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Abstract
State-of-the-art stegdetectors for digital images are based on pre-processing (calibration) of analyzed image for increasing
stego-to-cover ratio. In most cases, the calibration is realized by image processing with enormous set of high-pass filters
to obtain good estimation of cover image from the stego one. Nevertheless, the efficiency of this approach significantly
depends on careful selection of filters for reliably extraction of cover image alterations that are specific for each embedding
method. The selection is non-trivial and laborious operation that is realized today by training of convolutional neural
networks, such as Ye-Net, SR-Net to name but a few.
The paper is devoted to performance analysis of alternative approach to image calibration, namely message re-embedding
into analyzed image. The considered method is aimed to increasing stego-to-cover ratio by amplification of cover image
alterations caused by message hiding. The analysis was performed on ALASKA and VISION datasets by usage of
stegdetector based on SPAM model of covers. Messages were re-embedded according to state-of-the-art adaptive methods
HUGO, S-UNIWARD, MG and MiPOD. Proposed approach allows significantly (up to 20%) decreasing detection error
even in case of low payload of cover image (less than 10%) where modern stegdetectors are ineffective.
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1. Introduction
Securing sensitive data of public and private organi-

zations is topical task today. Special attention is paid
to the data leakage prevention during files transmission
in communication systems. The data leakage can be
performed by an attackers with hidden (steganographic)
communication systems [1]. These systems are aimed at
sensitive data embedding into innocuous digital media,
for instance digital images, and further transmission of
obtained stego images to a recipient.

The wide range of digital image steganalysis methods
is proposed for stego images detection. These methods
are based on studying the differences between current
image and used model of cover [1, 2]. Achieving high
detection accuracy (more than 95%) requires improve-
ment of stego-to-cover ratio that can be realized by
image pre-processing (calibration). The state-of-the-art
methods of image calibration are aimed on obtaining
good estimation of cover image (CI) from the stego one.
It is achieved by image processing using various high-
pass filters [1]. Nevertheless, such approach requires
using a priori information about embedding method for
selection appropriate filters that may be inappropriate
in real cases.

For overcoming mentioned issue, we proposed to im-
proving stego-to-cover ratio by amplification of CI dis-
tortions caused by message hiding. The amplification
can be achieved by message repetitive embedding (re-
embedding) into analyzed images. The effectiveness of
proposed approach was shown in paper [3] for the case
of message re-embedding with same method and similar
payload of cover image. Since steganalytic may have
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limited access to embedding module in real scenarios,
the case of message re-embedding according to known
steganographic methods should be considered.

This work focuses on performance analysis of statis-
tical stegdetector in case of message re-embedding with
state-of-the-art adaptive embedding methods (AEM)
HUGO, S-UNIWARD, MG and MiPOD. In the next
section describe the common approaches to digital im-
age calibration. The notations and used functions are
defined in Section 3. Section 4 describes modern ap-
proaches for adaptive message hiding into digital im-
ages, while state-of-the-art methods for steganalysis
of obtained stego images are shown in Section 5. In
Sections 6 and 7, we provide the results of all experi-
ments aimed at comparing the detection accuracy by
message re-embedding with state-of-the-art AEM and
discussion of obtained results. The paper is concluded
in Section 8.

2. Related works

Today, the common paradigm in digital image ste-
ganalysis is based on features learning from cover and
stego images noise components [1]. Estimation of these
components is non-trivial task due to theirs low en-
ergy and masking into image context. Therefore, it is
used image calibration methods for suppression of im-
age context by preserving statistical features of noises.
The careful selection of calibration methods allows con-
siderably improving stego-to-cover ratio and reliably
revealing negligible alterations of CI pixels brightness
caused by message hiding[2].

The state-of-the-art image calibration methods are
based on applying high-pass filters [1]. As an example,
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we may mention the SRM model [4] and SR-Net con-
volutional neural network [5] based stegdetectors. The
former method takes enormous set of two-dimensional
high-pass filters for effective suppression context in real
images. The latter method allows considerably reduc-
ing the number of used filters (convolution kernels) by
training a network on heterogeneous dataset of photo-
graphic images. Effectiveness of these approaches was
shown for both state-of-the-art AEM and advanced side-
informed embedding methods that utilize knowledge
of pre-covers (raw images) [6]. This became possible
due to either utilization of a priori information about
used embedding method for selection appropriate filters,
or learning versatile filters by thorough training of a
network on several datasets.

Therefore, this approach can be not suitale for real
cases when steganalytics have limited awareness of ap-
plied embedding methods [2]. Thus, it is topical task to
develop the universal calibration function that preserves
high detection accuracy even in case of limited a priori
information about used steganographic algorithm.

The proposed methods for image calibration can be
divided into next groups [7]:
1) Parallel reference — the calibration can be seen

as a constant shift of feature space.
2) Eraser — it relates to a transformation that is

robust to embedding changes. Then, image cali-
bration leads to erasing of embedding stego bits.

