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Abstract
The basic concepts and results related to the Boolean Groebner bases and their application for computing the algebraic
immunity of vectorial Boolean functions are considered. This parameter plays an important role for the security evaluation
of block ciphers against algebraic attacks. Unlike the available works, the description is carried out at the elementary
level using terms of Boolean functions theory. In addition, obtained proofs are shorter than the previous ones. This allows
us to achieve significant progress in building the fundamentals of the theory (for the Boolean case) using only elementary
methods.
The paper can be useful for students and postgraduate students studying cryptology. It may also save time for professionals
who want to get familiar with the mathematical techniques used in algebraic attacks on block ciphers.
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Introduction

The security evaluation of block ciphers as well as
some stream ciphers against algebraic attacks [1, 2, 3]
generates a problem of finding or estimating the maxi-
mal number of linearly independent equations of lowest
degree among all Boolean equations that describes a
given vectorial Boolean function (an s-block). Although
the solution of the problem is received in [4] but men-
tioned work is little known and assumes reader erudition
in the field of polynomial ideals and Groebner bases,
which, in turn, requires knowledge of commutative al-
gebra basics.

The purpose of this paper is to outline the basic con-
cepts and results related to the formulated above prob-
lem including the concepts of the (Boolean) Groebner
basis and algebraic immunity of vectorial Boolean func-
tion. At present there are several definitions of algebraic
immunity of vectorial Boolean functions [1, 4, 5, 6, 7],
among which the definition given by Ars-Faugère [4] is
the most appropriate from a practical point of view.

Section 1 summarizes the basic statements on ideals
in the ring of Boolean functions. In particular, it is
shown that each ideal is uniquely determined by the set
of its zeros and is generated by a unique function that
can be effectively constructed by the set of zeros of the
ideal. A relation between the dimension of an ideal (as
a subspace of the vector space of Boolean functions)
and the number of its zeros is proved. The well-known
Hilbert Nullstellensatz for the ring of Boolean functions
(see [8], for example) directly follows from the mentioned
relation.

Section 2 gives the definition of the algebraic immu-
nity of a vectorial Boolean function and describes a
method of estimating this parameter based on certain
results of [9]. The proposed method allows fast solving

of the decision problem (whether or not the algebraic im-
munity is above the specified threshold) directly by the
truth table of the vectorial function using the Gaussian
elimination algorithm.

Finally, Sections 3 and 4 are devoted to the basics of
the Boolean Groebner bases theory and their applica-
tion for computing the algebraic immunity. The main
purpose is to prove the Ars-Faugère theorem [4], which
makes possible to find algebraic immunity along with
all equations of lowest degree. These equations result
from the system of equations that describes a given
vectorial Boolean function.

The results presented in the paper are essentially
known. However, unlike the available works, the de-
scription is carried out with the help of elementary tech-
niques and obtained proofs are shorter. Furthermore,
in contrast to the traditional approach to Groebner
bases of polynomial ideals (see [8], for example), the de-
scription in the paper is based on the terms of Boolean
functions theory. This allows us to achieve significant
progress in building the foundations of the theory (for
the Boolean case) using only elementary methods.

To the author mind, the presented paper can be
useful for students and postgraduate students studying
cryptology. It may also save time for professionals who
want to get familiar with the mathematical techniques
used in algebraic attacks on block cipher.

1. Ideals in the ring of Boolean functions

For every positive integer 𝑛 denote by 𝑉𝑛 the set
of binary vectors of the length 𝑛, and by 𝐵𝑛 the set
of Boolean functions in 𝑛 variables. The set 𝐵𝑛 is a
commutative ring with respect to the standard addition
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and multiplication of Boolean functions:

∀𝑓, 𝑔 ∈ 𝐵𝑛 : (𝑓 ⊕ 𝑔)(𝑥) = 𝑓(𝑥)⊕ 𝑔(𝑥),

(𝑓𝑔)(𝑥) = 𝑓(𝑥)𝑔(𝑥), 𝑥 ∈ 𝑉𝑛.

Recall that a set 𝐼 ⊆ 𝐵𝑛 is called an ideal in the ring
𝐵𝑛 if

∀𝑓 ∈ 𝐵𝑛∀𝑔1, 𝑔2 ∈ 𝐼 : 𝑔1 ⊕ 𝑔2 ∈ 𝐼, 𝑓𝑔1 ∈ 𝐼.

