Mathematical methods, models and technologies for secure cyberspace functioning research

UDC 004.056

Methods of counteraction of bypassing two-factor authentication
using reverse proxy

A. V. Vlasenkolﬁ, M. I. Ilin%, I. V. Stopochkinalﬂ

! National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institutes,
Educational and Research Institute of Physics and Technology

Abstract

The existing solutions for counteracting and preventing the interception of data and tokens of two-factor authentication
are considered. Features that may indicate the presence of a silent reverse proxy server are chosen. It is proposed to
analyze the information about additional time anomalies, which are usually created by the proxy server. The advantage
of this approach is that the time characteristics information is generated on the client side, and the malicious proxy server
cannot modify it. Machine learning methods were used to detect implicit signs of the presence of a proxy server. A new
method of detecting a silent reverse proxy server that satisfies the following conditions is proposed: 1) the human factor
is minimized, 2) use by an individual user is possible, 3) the method has acceptable impact on performance and can be

used in real time.

Keywords: Two-factor authentication, silent reverse proxy servers, prevention

Introduction

Two-factor authentication is widely used as a means
of protection against cyber attacks in cyberphysical
systems, in mobile systems, in the organization of a re-
liable channel for communication of Internet of Things
devices, and when working with web resources. Along
with numerous works on the development of various
methods and algorithms for two-factor authentication,
a number of products are presented that allow to pre-
vent the bypass of two-factor authentication (2FA). A
significant portion of such attacks are phishing using
silent reverse servers [I]. Appropriate products include
Htrosbif and lbmap, which send a number of requests
to the server and use the server’s response signature
database to identify proxy server software. But they
cannot detect web server applications that have been re-
designed for proxy servers [2],[3]. It is also used the http
trace.nasl, which analyzes the HTTP response headers
of the server, namely the Via header, and basing on
this information concludes that there is a reverse proxy.
However, silent reverse proxy servers modify response
headers, which means that this tool is not effective in
such cases. The Halberd tool detects web load bal-
ancers. The application sends the same request to the
IP address of a potential malicious reverse proxy server
and analyzes discrepancies in some headers of server
responses [4]. The effectiveness of TLHS significantly
depends on the type of software used for reverse proxy
[5]. Using the WAFWOOf tool, which aims to detect
web server firewalls, results in any server firewall being
defined as a reverse proxy that generates false-positive
results; also the specifics of the tool often lead to false-
negative results. The RevProbe tool [6] combines the

%andvl@lll.kpi.ua
birst-ipt@lll.kpi.ua

approaches used in previous tools. However, it should
be noted that only a few of these tools can be used to
detect silent reverse proxies in real time, and the quality
of their work depends on the technical component and
requires skilled professionals to apply. Therefore, it is
important to develop a method for detecting a silent
reverse proxy at 2FA under the following conditions: 1)
the human factor is minimized; 2) possible use by an
individual user, and not only within the organization;
3) insignificant impact on speed and ability to work in
real time.

1. Problem description
1.1. Authentication

The HTTP protocol is a stateless protocol, which
means that each request to the server must contain
some information with which it could identify an already
authenticated client. The two most common approaches
today are session-based authentication and token-based
authentication [I].

In session-based authentication, after the user logs
in, the server creates a session and stores the session
data in the server’s memory. The session ID is stored
in cookies on the client side and sent to the server with
each request. The received ID is compared with the
session data on the server. At the end of the session,
the data is deleted from the server.

Token-based authentication uses a different approach.
During authentication, the server returns a JSON
(JWT) web token to the client, which is stored on
the client’s side and sent with each request. The token
contains all the necessary information for the correct
identification of the client. No additional data is stored
on the server.

33

Methods of counteraction of bypassing two-factor authentication using reverse proxy

Modern web applications recommend the use of token-
based authentication for several reasons:

e Easier support and bug fixes;

e Ability to create REST services;

e All necessary information is stored in the token
itself and there is no need to store additional infor-
mation on the server side.

These approaches also work with two-factor authen-
tication, so if an attacker receives a token or cookie,
they will be able to log in to the victim’s account. In
addition, there are other security issues. Cookies and
tokens are stored either in the web repository or in
cookies. JavaScript has access to the web repository
in the same domain, which means that the token and
cookies may be vulnerable to cross-site scripting (XSS)
and cross-site request (CSRF).

Information can be intercepted using silent reverse
proxy server. There are many developed applications
that can be configured and used as a silent reverse
proxy server. As an example, the following tools for
penetration testing can be used: Modlishka, Muraena,
Evilginx 2.