3) Cover image estimate — it corresponds to the orig-
inal idea of image calibration, namely to obtain
good estimation of CI.

4) Stego image estimate — the calibration provides
an accurate estimation of features for stego images.
This case is complementary to the previous one.

5) Divergent reference — the calibration leads to a
shift of features for both cover and stego images to
different directions.

It should be noted, the parallel and divergent ref-
erences lead to failure of steganalysis due to making
indistinguishable cover and stego images classes [7].

Practical application of eraser scheme needs a priori
information about specific distortions of covers that
may be unavailable in real cases. On the other hand,
the cover image estimation approach requires careful
selection of cover model [1]. In spite of models diversity,
they cope with specific distortions of covers, such as
compression, denoising to name but a few. It makes
these models inapropriate for real cases where stegan-
alytics may face several types of image distortions at
the same time.

In contrast to considered types of image calibration,
the stego image estimation scheme relies on amplifica-
tion of CI alterations caused by message hiding. The
example of such calibration is message re-embedding
that leads to significantly changing of CI features while
preserving negligible alterations of stego image features.
Thus, steganalytic may use known embedding methods
for increasing stego-to-cover ratio even by processing
of stego images formed by unknown steganographic al-
gorithm. Despite simplicity of this appoach, it did not
get enough attention today. This work focuses on fill-

ing in these gaps — performance analysis of statistical
stegdetectors in case of image calibration by message
re-embedding according to state-of-the-art AEM.

3. Preliminaries
High-dimensional arrays, matrices, and vectors will

be typeset in boldface. Their individual elements will
be represented with the corresponding lower-case letters
in italic. For example, the identity matrix with size
𝐿× 𝐿 elements will be denoted as I𝐿.

The symbols U = (𝑢𝑖𝑗) ∈ ℐ𝑁×𝑀 , X = (𝑥𝑖𝑗) ∈ ℐ𝑁×𝑀
and Y = (𝑦𝑖𝑗) ∈ ℐ𝑁×𝑀 , ℐ = {0, 1, . . . , 255}, will al-
ways represent pixel values of 8-bit grayscale initial (non-
calibrated), cover and stego images with size 𝑁 ×𝑀
pixels respectively. The feature extraction operator
𝐹𝑒(·) will be used for extraction a feature vector F from
an image.

The embedded binary message will be represented as
M = (𝑚𝑖𝑗) ∈ {0, 1}1×|M|, where |M| is message size in
bits.

The probability of event 𝐴 will be denoted as 𝑃𝑟(𝐴).
The Iverson bracket [𝑎]𝐼 equals to one of the boolean
expression 𝑎 is true, and zero otherwise. The notation
‖ · ‖ will correspond to either Euclidean norm for a
scalar, or Frobenius norm for a matrice.

4. Adaptive embedding methods for digital im-
ages

Steganographic methods are aimed for message hiding
into cover file, such as digital image, while preserving
cover’s perceptual quality and minimal changes of its
statistical parameters. The known embedding methods
can be divided into two groups depending on the way
of stego bits hiding [1]:

• Cover domain — stego bits are embedded by alter-
ation of cover elements values, e.g. brightness of
cover image pixels;

• Transformation domain — a cover is pre-processed
with some transformation that allows easy estima-
tion cover’s distortion. Then, message is embedded
by manipulation of obtained coefficients.

The well-known example of transformation based em-
bedding method is JPEG-steganography [1]. In this
case, stego bits are hiding by alteration coefficients of
Discrete Cosine Transform of cover image. Practical
applications of such methods are limited due to intro-
ducing specific distortions into CI that can be easily
detected by modern stegdetectors [2, 8].

Today, message hiding into cover (spatial) domain
takes leading positions in digital image steganography.
The methods for data embedding into spatial domain
can be divided into next groups [9]:
1) Distortion-minimizing methods — are aimed on

usage of empirical functions for estimation CI dis-
tortion. A message is embedded by selection CI
pixels with minimal expected cost.

2) Side-informed (SI) methods — are based on usage
of pre-cover during data hiding. Generally, the
pre-cover is subjected to some sort of cover pro-
cessing or format conversion before embedding the
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secret message. Nevertheless, pre-covers are rarely
available in real cases.

3) Methods with synchronized embedding changes —
take asymmetric embedding probabilities for each
stego bits. It encourages synchronization (cluster-
ing) of polarities of neighboring modification that
decrease performance of state-of-the-art stegdetec-
tors.

The first and second groups of methods are widely
used today. They are based on minimization of total
cost by message hiding into CI [10]:

𝐷(X,Y) =
∑︁
𝑖,𝑗

𝜌𝑖𝑗(X,Y) −−−−−−−→
|M|=𝑐𝑜𝑛𝑠𝑡

min, (1)

where 𝐷(X,Y) — the empirical distortion estimation
function. The majority of proposed functions 𝐷(X,Y)
in eq. (1) is based on additivity assumption — the repre-
sentation of CI distoriton as weighted sum of individual
distortions caused by embedding of stego bits.

