[5] H. Howard, “ARC: Analysis of Raft Consensus,”
Tech. Rep. UCAM-CL-TR-857, University of Cam-
bridge, Computer Laboratory, July 2014.

[6] V. Lipayev, Reliability and functional safety of real-
time software systems. Moscow: in russian, 2013.
176 p.