1.2. OAuth 2.0

During the development of web services, there was a
problem of interaction between them, particularly how
to grant an access to one web service to another using
user rights. The first approach was to simply transfer
the login and password, but this was quickly abandoned
because there are risks of losing privacy. Therefore, a
single standard has been developed that allows one
service to securely use the data of another, OAuth.
Then it was replaced by another standard, OAuth 2.0,
and most web services use it. With this, applications
exchange a sequence of data to obtain rights. This
sequence of actions is often referred to as delegated
authorization.

The sequence is as follows:

1) The Client wishes to provide service B with access
to some information contained in service A. To do
this, service B contains a forwarding form by which
the Client enters the authorization server of service
A.

2) The authorization server checks the Client and
displays a form with a list of data and rights that
will be granted to service B.

3) After confirmation, the authorization server of ser-
vice A redirects the Client to service B.

4) After confirmation, the authorization server of ser-
vice A redirects the Client to service B.

5) Service B directly contacts service A, send the data
provided by the client.

6) Service A checks the data and responds to service
B, providing it with an Access Token, with which
you can obtain information without contacting the
Client.

OAuth 2.0 was designed for authorization only. To
implement authentication, there is OpenID Connect -
a layer over OAuth 2.0, which adds information about
the login and profile of the user logged in to the account.

This allows to implement the ability to use a single login
for multiple applications. This is a unified approach
that simplifies the process for users.

But it has its drawbacks, in this work we highlight the
most important: if an attacker takes possession of data
to log in to an account that provides authentication
services to other services, he will gain access to all
these services. Currently, most authentication service
providers automatically authenticate the user without
requiring the user to enter a login or password and
without verifying the second authentication factor.

1.3. Reverse proxies

The paper considers bypassing 2FA with the help of
reverse proxy servers.

A proxy server is a server that divides a client-to-
server connection into two TCP connections, one from
client to proxy and the other from proxy to destination
server. All traffic passes through it without changing. A
proxy is explicit if you need to configure the IP address
and proxy port on the client side (such as a browser).
Otherwise, it is a transparent proxy server.

The reverse proxy server is purposefully installed by
the web service owner to mediate HT'TP communica-
tion from clients to web service servers. Thus, it is
installed specifically for the web service, in contrast
to the direct proxy server, which is often installed on
the local network and mediates the connection of local
clients.

To solve the problem of silent reverse proxy detection
it is necessary to implement the following steps:

e Highlight the features that may indicate the pres-

ence of a silent reverse proxy;

e Develop a method for detecting a silent reverse

proxy based on the machine learning method;

e Propose the concept of implementing user-oriented

software to detect a reverse silent proxy;

e Develop appropriate software and perform a com-

putational experiment.

2. Choice of features

Browsers automatically save and use queries and
responses for further formatting into visual information.
The data storage standard is HAR 1.2 (HTTP Archive).

The format is based on JSON, supports only UTF-8
encoding. In the browser, this information is contained
in the Developer Tools, Network tab. There is an API
through which this information can be obtained. In
JavaScript, the interaction is implemented in the library
devtools.network and window.perfomance.

For each sent request and received response, a HAR
data structure is formed [7]. The list of received infor-
mation includes a significant amount of information,
including the time of interactions. The previous section
discussed tools that use server responses to search for a
proxy server. But this approach is not universal, proxy
servers can modify responses.

One of the possible methods of information analysis
may be the analysis of information about the time

34

Mathematical methods, models and technologies for secure cyberspace functioning research

of interactions. The proxy server creates additional
time anomalies that can be tracked as all traffic passes
through it. When interacting with a real target server,
such anomalies should not be. The advantage of this
approach is that the information about the time of
interaction with the server is generated on the client
side, the browser automatically generates it and the
proxy server cannot modify it.

Consider the timings section:

e blocked [number, ms|; Time spent waiting in line
for a network connection. Optional value.

e dns [number, ms|; The time required to determine
the host name (DNS protocol). Optional value.

e connect [number, ms|; The time required to estab-
lish a TCP connection. Optional value.

e send [number, ms|; The time required to send an
HTTP request to the server.

e wait [number, ms|; Response time from the server.
Actually the time for getting the first byte.

e receive [number, ms|; The time required to read
the entire response from the server. This is the
time between receiving the first and last byte of
information.

e ssl [number, ms|; The time required to validate the
SSL / TLS certificate. Optional value.

e comment [line]. A comment that can be added by
a user or application. Optional value.

All optional values will be set into -1 if not defined
by the browser or if the information is taken from the
cache. For a silent proxy detection application to work
reliably, we have to use values that are always provided
and will not be optional. Others can only be used as
ancillary.

From these values theoretically useful for our pur-
poses can be send, dns, connect, wait, receive and ssl.
Additional measurements based on the information ob-
tained will also be useful. These can be the values of
Internet speed, the number of nodes to the target server
and the response time of the target server to ICMP
packets (hereinafter referred to as hop time).