During message hiding into CI according to eq. (1),
each pixel is assigned two costs 𝜌𝑖𝑗(1) and 𝜌𝑖𝑗(−1)
that measures the impact on detectability when the
(𝑖, 𝑗)th element is modified by (+1) or (−1) respectively.
Selection of pixels for stego bit embedding usually is
performed by some heuristic rules that assesse noise
level in a local neighborhood of pixel (𝑖, 𝑗). This al-
lows achieving high empirical security while preserving
computational effective optimization methods for cost
estimation function in eq. (1).

The methods with synchronized embedding changes
are promising and currently undeveloped domain of
digital images steganography [9]. The effectiveness
of these methods are based on curbing the range of
local pixel differences or noise residuals, for instance
counteracting sign-alternating kernels used in cover
rich models [11]. Therefore, the paper is focused on
advanced distortion-minimizing methods HUGO [12],
S-UNIWARD [13], MG [14] and MiPOD [15]. Let us
consider these methods in details.

The HUGO embedding method is based on minimiza-
tion of CI overall distortion [12]:

min
𝜋

E𝜋[𝐷] =
∑︁
𝑦∈𝒴

𝜋(𝑦) ·𝐷(𝑦),H(𝜋) = |M|, (2)

where 𝑦 ∈ 𝒴 — stego image 𝑦 from set of all possible
stego images 𝒴; 𝜋 — probability distribution function
of selection the certain 𝑦 from 𝒴; E𝜋[𝐷] — averag-
ing operator for function 𝐷(X,Y) over distribution 𝜋;
𝐻(𝜋) = −

∑︀
𝑦∈𝒴 𝜋(𝑦) · log(𝜋(𝑦)) — entropy function.

The optimization problem (2) can be solved by sam-
pling stego images from Gibbs probability distribu-
tion [12]:

𝜋𝜆𝐺
(𝑦) =

exp(−𝜆𝐺𝐷(𝑦))∑︀
𝑦∈𝒴 exp(−𝜆𝐺𝐷(𝑦))

. (3)

The scalar 𝜆𝐺 > 0 is determined by solving of eq. (3).
Filler et al. [12] suggested to use adjacency matrix
C𝑘𝑙(X) in eq. (1) for estimation distortion of CI during
message hiding according to HUGO method:

𝐷(Y) =
∑︁
𝑐∈𝒞

∑︁
(𝑘,𝑙)∈ℐ

𝜔𝑘,𝑙H
𝑐
(𝑘,𝑙)(Y),

where 𝒞 = 𝒞→∪𝒞←∪𝒞↑∪𝒞↓ — set of three-elements
cliques for four-pixels adjacency directions; 𝜔𝑘,𝑙 > 0 —
weighting factor; H — normalized adjacency matrix
that is calculated for each type of cliques 𝒞. For example,
the matrix H can be calculated according to the next
formulae in the case of CI processing in row-wise order:

H→(𝑘,𝑙)(Y) =
1

𝑁(𝑀 − 2)
·

·
∑︁
𝑖,𝑗

|
[︀(︀
D→𝑖,𝑗 ,D

→
𝑖,𝑗+1

)︀
(Y) = (𝑘, 𝑙)

]︀
𝐼
−

−
[︀(︀
D→𝑖,𝑗 ,D

→
𝑖,𝑗+1

)︀
(X) = (𝑘, 𝑙)

]︀
𝐼
|,

(︀
D→𝑖,𝑗 ,D

→
𝑖,𝑗+1

)︀
(X) = (𝑘, 𝑙)⇔

⇔
(︀
D→𝑖,𝑗 (X) = 𝑘

)︀
∧
(︀
D→𝑖,𝑗+1 (X) = 𝑙

)︀
,

where D→𝑖,𝑗 (X) = (X𝑖,𝑗+1 −X𝑖,𝑗) — adjacency ma-
trix for the case of left-to-right pixels scanning. Nor-
malized adjacency matrices H for other types of cliques
can be calculated in the same way [12].

In contrast to HUGO method, the empirical distor-
tion estimation funciton for S-UNIWARD embedding
method is based on spectral transformation, namely two-
dimensional discrete wavelet transform (2D-DWT) [13]:

𝐷 (X,Y) =
∑︁
𝑘

∑︁
𝑢,𝑣

⃒⃒
W𝑘

𝑢𝑣(X)−W𝑘
𝑢𝑣(Y)

⃒⃒
𝜎 + |W𝑘

𝑢𝑣(X)|
, (4)

where W𝑘
𝑢𝑣(X),W𝑘

𝑢𝑣(Y) — correspondingly, 2D-
DWT coefficients of cover X and stego Y images with
coordinates (𝑢, 𝑣) in the 𝑘th frequency subband; 𝜎 > 0 —
stabilizing constant. Variation of basis functions for
2D-DWT in eq. (4) allows revealing specific distortions
of CI caused by message hiding. The function 𝐷 (X,Y)
in eq. (4) can be easily adapted for the cases of message
hiding in spatial or transformation domains.