The notation 𝐼 ▷𝐵𝑛 means that 𝐼 is an ideal in 𝐵𝑛. The
ideal generated by a set {𝑔1, ..., 𝑔𝑚} ⊆ 𝐵𝑛 is defined as
follows:

⟨𝑔1, ..., 𝑔𝑚⟩ = {𝑓1𝑔1 ⊕ ...⊕ 𝑓𝑚𝑔𝑚 : 𝑓1, ..., 𝑓𝑚 ∈ 𝐵𝑛}.
For any 𝐼 ▷ 𝐵𝑛, 𝑀 ⊆ 𝐵𝑛 let

𝑉 (𝐼) = {𝑥 ∈ 𝑉𝑛| ∀𝑔 ∈ 𝐼 : 𝑔(𝑥) = 0}, (1)
𝐽(𝑀) = {𝑔 ∈ 𝐵𝑛| ∀𝑥 ∈ 𝑀 : 𝑔(𝑥) = 0}. (2)

The set 1 is called the algebraic variety [8] or the set
of zeroes of the ideal 𝐼. The set 2 is the ideal of all
Boolean functions which turn into zero on 𝑀 . The basic
properties of ideals in the ring 𝐵𝑛 are the following.

Statement 1 For any 𝐼 ▷𝐵𝑛, 𝑀 ⊆ 𝐵𝑛 the following
equalities hold:

𝐽(𝑉 (𝐼)) = 𝐼, 𝑉 (𝐽(𝑀)) = 𝑀.

In particular, there is a one-to-one correspondence
between the ideals in the ring 𝐵𝑛 and the subsets of
the set 𝑉𝑛 (such that each ideal is uniquely determined
by the set of its zeros). Besides, each ideal 𝐼 ▷ 𝐵𝑛 is
generated by only one Boolean function 𝜒𝐼 defined as
follows:

∀𝑥 ∈ 𝑉𝑛 : 𝜒𝐼(𝑥) =

{︃
0, 𝑥 ∈ 𝑉 (𝐼);

1, 𝑥 /∈ 𝑉 (𝐼).
(3)

Proof. First of all, let us prove the equality 𝐼 = ⟨𝜒𝐼⟩.
If 𝐼 = {0}, then this equality is obvious. Let 𝐼 ̸= {0}
and 𝑥 /∈ 𝑉 (𝐼). Then there exists a function 𝑓 ∈ 𝐼 such
that 𝑓(𝑥) = 1. We have

𝑓 = ⊕
𝑦∈𝑉𝑛:𝑓(𝑦)=1

𝛿𝑦,

where the functions 𝛿𝑦, 𝑦 ∈ 𝑉𝑛, are defined by the rule
𝛿𝑦(𝑧) = 1 ⇔ 𝑧 = 𝑦, 𝑧 ∈ 𝑉𝑛. Since 𝐼 ▷ 𝐵𝑛 and 𝑓 ∈ 𝐼 we
obtain

𝛿𝑥𝑓 = ⊕
𝑦∈𝑉𝑛:𝑓(𝑦)=1

𝛿𝑥𝛿𝑦 = 𝛿𝑥 ∈ 𝐼.

So, for any 𝑥 /∈ 𝑉 (𝐼) we have

𝛿𝑥 ∈ 𝐼 ⇒ 𝜒𝐼 = ⊕
𝑦/∈𝑉 (𝐼)

𝛿𝑥 ∈ 𝐼 ⇒ ⟨𝜒𝐼⟩ ⊆ 𝐼.

Besides, for any 𝑓 ∈ 𝐼 we have 𝑓 = 𝑓𝜒𝐼 . Thus,
𝐼 ⊆ ⟨𝜒𝐼⟩ and, therefore, 𝐼 = ⟨𝜒𝐼⟩, which completes the
proof.

Next, it follows from (1), (2) that for any 𝐼 ▷ 𝐵𝑛 the
relation 𝐼 ⊆ 𝐽(𝑉 (𝐼)) holds. Besides, if 𝑓 ∈ 𝐽(𝑉 (𝐼)),
then 𝑓(𝑥) = 0 for any 𝑥 ∈ 𝑉 (𝐼) and, hence, 𝑓 = 𝑓𝜒𝐼 .
But it follows from above that 𝜒𝐼 ∈ 𝐼. Thus, 𝑓 ∈ 𝐼
and, hence, 𝐽(𝑉 (𝐼)) ⊆ 𝐼.

So, we get 𝐽(𝑉 (𝐼)) = 𝐼. Finally, the equality
𝑉 (𝐽(𝑀)) = 𝑀 follows from (1), (2), and the proven
equality 𝐽(𝑉 (𝐼)) = 𝐼 with 𝐼 = 𝐽(𝑀). Statement is
proved.