An analysis of send distribution showed that all send
values are zero. It means send parameters are not big
enough to be written into HAR (all the numbers are
rounded, and values less than 1 ms are rounded to 0
ms). The information on dns,connect, receive and ssl
measurements is not complete for the final conclusions.
They include some nonzero parameters, but other values
are obtained from browser cache or are not big enough.

Values are calculated only for the first request to
the server. In actual use, it is not possible to obtain
these values for each request without clearing the cache.
At this stage, it is impractical to use these parameters
to build a classifier. The value of receive does not
give a practical meaning because it depends on the
capacity of the target server, how quickly it will form
a final response. There may also be delays between
receiving different data packets due to the quality of
the communication channel.

The speed of the internet connection affects the re-
sponse time. The number of nodes is measured indepen-
dently of the query data based on the server address.

35

\/ N\

Server

-

Client

responce

HAR

ICMP

request Responce

i 4

(ormen) (owtom | [Troe)
O
N

Fig. 1. Scheme of client-server interactions

4
Results output (GUI) /\ /

This also applies to hop time. Considering the wait and
hop options will allow you to find the proxy server in
the middle.

The wait parameter was calculated. It based on the
response of the destination server, even if there is a
proxy in the middle.

The hop parameter is calculated for the end node
of the connection. In the absence of a proxy server,
the time will be calculated based on the response of
the real server. And if there is a proxy server, then
this parameter will be calculated basing on its response.
This is where the mismatch between the wait and hop
parameters occurs.

The measurements of the parameters can be imple-
mented using libraries in Python.

Of all the files that the browser receives upon request,
we are interested in the first. Its characteristic feature
(this applies to all requests, regardless of the target
server) is the type of Initiator. This parameter will
correspond to the value of Other. This means that the
initiator of this request is the client, and this request
led to the appearance of other, additional.

The main disadvantage of finding a proxy server using
time analysis is its dependence on its location. So if
the malicious proxy is on the same subnet as the real
proxy server, the hop time may not be different at all.
But even in this case, there will be changes in the wait
parameter. To solve this problem, we can use machine
learning methods.

3. Silent reverse proxy detection method

The scheme of the method is presented in Fig.
It is proposed to use the classic three-level security
model, in which «green» will be responsible for the

Methods of counteraction of bypassing two-factor authentication using reverse proxy

250,
. 200
$150 :

100 /

50
800 1000

0 200 400

600
Requests

Fig. 2. Wait parameter changes

600 .
500 .

400
.. 300
5200

=100

0 200 600 800 1000

400 Requests’

Fig. 3. Wait parameter changes while measuring inter-
net speed

most secure state, and «red» for the presence of a proxy
server, «yellow» - for a potentially dangerous situation.
In this way, we will be able to reduce the level of errors
of the second kind, due to the poor quality of Internet
communication.

4. Setting up a computational experiment

For the experiment the Evilginx2 reverse proxy server
was configured [8]. Google was chosen as the target
server, namely the accounts.google.com authorization
service. To automate the data collection process, a
Python program was developed using Selenium Web-
driver to work with the browser, a speedtest-cli library
to measure Internet speed, and an icmplib library to
trace the path to the destination node. To test the feasi-
bility of using the parameters, three test measurements
were made: one control using only the information pro-
vided by the browser (Fig.[2), the second with the ad-
dition of Internet speed measurements (Fig.|3)) and one
with the addition of path trace measurements (Fig. @
This was done to determine the effect of additional
measurements on performance.

As a result of elimination of unsuitable values the
received data set contains values of parameters id, speed,
hop, wait, quantity, proxy, where id - request number,
speed - Internet speed, hop - time of response of the
final node to ICMP request, wait - time to receive the
first byte, quantity - the number of nodes to the final.
The proxy parameter corresponds to the presence of
a proxy server. The obtained parameter distributions
with and without a proxy server for several parameters

are shown in Fig. [5] [6] [7]

It can be seen that the hop parameters are not very
different, but the wait parameter has increased signifi-
cantly. The correlation matrix (Table [1)) shows interde-
pendence of parameters.

140
120
100
g 80 J
= 60| o
0 200

400 800 1000

600
Reaquests

Fig. 4. Wait parameter changes while tracing the path

Waits distribution

=N

40

Quantity

0 (TR

60 80 100 120 140

Value

Fig. 5. The wait parameter distribution for queries
without a proxy

0400 120 140 "7 180
Value

200

Fig. 6. The wait parameter distribution for proxy re-
quests

215
Value

Fig. 7. The hops time distribution for queries without
a proxy

225 23 23.5 245 25.0

24.0

0 Value

Fig. 8. The hops time distribution for proxy requests

Table 1. Correllation matrix

Wait | Hop | Proxy
Wait | 1 0,93 | 0,95
Hop 093 |1 0,98
Proxy | 0,95 | 0,98 | 1

36

Mathematical methods, models and technologies for secure cyberspace functioning research

Table 2. Accuracy of results

SVM
93,2

RF
97,5

LR |
94,6 |

Accuracy

Table 3. Characteristics of work in real time

Mode, Average, | Deadline,
ms ms ms
Measurements 22 24 30
Classification 18 20 50
In general 40 44 80

5. Using machine learning for the problem

Classifiers were trained on the obtained data for de-
tecting the presence of a proxy server. The results with
the accuracy are shown in Table [2l Support vector ma-
chine, Random Forest, Logistic Regression algorithms
were applied.