The MG and MiPOD embedding methods are aimed
on minimization both CI distortion and statistical de-
tectability of formed stego image [14, 15]. Feature of
these methods is usage of locally-estimated multivariate
Gaussian model of cover image. The model gives oppor-
tunity to derive a closed-form expression for a stegde-
tector performance and to capture the non-stationary
character of natural images [15].

The pipeline of message M hiding into CI is similar
for MG [14] as well as MiPOD [15] methods. Firstly,
the CI context is suppressed using denoising filter 𝐹 :

r = X− 𝐹 (X) .

Secondly, variance 𝜎2
𝑙 of obtained residuals is mea-

sured with linear model:

r𝑙 = Ga𝑙 + 𝜉, 𝑙 ∈ {1, . . . ,𝑀 ·𝑁}, (5)
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where r𝑙 — the residuals r inside 𝑝×𝑝 block surround-
ing the 𝑙th cover image pixel; G𝑝2×𝑝 — the matrix that
defines the parameteric model of remaining expectation;
a𝑝×1 — the vector of linear model parameters; 𝜉𝑝2×1 —
the signal whose variance is need to be estimated. For
practical cases, Maximum Likelihood Estimation can
be used for calculation model parameters in eq. (5) [15]:

𝜎2
𝑙 =
‖P⊥Gr𝑙‖2

𝑝2 − 𝑞
, (6)

P⊥G = I𝑙 −G
(︀
G𝑇G

)︀−1
G𝑇 ,

where P⊥G — the orthogonal projection of residual
r𝑙 in eq. (5) on (𝑝2 − 𝑞), 𝑞 ∈ N, dimensional sub-space
spanned by the left eigenvectors of G. For the MG em-
bedding method, the simplified estimation of variance
in eq. (6) is used [14]:

𝜎2
𝑙 =
‖r𝑙 − r̃𝑙‖
𝑝2 − 𝑞

,

r̃𝑙 = G
(︀
G𝑇G

)︀−1
G𝑇 r𝑙.

Thirdly, the embedding change 𝛽𝑙, 𝑙 ∈ {1, . . . ,𝑀 ·𝑁}
that minimizes deflection coefficient 𝜁2 between cover
and stego images distributions is determined:

𝜁2 (𝛽𝑙) = 2

𝑀 ·𝑁∑︁
𝑙=1

𝛽2
𝑙 𝜎
−4
𝑙 −−−−−−−−−−−−−→∑︀𝑀·𝑁

𝑙=1 𝐻(𝛽𝑙)=𝑐𝑜𝑛𝑠𝑡
min, (7)

where 𝐻4(𝑧) = −2𝑧 log(𝑧) − (1 − 2𝑧) log(1 − 2𝑧) —
ternary entropy function. Solving of eq. (7) can
be performed by applying the Lagrange multipliers
method [15]. The change rate 𝛽𝑙 and Lagrange multi-
plier 𝜆 can be determined by numerical solving of next
equations:

𝛽𝑙𝜎
−4
𝑙 =

1

2𝜆
ln

(︂
1− 2𝛽𝑙

𝛽𝑙

)︂
, 𝑙 ∈ {1, . . . ,𝑀 ·𝑁}.

Then, estimated change rate 𝛽𝑙 is converted to the
corresponding cost 𝜌𝑙 of stego bit hiding in 𝑙th pixel of
cover image:

𝜌𝑙 = ln

(︂
1

𝛽𝑙 − 2

)︂
. (8)

Finally, the message M is embedded into CI using
syndrome-trellis codes with pixels costs determined
according to eq. (8).

The locally-estimated multivariate Gaussian model
allows precisely measuring local distortions of CI caused
message hiding [15]. It makes possible achieving state-
of-the-art empirical security of stego images without
usage of compute-intensive statistical models.

5. Statistical steganalysis of digital images

The state-of-the-art paradigm in digital image ste-
ganalysis is based on investigation of differences between
image and its statistical model [1]. In most cases, these

differences are informative enough to be used as fea-
tures for classifiers, such as Support Vector Machines,
Random Forest to name but a few. Nevertheless, devel-
opment of «universal» model of CI that is suitable for
both known and unknown embedding methods remains
open problem in steganalysis [16].

The most of digital image statistical models is based
on analysis the adjacency pixels brightness dependen-
cies [4, 17]. Generally, this analysis is performed in
several stages [4, 17]. Firstly, the image is pre-processed
with high-pass filters for extraction noise components
used for message hiding. Then, obtained residuals are
truncated and quantized for limiting theirs dynamic
range. Finally, prepared residuals are used for estima-
tion the co-occurence matrices, which are applied as
features for stegdetector training.