As an example, let us consider a system

𝑔𝑖(𝑥1, ..., 𝑥𝑛) = 0, 𝑖 = 1, 2, ...𝑚 (4)

of 𝑚 Boolean equations in 𝑛 variables 𝑥1, ...𝑥𝑛. Let 𝐼 =
⟨𝑔1, ...𝑔𝑚⟩ be the ideal generated by the set {𝑔1, ..., 𝑔𝑚}.
Then 𝐼 consists of all functions 𝑔 ∈ 𝐵𝑛 such that the
equation 𝑔(𝑥1, ..., 𝑥𝑛) = 0 is a consequence of the system
(4) and the set of all solutions of this system is 𝑉 (𝐼).
Next, the specified system is equivalent to one equation
𝜒𝐼(𝑥1, ..., 𝑥𝑛) = 0, where the function 𝜒𝐼 is defined by
(3). Therefore, 𝐼 = {𝑓𝜒𝐼 |𝑓 ∈ 𝐵𝑛}.

Let 𝐼 be an arbitrary ideal in the ring 𝐵𝑛; then the
set

𝐴𝑛𝑛(𝐼) = {𝑓 ∈ 𝐵𝑛|∀𝑔 ∈ 𝐼 : 𝑓𝑔 = 0}
is also an ideal called the annihilator of the ideal 𝐼.
The annihilator of a function 𝑓 ∈ 𝐵𝑛 is defined as
the annihilator of the ideal generated by this function:
𝐴𝑛𝑛(𝑓) = 𝐴𝑛𝑛(⟨𝑓⟩).

Statement 2 For any 𝐼 ▷𝐵𝑛 the ring 𝐵𝑛 is a direct
sum of the ideals 𝐼 and 𝐴𝑛𝑛(𝐼). In other words, for
each function 𝑓 there exists a unique representation
𝑓 = 𝑔 ⊕ 𝑔⊥, where 𝑔 ∈ 𝐼 and 𝑔⊥ ∈ 𝐴𝑛𝑛(𝐼). Besides, if
𝐼 = ⟨𝑔0⟩, then 𝐴𝑛𝑛(𝐼) = ⟨𝑔0 ⊕ 1⟩.

Proof. It is enough to observe that 𝑉 (𝐴𝑛𝑛(𝐼)) =
𝑉𝑛 ∖ 𝑉 (𝐼) and use Statement 1.

To conclude this section let’s describe the connection
between ideals in the ring 𝐵𝑛 and some block codes.
Notice that every ideal 𝐼 ▷ 𝐵𝑛 is a subspace of the
vector space of all Boolean functions in 𝑛 variables and,
therefore, a linear code of length 2𝑛 over the field of two
elements. The code-words of this code are the value
vectors of the functions belonging to

𝐼 = {(𝑔(𝑥) : 𝑥 ∈ 𝑉𝑛) : 𝑔 ∈ 𝐼} (5)

Let’s write the words of the code (5) in a 2𝑘 × 2𝑛

table, where 𝑘 = dim 𝐼 denotes the dimension of the
ideal 𝐼. It is clear that the set 𝑉 (𝐼) coincides with
the set of all zero columns in this table and the set
𝑉𝑛 ∖ 𝑉 (𝐼) is equal to the support of the code 𝐼. Next,
all 2𝑘 vectors (𝑔(𝑥) : 𝑥 ∈ 𝑉𝑛 ∖ 𝑉 (𝐼)), where 𝑔 ∈ 𝐼, are
pairwise different. Since their length is |𝑉𝑛 ∖ 𝑉 (𝐼)| we
have 𝑘 ≤ |𝑉𝑛 ∖ 𝑉 (𝐼)|. On the other hand, according to
Statement 1 any function 𝑔 ∈ 𝐵𝑛 such that 𝑔(𝑥) = 0 for
all 𝑥 ∈ 𝑉 (𝐼) belongs to the code 𝐼. Thus, 2|𝑉𝑛∖𝑉 (𝐼)| ≤
|𝐼|, that is |𝑉𝑛 ∖ 𝑉 (𝐼)| ≤ 𝑘. So, we obtain the following
statement establishing the relationship between the
dimension of an ideal and the number of its zeros.

Statement 3 For any 𝐼 ▷ 𝐵𝑛 the following equality
holds:

|𝑉 (𝐼)| = 2𝑛 − dim 𝐼.

As a consequence, we obtain the following variant of
Hilbert’s Nullstellensatz (see [8], for example).

Consequence 1 The system of equations (4):
a) is incompatible if and only if ⟨𝑔1, ..., 𝑔𝑚⟩ = 𝐵𝑛;
b) has a unique solution (𝑎1, ..., 𝑎𝑛) ∈ 𝑉𝑛 if and only if

⟨𝑔1, ..., 𝑔𝑚⟩ = ⟨𝑥1 ⊕ 𝑎1, ..., 𝑥𝑛 ⊕ 𝑎𝑛⟩.
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2. Algebraic immunity of vectorial
Boolean function