The false positives may occur due to failure in connec-
tion channel. There may be also false negative results
due to location of the proxy server in the subnet of
the destination server. The difference between wait
parameters will be smaller than usual.

6. Realization

The implementation of the method is proposed as
an extension for a web browser. The advantage of this
solution is the ease of use by the average user. General
scheme of work:

1) Obtaining data.
2) Data analysis.
3) The final decision.

Software components are:

1) Data collection component.
2) Data analysis component.
3) Graphical interface.

The HAR browser specification with the win-
dow.perfomance library of the JavaScript programming
language and the icmplib library in the Python program-
ming language were used for data collection. Logistic
regression method, binary classification was used for
data analysis. This is because although the Random
Forest method gave the best result in terms of accuracy,
logistic regression features can be used to improve the
application and determine different levels of danger, as
the output gives the probability of belonging to a class.
In particular, the qualitative score «green» corresponds
to the probability of having a proxy server in the range
(0; 0.05], «yellow» - (0.05; 0.15], «red» - (0.15; 1]).

Yellow level is also assigned in case of failure in data
collection. The characteristics of the method in real
time (Table [3)) indicate the efficiency of the proposed
approach.

7. Conclusions

The proposed method of silent reverse proxy server
detection, in contrast to existing tools, can be used to
protect data in real time, and does not require special
user training. However, the method is not focused on
identifying the exact structure of malicious infrastruc-
tures, which may be the subject of further research.
The method slightly depends on the technical compo-
nent of the reverse server. However, the training sam-
ple should be expanded to include technically different
proxy servers.

8. References

References

[1] A. V. Vlasenko and I. V. Stopochkina, “Penetra-
tion testing in sphere of social engineering with
2fa bypass and prevention means.,” in Materials of
All-Ukrainian scientific-practical conference «Theo-
retical and applied problems of physics, mathematics
and computer sciencey, pp. 256—260, Institute of
Physics and Technology, 2020.

“Htrosbif.- [electronic resource|.”
//freshmeat.sourceforge.net/projects/
htrosbifl

“HTTP TRACE / TRACK methods allowed.- [elec-
tronic resource].” https://vulners.com/nessus/
XST_HTTP_TRACE.NASL!

“Traceroute-like HTTP scanner.- [electronic
resource].” https://www.agarri.fr/blog/
archives/2011/11/12/traceroute-like_http_
scanner/index.html.

2

http:

“Halberd.- [electronic resource].” https://github,

com/ jmbr/halberd.

A. Nappa, R. F. Munir, [. K. Tanoli, and et al.,

“Revprobe: Detecting silent reverse proxies in ma-

licious server infrastructures.,” in Proceedings of

the 32nd Annual Conference on Computer Security

Applications, vol. 4 of 5, pp. 101-112, ACSAC 16,

2016.

[7] “HAR 1.2 spec.- [electronic resource].” http://www,
softwareishard.com/blog/har-12-spec/.

[8] “Evilginx2.- [electronic resource].” https://github)

com/hash3liZer/evilginx2.

37

http://freshmeat.sourceforge.net/projects/htrosbif
http://freshmeat.sourceforge.net/projects/htrosbif
http://freshmeat.sourceforge.net/projects/htrosbif
https://vulners.com/nessus/XST_HTTP_TRACE.NASL
https://vulners.com/nessus/XST_HTTP_TRACE.NASL
https://www.agarri.fr/blog/archives/2011/11/12/traceroute-like_http_scanner/index.html
https://www.agarri.fr/blog/archives/2011/11/12/traceroute-like_http_scanner/index.html
https://www.agarri.fr/blog/archives/2011/11/12/traceroute-like_http_scanner/index.html
https://github.com/jmbr/halberd
https://github.com/jmbr/halberd
http://www.softwareishard.com/blog/har-12-spec/
http://www.softwareishard.com/blog/har-12-spec/
https://github.com/hash3liZer/evilginx2
https://github.com/hash3liZer/evilginx2

	1 Problem description
	1.1 Authentication
	1.2 OAuth 2.0
	1.3 Reverse proxies

	2 Choice of features
	3 Silent reverse proxy detection method
	4 Setting up a computational experiment
	5 Using machine learning for the problem
	6 Realization
	7 Conclusions
	8 References