The well-known examples of statistical models that
are based on mentioned approach are SRM [4] and
SPAM [17] models. The difference between these models
is image pre-processing stage. The SRM model is based
on utilization huge range of high-pass filters for reliably
detection of CI distortions caused by message hiding
[4]. In contrast to SRM, the SPAM model takes an
image without additional pre-processing [17].

As it was mentioned in Section 2, image high-pass
filtering for SRM model is the particular case of cover im-
age estimation approach. Effectiveness of this approach
highly depends on usage the variety of filters for com-
prehensive analysis of image noise components [4]. On
the other hand, usage of huge range of filters for SRM
model leads to considerable increasing the requirements
to used image dataset and duration of stegdetector
training.

For overcoming mentioned drawbacks, we proposed
to use stego image estimation based on message re-
embedding. The effectiveness of this approach was
shown in paper [3] for the case of message re-embedding
with similar payload. In real cases, steganalytics may
have limited opportunity to determine used embedding
methods and estimate CI payload. Therefore, the pa-
per is devoted to performance analysis of statistical
stegdetector in case of image calibration by message re-
embedding with known steganographic method. There-
fore, we focuse on SPAM model that does not include
any image pre-processing methods.

The calculation of SPAM-features starts by com-
pution the difference array D. For example, the ar-
ray D for the case of row-wise image processing and
left-to-right pixels scanning can be calculated as [17]:

D→𝑖,𝑗 = U𝑖,𝑗−U𝑖,𝑗+1, 𝑖 ∈ {1, . . . ,𝑀}, 𝑗 ∈ {1, . . . , 𝑁−1}.
The first-order SPAM features F1 are used for mod-

eling D by first-order Markov process [17]. For the
horizontal direction, it leads to:

M→𝑢,𝑣 = 𝑃𝑟(D→𝑖,𝑗+1 = 𝑢|D→𝑖,𝑗 = 𝑣),

𝑢, 𝑣 ∈ {−𝑇, . . . , 𝑇}, (9)

where 𝑇 ∈ N — threshold parameter. If probability
𝑃𝑟(D→𝑖,𝑗 = 𝑣) is equal to zero, then M→𝑢,𝑣 = 0 as well.
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The second-order SPAM features F2 are taken for
modeling difference arrays D by second-order Markov
process. Similarly to eq. (9), we obtain:

M→𝑢,𝑣,𝑤 = 𝑃𝑟(D→𝑖,𝑗+2 = 𝑢|D→𝑖,𝑗+1 = 𝑣,D→𝑖,𝑗 = 𝑤),

𝑢, 𝑣, 𝑤 ∈ {−𝑇, . . . , 𝑇},

where M→𝑢,𝑣,𝑤 is equal to zero if 𝑃𝑟(D→𝑖,𝑗+1 =
𝑣,D→𝑖,𝑗 = 𝑤) = 0. The features F1 and F2 for
others scanning directions, denoted by a syperscript
𝑐 ∈ {←,→, ↑, ↓,↗,↘,↘,↖}, can be estimated ana-
logically.

For decreasing features dimensionality, the assump-
tion that statistics in natural images are symmetric with
respect to mirroring and flipping is used [17]. Thus, we
can separately average matrices for horizontal, vertical
an diagonal directions to form the final features sets:

F·1,...,𝑘 =
1

4

[︀
M→· +M←· +M↑· +M↓·

]︀
,

F·𝑘+1,...,2𝑘 =
1

4

[︀
M↗· +M↘· +M↘· +M↖·

]︀
,

where 𝑘 = (2𝑇 + 12) for the first-order and 𝑘 =
(2𝑇 + 1)3 for the second-order features.

6. Experiments

Performance analysis of statistical stegdetectors by
message re-embedding was performed on ALASKA
dataset [18]. The sub-set of 10, 000 grayscale images
pseudo-randomly chosen from initial dataset was used.
The case of stego image formation according to adap-
tive embedding methods HUGO, S-UNIWARD, MG
and MiPOD was considered. The CI payload 𝑝𝑖𝑛𝑖𝑡 was
changed in range — 3%, 5%, 10%, 20%, 30%, 40%,
50%.