Recall that each function 𝑓 ∈ 𝐵𝑛 ∖ {0} has an unique
representation in the form

𝑓 = ⊕
𝛼∈𝑉𝑛

𝑐𝛼𝑥
𝛼,

where 𝑐𝛼 ∈ {0, 1}, 𝑥𝛼 = 𝑥𝛼1
1 ...𝑥𝛼𝑛

𝑛 , 𝑥 = (𝑥1, ..., 𝑥𝑛),
𝛼 = (𝛼1, .., 𝛼𝑛) ∈ 𝑉𝑛. The number |𝛼| = 𝛼1 + ...+ 𝛼𝑛

is called the degree of monomial 𝑥𝛼 and the number
deg 𝑓 = max{|𝛼| : 𝑐𝛼 = 1, 𝛼 ∈ 𝑉𝑛} is called the degree
of the function 𝑓 . The minimal degree of an ideal 𝐼 ▷𝐵𝑛

is defined as follows:

min deg 𝐼 = min{deg 𝑓 : 𝑓 ∈ 𝐼 ∖ {0}}.
Let’s consider a vectorial Boolean function (an s-

block) 𝑠 : 𝑉𝑛 → 𝑉𝑛 with the coordinate functions
𝑠1, ..., 𝑠𝑛 and denote by 𝐼(𝑠) the following ideal in the
ring of Boolean functions in 2𝑛 variables 𝑥 = (𝑥1, ..., 𝑥𝑛)
and 𝑦 = (𝑦1, ..., 𝑦𝑛):

𝐼(𝑠) = ⟨𝑦1 ⊕ 𝑠1(𝑥), ..., 𝑦𝑛 ⊕ 𝑠𝑛(𝑥)⟩.
By definition [4], the algebraic immunity of the vecto-

rial function 𝑠 is the number 𝐴𝐼(𝑠) = min deg 𝐼(𝑠). The
following statement is a direct consequence of results
from the previous section.

Statement 4 The algebraic immunity of a vectorial
function 𝑠 : 𝑉𝑛 → 𝑉𝑛 equals:
a) to the minimum of degrees of all functions 𝑔 ∈ 𝐵2𝑛

satisfying the condition

∀𝑥, 𝑦 ∈ 𝑉𝑛 : 𝑠(𝑥) = 𝑦 ⇒ 𝑔(𝑥, 𝑦) = 0

(in this case we say that the equation 𝑔(𝑥, 𝑦) = 0 de-
scribes the vectorial function 𝑠);
b) to the minimal degree of the ideal 𝐴𝑛𝑛(𝑓𝑠), where
the function 𝑓𝑠 : 𝑉2𝑛 → {0, 1} is defined as follows:

∀𝑥, 𝑦 ∈ 𝑉𝑛 : 𝑓𝑠(𝑥, 𝑦) =

{︃
1, 𝑠(𝑥) = 𝑦;

0, otherwise.

Thus, to estimate the algebraic immunity of a vecto-
rial function 𝑠 it is sufficient to construct the function
𝑓𝑠 and find the smallest degree of nonzero Boolean func-
tions that annihilate it. Based on the results from Sec.
5.1 in [9] let us prove the following statement, which
enables to use the Gaussian elimination for finding the
algebraic immunity of a vectorial function. First, let us
introduce a few notation.

For any positive integer 𝑑 denote

𝑚(𝑛, 𝑑) =
𝑑∑︁

𝑖=0

(︂
2𝑛
𝑖

)︂
.

For an arbitrary vectorial function 𝑠 : 𝑉𝑛 → 𝑉𝑛 consider
the 2𝑛 ×𝑚(𝑛, 𝑑) matrix 𝐶𝑠,𝑑 whose rows are numbered
by the vectors 𝑥 ∈ 𝑉𝑛 and the columns — by the pairs
(𝛼, 𝛽), where 𝛼, 𝛽 ∈ 𝑉𝑛 and |𝛼|+ |𝛽| ≤ 𝑑. By definition,
an element of the matrix 𝐶𝑠,𝑑 located at the intersection
of its row with the number 𝑥 and the column with the
number (𝛼, 𝛽) is equal to the value of the monomial
𝑢𝛼𝑣𝛽 at the point (𝑢, 𝑣) = (𝑥, 𝑠(𝑥)).

Statement 5 We have

𝐴𝐼(𝑠) ≥ 𝑑+ 1 ⇔ 𝑟𝑎𝑛𝑘(𝐶𝑠,𝑑) = 𝑚(𝑛, 𝑑).

Proof. According to the definition of the matrix 𝐶𝑠,𝑑,
a non-zero function

𝑓(𝑥, 𝑦) = ⊕
𝛼,𝛽∈𝑉𝑛 : |𝛼|+|𝛽|≤𝑑

𝑐𝛼,𝛽𝑥
𝛼𝑦𝛽

belongs to the ideal 𝐴𝑛𝑛(𝑓𝑠) if and only if the vector
(𝑐𝛼,𝛽 : 𝛼, 𝛽 ∈ 𝑉𝑛, |𝛼|+ |𝛽| ≤ 𝑑) is a non-zero solution of
the system of linear equations 𝐶𝑠,𝑑𝑧

↓ = 0↓. Therefore,

𝐴𝐼(𝑠) ≥ 𝑑+ 1 ⇔
⇔ (∀𝑓 ∈ 𝐴𝑛𝑛(𝑓𝑠) ∖ {0} : 𝑑𝑒𝑔𝑓 ̸= 𝑑+ 1) ⇔
⇔ the system of equations 𝐶𝑠,𝑑𝑧

↓ = 0↓

has no non-zero solutions ⇔
⇔ 𝑟𝑎𝑛𝑘(𝐶𝑠,𝑑) = 𝑚(𝑛, 𝑑).

Statement is proved.

Consequence 2 Let 𝑑 be the maximal positive inte-
ger satisfying the inequality 𝑚(𝑛, 𝑑) ≤ 2𝑛. Then

a)𝐴𝐼(𝑠) ≤ 𝑑+ 1;
b) 𝐴𝐼(𝑠) = 𝑑+1 if and only if 𝑟𝑎𝑛𝑘(𝐶𝑠,𝑑) = 𝑚(𝑛, 𝑑).

Thus, according to Consequence 2, to estimate the
algebraic immunity of a vectorial Boolean function
𝑠 : 𝑉𝑛 → 𝑉𝑛 it is sufficient:

1) to find the maximal positive integer 𝑑 such that
𝑚(𝑛, 𝑑) ≤ 2𝑛;

2) to construct the matrix 𝐶𝑠,𝑑 and evaluate its
rank using the Gaussian elimination algorithm. If
𝑟𝑎𝑛𝑘(𝐶𝑠,𝑑) = 𝑚(𝑛, 𝑑), then 𝐴𝐼(𝑠) = 𝑑 + 1; otherwise
we have 𝐴𝐼(𝑠) ≤ 𝑑.

Example 1. Let 𝑛 = 8, then 𝑚(8, 2) = 137 < 28 <
𝑚(8, 3). Thus, 𝑑 = 2 and the algebraic immunity of any
function 𝑠 : 𝑉8 → 𝑉8 is not greater than 3. Further, the
matrix 𝐶𝑠,2 has the size 256× 137; hence 𝐴𝐼(𝑠) = 3 if
and only if 𝑟𝑎𝑛𝑘(𝐶𝑠,2) = 137.

3. Groebner bases of ideals in the ring
of Boolean functions

Let’s denote by 𝑁𝑛
0 the set of 𝑛-dimensional vectors

with non-negative integer coordinates. This set is a
semi-group with respect to the operation + of vector
addition. The partial ordering ≤ on the set 𝑁𝑛

0 is
defined as follows:

∀𝛼 = (𝛼1, ..., 𝛼𝑛), 𝛽 = (𝛽1, ..., 𝛽𝑛) ∈ 𝑁𝑛
0 :

𝛼 ≤ 𝛽 ⇔ (𝛼𝑖 ≤ 𝛽𝑖, 𝑖 = 1, 2, ..., 𝑛).

The number |𝛼| = 𝛼1+ ...+𝛼𝑛 is called the multidegree
of the vector 𝛼 = (𝛼1, ..., 𝛼𝑛) ∈ 𝑁𝑛

0 . A monomial
ordering is a linear order ⪯ on the set 𝑁𝑛

0 satisfying
the conditions:
1) ∀𝛼, 𝛽 ∈ 𝑁𝑛

0 : 𝛼 ≤ 𝛽 ⇒ 𝛼 ⪯ 𝛽;
2) ∀𝛼, 𝛽, 𝛾 ∈ 𝑁𝑛

0 : 𝛼 ⪯ 𝛽 ⇒ 𝛼+ 𝛾 ⪯ 𝛽 + 𝛾,
A monomial ordering ⪯ is called graded if for all

𝛼, 𝛽 ∈ 𝑁𝑛
0 the following condition holds: |𝛼| ≤ |𝛽| ⇒

𝛼 ⪯ 𝛽. In the sequel, the notation 𝛼 ≺ 𝛽 (𝛼 < 𝛽)
means that 𝛼 ⪯ 𝛽 (𝛼 ≤ 𝛽) and 𝛼 ̸= 𝛽.
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Example 2. The lexicographic order on the set 𝑁𝑛
0

is defined by

𝛼 ≺𝑙𝑒𝑥 𝛽 ⇔ (∃𝑖 ∈ {1, 2..., 𝑛} :
𝛼1 = 𝛽1, ..., 𝛼𝑖−1 = 𝛽𝑖−1, 𝛼𝑖 < 𝛽𝑖),

and is a monomial ordering on 𝑁𝑛
0 . The relation

𝛼 ≺𝑑𝑟𝑙 𝛽, where 𝛼 = (𝛼1, ..., 𝛼𝑛), 𝛽 = (𝛽1, ..., 𝛽𝑛) ∈ 𝑁𝑛
0 ,

defined by

𝛼 ≺𝑑𝑟𝑙 𝛽 ⇔ |𝛼| ≤ |𝛽| or
(|𝛼| = |𝛽| and (𝛽𝑛, ..., 𝛽1) ≺𝑙𝑒𝑥 (𝛼𝑛, ..., 𝛼1))

is a graded monomial ordering on the set 𝑁𝑛
0 .