Since steganalytics do not known the CI payload
in advance, the case of message hiding with random
payload 𝑝𝑟𝑒−𝑒𝑚𝑏 is considered. The payload 𝑝𝑟𝑒−𝑒𝑚𝑏

is uniformly sampled from the range 𝑝𝑟𝑒−𝑒𝑚𝑏 ∈ [1; 50].
Then, stegdetector can be tuned with next features:
1) Non-calibrated features— corresponds to the case

of initial (non-calibrated) image U usage:

F𝑛𝑐 = 𝐹𝑒(U), (10)

2) Features of calibrated image — corresponds to fea-
tures obtained after message re-embedding into
image U:

F𝑟𝑒−𝑒𝑚𝑏 = 𝐹𝑒(𝐶(U)), (11)

3) Linearly transformed features of calibrated image
— corresponds to the difference between features of
calibrated and initial images:

F𝐷𝐹 = F𝑟𝑒−𝑒𝑚𝑏 − F𝑛𝑐; (12)

4) Cartesian calibrated features — correpsonds to the
case of features merging for initial and calibrated
images:

F𝐶𝐶 = [F𝑛𝑐;F𝑟𝑒−𝑒𝑚𝑏]. (13)

The stegdetector includes ensemble classifier [19]
trained with usage of SPAM model [17]. According
to recommendation of Pevny et al [17], we used second-
order SPAM features with 𝑇 = 3, leading to 686
features. Stegdetector was tested according to cross-
validation procedure with minimization of total error
𝑃𝐸 [19]:

𝑃𝐸 = min
𝑃𝐹𝐴

1

2
(𝑃𝐹𝐴 + 𝑃𝑀𝐷 (𝑃𝐹𝐴)) ,

where 𝑃𝐹𝐴, 𝑃𝑀𝐷 — are false alarm (misclassifica-
tion cover images as stego ones) and missed detection
(assignment of stego images as covers) probabilities re-
spectively. The dataset was divided into training (90%)
and testing (10%) sub-sets during cross-validation. The
division was performed 10 times for estimation averaged
values of total error 𝑃𝐸 .

Stegdetector performance significantly depends on
amount of cover-stego images pairs in training set [19,
20]. The majority of research in digital image steganal-
ysis considers the case of forming training dataset only
from cover-stego images pairs that allows

The majority of research in digital image steganal-
ysis uses assumption that steganalycs have access to
stego images generator for creation stego images from
covers. This case may be unrealistic in some scenarios,
such as revealing of stego images formed according to a
priori unknown embedding method. In this situation
steganalytics have access only to stego images, formed
from inaccessible (unseen) covers. Therefore, we inves-
tigated this case during experiments for estimation of
stedetectors performance in scenarios as close to reality
as possible.

The dependencies of total error 𝑃𝐸 on CI payload for
stego images formed according to HUGO embedding
method by usage of features (eqs. (10) to (13)) are
represented at Fig. 1.

Message re-embedding by HUGO (Fig. 1a) and S-
UNIWARD (Fig. 1b) methods allows considerably de-
creasing of total error 𝑃𝐸 in comparison with MG
(Fig. 1c) and MiPOD (Fig. 1d) methods. Images cali-
bration with these methods does not considerably de-
crease total error 𝑃𝐸 in comparison with usage of non-
calibrated features F𝑛𝑐. Applying of F𝑟𝑒−𝑒𝑚𝑏 and F𝐶𝐶

features allows negligibly decreasing 𝑃𝐸 values (about
0.5% − 0.75%) only for low payloads of CI (less than
10%). Similarly to HUGO (Fig. 1a) and S-UNIWARD
(Fig. 1b) methods, usage of F𝐷𝐹 features leads to de-
creasing of 𝑃𝐸 error up to 5% even for low payload of
CI.

Usage of calibrated images features F𝑟𝑒−𝑒𝑚𝑏 allows
decreasing of error values only for medium and high pay-
loads (𝑝𝑟𝑒−𝑒𝑚𝑏 ≥ 10) — up to 4% for HUGO (Fig. 1a)
and up to 5% for S-UNIWARD (Fig. 1b) methods. On
the other hand, applying of cartesian calibrated F𝐶𝐶
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(a) Message re-embedding with HUGO method

(b) Message re-embedding with S-UNIWARD
method

(c) Message re-embedding with MG method

(d) Message re-embedding with MiPOD method

Fig. 1. Dependencies of total error 𝑃𝐸 on cover image
payload for stego images formed according to HUGO
embedding method. The stegdetector was tuned with
usage of non-calibrated features F𝑛𝑐 (solid lines), fea-
tures of calibrated image F𝑟𝑒−𝑒𝑚𝑏 (dashed lines), lin-
early transformed features of calibrated image F𝐷𝐹

(dotted lines) and cartesian calibrated features F𝐶𝐶

(dash-dot lines).

and linearly transformed F𝐷𝐹 features leads to consid-
erably decreasing of 𝑃𝐸 error — up to 20% for high
payload of cover image. The obtained results are non-
trivial, since cartesian calibrated F𝐶𝐶 features have dou-
bled dimensionality and contain information (features)
for both initial and calibrated images. Contrariwise,
linearly transformed F𝐷𝐹 features allows aditionally
decreasing of detection error despite of operation over
differences between SPAM-features for initial and cali-
brated images. The differences between values of 𝑃𝐸

for F𝐶𝐶 and F𝐷𝐹 features (Fig. 1a-1b) are about 4%
even for the case of low payloads of CI (less than 10%).
It proved our assumption that usage of special type of
image calibration and features post-processing allows
considerably improving stegdetector performance.