A monomial ordering ⪯ allows us to order the Boolean
monomials 𝑥𝛼 = 𝑥𝛼1

1 ...𝑥𝛼𝑛
𝑛 by the rule 𝑥𝛼 ⪯ 𝑥𝛽 ⇔ 𝛼 ⪯

𝛽, where 𝛼, 𝛽 ∈ 𝑉𝑛 (hereafter the set 𝑉𝑛 is considered as
a subset of the semi-group 𝑁𝑛

0 ). This ordering on the set
of monomials allows us to define the leading monomial
of any nonzero Boolean function 𝑓(𝑥) = ⊕

𝛼∈𝑉𝑛

𝑐𝛼,𝑓𝑥
𝛼,

where 𝑐𝛼,𝑓 ∈ {0, 1}, 𝛼 ∈ 𝑉𝑛:

𝐿𝑀⪯(𝑓) = 𝑚𝑎𝑥⪯{𝑥𝛼 : 𝑐𝛼,𝑓 = 1}.
Example 3. Let 𝑛 = 3; then

(0, 0, 0) ≺𝑙𝑒𝑥 (0, 0, 1) ≺𝑙𝑒𝑥 (0, 1, 0) ≺𝑙𝑒𝑥 (0, 1, 1) ≺𝑙𝑒𝑥

≺𝑙𝑒𝑥 (1, 0, 0) ≺𝑙𝑒𝑥 (1, 0, 1) ≺𝑙𝑒𝑥 (1, 1, 0) ≺𝑙𝑒𝑥 (1, 1, 1).

Therefore,

(0, 0, 0) ≺𝑑𝑟𝑙 (1, 0, 0) ≺𝑑𝑟𝑙 (0, 1, 0) ≺𝑑𝑟𝑙 (0, 0, 1) ≺𝑑𝑟𝑙

≺𝑑𝑟𝑙 (1, 1, 0) ≺𝑑𝑟𝑙 (1, 0, 1) ≺𝑑𝑟𝑙 (0, 1, 1) ≺𝑑𝑟𝑙 (1, 1, 1).

Let 𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑥2𝑥3 ⊕ 𝑥1 ⊕ 𝑥2 ⊕ 𝑥3; then

𝐿𝑀≺𝑙𝑒𝑥
(𝑓) = 𝑥1, 𝐿𝑀≺𝑑𝑟𝑙

(𝑓) = 𝑥2𝑥3.

By definition a monomial 𝑥𝛼 is divisible by a mono-
mial 𝑥𝛽 , if 𝛼 ≥ 𝛽, 𝛼, 𝛽 ∈ 𝑉𝑛.

Let 𝐼 be a nonzero ideal in the ring of Boolean func-
tions in 𝑛 variables. A system 𝑔1, ..., 𝑔𝑚 ∈ 𝐼 is called
a Groebner basis of the ideal 𝐼 for the monomial or-
dering ⪯ on the set 𝑁𝑛

0 if for any 𝑓 ∈ 𝐼 there ex-
ists 𝑖 ∈ {1, 2, ...,𝑚} such that 𝐿𝑀⪯(𝑓) is divisible by
𝐿𝑀⪯(𝑔𝑖). A Groebner basis 𝑔1, ..., 𝑔𝑚 is called minimal
if 𝐿𝑀⪯(𝑔𝑖) is not divisible by 𝐿𝑀⪯(𝑔𝑗) for all 𝑖 ̸= 𝑗.

Statement 6 For any nonzero ideal 𝐼 ▷ 𝐵𝑛 there
exists a minimal Groebner basis.

Proof. Let 𝐼 ∖ {0} = {𝑔1, ..., 𝑔𝑡} (where 𝑡 ≤ |𝐵𝑛| =
22

𝑛

), 𝐿𝑀⪯(𝑔𝑖) = 𝑥𝛼𝑖 , 𝑖 = 1, 2, ..., 𝑡. Let’s delete
from the set {1, 2, ..., 𝑡} all elements 𝑖 such that 𝑥𝛼𝑖

is divisible by some monomial 𝑥𝛼𝑗 , where 𝑗 ̸= 𝑖. If
{𝑖1, ..., 𝑖𝑚} is the set of elements that remains after
deleting, then according to the above definition the
system {𝑔𝑖1 , ..., 𝑔𝑖𝑚} is a minimal Groebner basis of 𝐼.
Statement is proved.