The HUGO method is widely used as typical adap-
tive embedding methods today. Therefore, it is repre-
sented the interest to analyze the influence of message
re-embedding into stego images formed according to
modern S-UNIWARD method that preserves changes
of cover’s spectral features. The dependencies of to-
tal error 𝑃𝐸 on cover image payload for stego images
formed according to S-UNIWARD embedding method
by usage of features (eqs. (10) to (13)) are represented
at Fig. 2.

Similarly to HUGO methods (Fig. 1), message re-
embedding by HUGO (Fig. 2a) and S-UNIWARD
(Fig. 2b) methods allows considerably improving stegde-
tectors performance — the total error is decreasing
about 20% for high payload and near 4% for low pay-
load of cover image. Also, the biggest reducing of 𝑃𝐸 is
achieved for F𝐶𝐶 and F𝐷𝐹 features, whereas usage of
F𝑟𝑒−𝑒𝑚𝑏 leads to total error decreasing only up to 6%.

Also, it is revealed that the biggest improvement
of stegdetector performance is achieved by message
re-embedding according to same embedding method,
which was used for stego image forming (Fig.1-2). It
can be explained by amplification of method-specific
distortions by message re-embedding. On the other
hand, applying of MG (Fig. 2c) and MiPOD (Fig. 2d)
methods allows incdeasing of detection error even for
low payload of CI (about 5% for F𝐷𝐹 features).

Obtained results for S-UNIWARD embedding meth-
ods proved our conclusions for HUGO method (Fig. 1).
So, it is represent interest to further analysis of stegde-
tector performance by message re-embedding by ad-
vanced MG and MiPOD methods. The dependencies of
total error 𝑃𝐸 on cover image payload for stego images
formed according to these methods by usage of features
(eqs. (10) to (13)) are represented at Fig. 3 and Fig. 4
respectively.

Likewise HUGO (Fig. 1) and S-UNIWARD (Fig. 2)
methods, message re-embedding according to stegano-
graphic algorithm that was used for stego image forma-
tion allows considerably decreasing of total error 𝑃𝐸 in
all range of CI payload (Fig. 3 – 4). It is achieved about
6% decreasing for MG (Fig. 3c) and 5% for MiPOD
(Fig. 4d) methods even for low cover image payloads.

Also, it is revealed that applying of HUGO method
for data re-embedding lead to decreasing of 𝑃𝐸 values
(about 3%) for both MG (Fig. 3a) and MiPOD (Fig. 4a)
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(a) Message re-embedding with HUGO method

(b) Message re-embedding with S-UNIWARD
method

(c) Message re-embedding with MG method

(d) Message re-embedding with MiPOD method

Fig. 2. Dependencies of total error 𝑃𝐸 on cover im-
age payload for stego images formed according to S-
UNIWARD embedding method. The stegdetector was
tuned with usage of non-calibrated features F𝑛𝑐 (solid
lines), features of calibrated image F𝑟𝑒−𝑒𝑚𝑏 (dashed
lines), linearly transformed features of calibrated image
F𝐷𝐹 (dotted lines) and cartesian calibrated features
F𝐶𝐶 (dash-dot lines).

(a) Message re-embedding with HUGO method

(b) Message re-embedding with S-UNIWARD
method

(c) Message re-embedding with MG method

(d) Message re-embedding with MiPOD method

Fig. 3. Dependencies of total error 𝑃𝐸 on cover image
payload for stego images formed according to MG em-
bedding method. The stegdetector was tuned with us-
age of non-calibrated features F𝑛𝑐 (solid lines), features
of calibrated image F𝑟𝑒−𝑒𝑚𝑏 (dashed lines), linearly
transformed features of calibrated image F𝐷𝐹 (dotted
lines) and cartesian calibrated features F𝐶𝐶 (dash-dot
lines).
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(a) Message re-embedding with HUGO method

(b) Message re-embedding with S-UNIWARD
method

(c) Message re-embedding with MG method

(d) Message re-embedding with MiPOD method

Fig. 4. Dependencies of total error 𝑃𝐸 on cover image
payload for stego images formed according to MiPOD
embedding method. The stegdetector was tuned with
usage of non-calibrated features F𝑛𝑐 (solid lines), fea-
tures of calibrated image F𝑟𝑒−𝑒𝑚𝑏 (dashed lines), lin-
early transformed features of calibrated image F𝐷𝐹

(dotted lines) and cartesian calibrated features F𝐶𝐶

(dash-dot lines).

methods. On the other hand, usage of S-UNIWARD
method gives opportunity to decrease detection error
only for MiPOD method (Fig. 4b).