Example 4. Let 𝑛 = 3 and 𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑥1𝑥2 ⊕
𝑥1⊕𝑥2⊕𝑥3. Let’s construct a minimal Groebner basis of
ideal 𝐼 = ⟨𝑓⟩ for the monomial ordering ≺𝑑𝑟𝑙. Observe
that 𝐼 contains the functions

𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑥1𝑥2 ⊕ 𝑥1 ⊕ 𝑥2 ⊕ 𝑥3,

𝑥1𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑥1𝑥3 ⊕ 𝑥1,

𝑥2𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑥2𝑥3 ⊕ 𝑥2,

whose leading monomials form the set of all monomials
of degree 2 in 𝑥1, 𝑥2, 𝑥3. Next, the set 𝑉 (𝐼) contains
exactly 4 vectors (the zeroes of 𝑓). So, deg 𝑔 ≥ 2 for all
𝑔 ∈ 𝐼 ∖ {0}. Indeed, if the ideal 𝐼 contains a non-zero
affine function, then it is balanced, turns into zero on
the set 𝑉 (𝐼), and, therefore, coincides with 𝑓 .

Thus, the system of functions

𝑓(𝑥1, 𝑥2, 𝑥3), 𝑥1𝑓(𝑥1, 𝑥2, 𝑥3), 𝑥2𝑓(𝑥1, 𝑥2, 𝑥3)

is a minimal Groebner basis of the ideal 𝐼.

4. Application of Groebner bases for
constructing the lowest-degree equa-
tions describing a vectorial Boolean
function and computing its algebraic
immunity

The following statement solves the problem formu-
lated at the Introduction of the paper.

Statement 7 ([4]) Let 𝑠 : 𝑉𝑛 → 𝑉𝑛 be a vectorial
Boolean function, ⪯ be a graded monomial ordering on
the set 𝑁𝑛

0 , 𝐺 be a minimal Groebner basis of the ideal
𝐼(𝑠) for this ordering. Let 𝑔1, ..., 𝑔𝑚 be all functions
from 𝐺 with the lowest degree 𝑑. Then
1) 𝐴𝐼(𝑆) = 𝑑;
2) any function 𝑓 ∈ 𝐼(𝑆) of degree 𝑑 can be uniquely

represented in the form

𝑓 = 𝑐1𝑔1 ⊕ · · · ⊕ 𝑐𝑚𝑔𝑚 (6)

where 𝑐𝑖 ∈ {0, 1}, 𝑖 = 1, 2, ...,𝑚. In particular, the ideal
𝐼(𝑆) contains exactly 2𝑚 functions of degree 𝑑.

Proof. Let 𝑓 ∈ 𝐼(𝑠) ∖ {0}, 𝐿𝑀⪯(𝑓) = 𝑥𝛼. Then
|𝛼| = deg 𝑓 because ⪯ is a graded ordering. According
to the definition of Groebner basis, 𝑥𝛼 is divisible by
some monomial 𝑥𝛽 = 𝐿𝑀⪯(𝑔), where 𝑔 ∈ 𝐺. Thus,
𝛼 ≥ 𝛽 and deg 𝑓 = |𝛼| ≥ |𝛽| = deg 𝑔 ≥ 𝑑, where the
last inequality follows from the definition of 𝑑. So,
the degree of each function 𝑓 ∈ 𝐼(𝑠) ∖ {0} is at least
𝑑 and, because 𝑔1 ∈ 𝐼(𝑠) and deg 𝑔1 = 𝑑, we have
𝐴𝐼(𝑠) = min deg 𝐼(𝑠) = 𝑑.

Let now 𝑓 ∈ 𝐼(𝑠) and deg 𝑓 = 𝑑. Based on the
above considerations we obtain 𝑑 = deg 𝑓 = |𝛼| ≥ |𝛽| =
deg 𝑔 ≥ 𝑑 and 𝛼 ≥ 𝛽, whence we have 𝛼 = 𝛽 and
𝑔 = 𝑔𝑖 for some 𝑖 ∈ {1, 2, ...,𝑚}. So, the functions
𝑓 and 𝑔𝑖 have the same leading monomial 𝑥𝛼, where
|𝛼| = deg 𝑓 = deg 𝑔𝑖 = 𝑑.