Decreasing of 𝑃𝐸 was achieved by usage of F𝐷𝐹

features (Fig. 3 – 4). Applying of F𝐶𝐶 has low effect on
detection accuracy in comparison with the case of usage
the non-calibrated images. Taking F𝑟𝑒−𝑒𝑚𝑏 features
allows improving stegdetector preformance only by MG
method re-embedding (Fig. 3c).

7. Discussion
The presented results for AEM (Fig. 1-4) proved our

hypothesis that stego image estimation approach allows
considerably improving stegdetector performance. This
approach shown the biggest impact for HUGO and S-
UNIWARD methods when simple message re-embeding
with random payload can significantly (up to 20%)
decrease detection error. For the advanced MG and
MiPOD methods, proposed approach allows decreasing
total error up to 7% even for low payload of CI (less than
10%) where known steganalysis methods are ineffective.

Obtained results may be explained by features of
ALASKA dataset used in experiments, namely by low
level of image noise. Therefore, we carried out addi-
tional verification on VISION dataset [21]. The dataset
consists of images captured in-the-wild by 35 different
portable devices of 11 major brands. The dependencies
of total error 𝑃𝐸 on cover image payload for stego im-
ages formed according to HUGO and SUNI methods
by usage of features (eqs. (10) to (13)) are represented
at Fig. 5 and Fig. 6 respectively.

Obtained results (Fig. 5-6) for VISION dataset are
similar to results obtained for ALASKA dataset (Fig. 1-
2). The negligible dissimilarity between error range for
both datasets can be explained differences in images
noises level. Therefore, we may conclude that revealed
improving of stegdetector performance does not connect
with dataset-specific features.

Revealed decreasing of detection error shown that
message re-embedding even by another steganographic
method leads to significantly amplification of CI dis-
trotions caused stego formation. It is notable that the
amplification is achived even by applying known HUGO
and S-UNIWARD methods to stego images formed ac-
cording to advanced MG (Fig. 3) and MiPOD (Fig. 4)
methods. Therefore, the message re-embedding is ana-
logue to well-known side-channel technique in digital
image steganography — usage pre-cover by steganog-
rapher for additional masking the distorions caused
by message hiding. For the steganalysis, message re-
embedding into analyzed image can be represented as
utilization by steganalytic the side-channel — to use
similar sets of CI pixels as was used by stego bits em-
bedding. This effect can be used in blind steganalysis
when steganalytics do not have access to embedding
module.

8. Conclusion
The paper devoted to performance analysis of sta-

tistical stegdetectors in case of image calibration by
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(a) Message re-embedding with HUGO method

(b) Message re-embedding with S-UNIWARD
method

(c) Message re-embedding with MG method

(d) Message re-embedding with MiPOD method

Fig. 5. Dependencies of total error 𝑃𝐸 on cover image
payload for stego images formed according to HUGO
embedding method on VISION dataset. The stegde-
tector was tuned with usage of non-calibrated features
F𝑛𝑐 (solid lines), features of calibrated image F𝑟𝑒−𝑒𝑚𝑏

(dashed lines), linearly transformed features of cali-
brated image F𝐷𝐹 (dotted lines) and cartesian cali-
brated features F𝐶𝐶 (dash-dot lines).

(a) Message re-embedding with HUGO method

(b) Message re-embedding with S-UNIWARD
method

(c) Message re-embedding with MG method

(d) Message re-embedding with MiPOD method

Fig. 6. Dependencies of total error 𝑃𝐸 on cover im-
age payload for stego images formed according to S-
UNIWARD embedding method on VISION dataset.
The stegdetector was tuned with usage of non-calibrated
features F𝑛𝑐 (solid lines), features of calibrated image
F𝑟𝑒−𝑒𝑚𝑏 (dashed lines), linearly transformed features
of calibrated image F𝐷𝐹 (dotted lines) and cartesian
calibrated features F𝐶𝐶 (dash-dot lines).
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message re-embedding with randomly chosen payload.
We obtained further results during verification of pro-
posed approach on stegdetector based on SPAM model
of cover image:
1) Message re-embedding into cover and stego images

allows considerably improving stegdetectors perfor-
mance (up to 20%) even in case of low payload of
cover image (less than 10%). The biggest decreas-
ing of detection error was achieved in case of stego
data re-embedding with usage of same stegano-
graphic method that was applied for forming stego
images.

2) The value of detection error decreasing significantly
varies for considered adaptive embedding methods.
The biggest improvement of stegdetector accuracy
was achieved for HUGO and S-UNIWARD (up to
20%), while for advanced MG and MiPOD methods
the gain was about 7%. This became possible due
to usage of proposed linearly transformed features
instead of widely used Cartesian calibrated ones.

In the future, we would like to investigate the accu-
racy of stegdetector in case of message re-embedding
with multiple steganographic methods. We also plan to
investigate the influence of source-target domain mis-
match problem on effectiveness of this approach, where
the major challenge would be features adaptation to
new image sources.
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