Let’s consider the function 𝑓 (1) = 𝑓 ⊕ 𝑔𝑖 from the
ideal 𝐼(𝑠). If 𝑓 (1) = 0 , then 𝑓 = 𝑔𝑖 has the form (6).
Otherwise we have

𝑓 (1) ∈ 𝐼 ∖ {0},deg 𝑓 (1) = 𝑑,

𝐿𝑀⪯(𝑓) ≻ 𝐿𝑀⪯(𝑓
(1)),

and the above considerations are applicable to the
function 𝑓 (1): there exists 𝑗 ∈ {1, 2, ...,𝑚} such that
𝐿𝑀⪯(𝑓

(1)) = 𝐿𝑀⪯(𝑔𝑗) and, hence,

𝑓 (2) 𝑑𝑒𝑓
= 𝑓 (1) ⊕ 𝑔𝑗 = 0

(and 𝑓 = 𝑓 (1)⊕ 𝑔𝑖 = 𝑔𝑗 ⊕ 𝑔𝑖 has the form (6)), or 𝑓 (2) ∈
𝐼 ∖ {0},deg 𝑓 (2) = 𝑑 and 𝐿𝑀⪯(𝑓

(1)) ≻ 𝐿𝑀⪯(𝑓
(2)). It’s
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clear that after the finite number of steps the chain

𝐿𝑀⪯(𝑓) ≻ 𝐿𝑀⪯(𝑓
(1)) ≻ 𝐿𝑀⪯(𝑓

(2)) ≻ ...

will break and the representation (6) will be obtained
for the function 𝑓 . Finally, because 𝐺 is a minimal
Groebner basis of the ideal 𝐼(𝑠) the functions 𝑔1, ..., 𝑔𝑚
are linearly independent over the field of two elements.
Therefore, for each function 𝑓 ∈ 𝐼(𝑠) of degree 𝑑 there
exists a unique representation (6).

Statement is proved.

Conclusion
The algebraic immunity 𝐴𝐼(𝑠) of a vectorial Boolean

function 𝑠 : 𝑉𝑛 → 𝑉𝑛 is defined as the lowest degree
of Boolean equations in 2𝑛 variables that describe the
function 𝑠 (Statement 4). To estimate the algebraic
immunity the results from Section 2 can be used. They
allow fast solving of the decision problem (whether
or not the algebraic immunity is above the specified
threshold) directly by the truth table of the vectorial
function using the Gaussian elimination algorithm.

To estimate 𝐴𝐼(𝑠) as well as to find all lowest-degree
equations describing a vectorial Boolean function 𝑠 it is
sufficient to construct a minimal Groebner basis of the
ideal 𝐼(𝑠) with respect to an arbitrary graded monomial
ordering and use Statement 7. In practice, for comput-
ing a minimal Groebner basis of an ideal in the ring
of Boolean functions the system of computer algebra
𝑀𝑎𝑔𝑚𝑎 can be used [10]: for 𝑛 = 8 computation takes
a few seconds.

References
[1] N. T. Courtois and J. Pieprzyk, “Cryptanalysis

of block ciphers with overdefined systems of equa-
tions,” ASIACRYPT 2002, volume 2501 of Lec-

ture Notes in Computer Science. Springer-Verlag,
p. 267–287, 2002.

[2] A. Biryukov and C. de Canniere, “Block ciphers
and systems of quadratic equations,” Fast Software
Encryption. – FSE’03, Proceedings. – Springer-
Verlag., p. 274 – 289, 2003.

[3] O. Billet and H. Gilbert, “Resistance of snow 2.0
against algebraic attacks,” Lecture Notes in Com-
puter Science, vol 3376. Springer, Berlin, Heidel-
berg, 2005.

[4] G. Ars and J.-C. Faugère, “Algebraic immunities
of functions over finite fields,” Technical report,
INRIA, 2005.

[5] F. Armknecht and M. Krause, “Constructions
single- and multi-output boolean functions with
maximal algebraic immunity,” Automata, Lan-
guages and Programming, Proceedings. – LNCS
4052. – Springer-Verlag., p. 180 – 191, 2006.

[6] C. Carlet, “On the algebraic immunities and higher
order nonlinearities of vectorial boolean functions,”
Workshoop ACPTECC, Veliko Tavrono, Bulgaria,
p. 104 – 116, 2009.

[7] D. Ponkrasenko, “On the maximal component al-
gebraic immunity of vectorial boolean functions,”
Journal of Applied and Industrial Mathematics Vol.
10, № 2, p. 257–263, 2016.

[8] D. Cox, J. Little, and D. O’Shea, “Ideals, varieties,
and algorithms,” Springer-Verlag New York, 2007.

[9] F. Armknecht, “On the existence of low-degree
equations for algebraic attacks,” Cryptology ePrint
Archive, Report 2004/185, p. 267–287, 2004.

[10] J. Cannon, W. Bosma, C. Fieker, and A. Steel,
“Handbook of magma functions,” Version 2.20,
Sydney, 2014.

Algebraic immunity of vectorial boolean functions and boolean groebner bases

14


