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Abstract
Nowadays, one of the most critical cyber security problems is the fight against malicious software, precisely,

the problem of detecting it. Every year, new modern computer viruses are created that are capable of mutation
and changing while running. But unfortunately, the developers of antivirus software do not have time to quickly
add all types of malicious programs to the signature databases. In this regard, it is sensible to use heuristic
detection methods based on algorithms of machine learning. The purpose of this paper is to present several
classification methods based on machine learning techniques for detecting zero-day attacks. In particular, the
following algorithms were tested: random forest classifier, support vector classifier, greed search in svc, and
k-nearest neighbours. The dataset was taken from the Kaggle website. It consists of 19611 executable files of
the PE format, 14599 of which are malicious, and 5012 files are benign. This article presents recommended
classification and detection methods with advanced analysis of important metrics that allow you to assess and
compare machine learning algorithms’ effectiveness and performance for detecting malware.
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Introduction
Historically, the first antivirus programs used a

signature-based approach to detect malicious files. Sig-
natures are features of a malicious application that
characterize its code and method of intrusion. The
essence of this approach is to check the contents of
the analyzed object for the presence of signatures of
already known threats. However, methods based on the
comparison of instances are static. Although they have
a high accuracy in determining the fact of an attack,
they can identify only a limited part of all possible
threats. An obvious drawback is an impossibility of
detecting non-trivial, polymorphic, and unknown ma-
licious programs, the signatures of which have not yet
been identified. Therefore, this analysis cannot be used
to detect zero-day attacks. An alternative approach
is to use the following existing methods: behavioral
analysis, machine learning, deep learning, etc. [1].

The idea of this work is similar to that of Faranak
Abri et al. [2], where extensive research was conducted
on various machine learning methods to detect zero-day
attacks. However, our work includes several significant
additions. Namely, to determine the accuracy of the
investigated methods and analyze the result, we will
use not only the accuracy metric but also the F-score.
We will also consider errors of the 1st and second levels,
which will allow for a deeper analysis of the results.
Additionally, we will compare the methods in terms of
the speed of operation and the optimal use in conditions
of a limited data set size.

This article explores the effectiveness of classical ma-
chine learning methods. The aim is to empirically

validate machine learning models to detect malicious
files and possible zero-day attacks.

The paper is organized as follows: the first section
discusses the main research issues and general infor-
mation about the applied machine learning algorithms.
Section 2 describes the research dataset. Ways for evalu-
ating methods are outlined in section 3. The classifiers
and their main parameters are presented in section
4. Section 5 compares the results of several machine
learning methods. Section 6 describes the possibility of
using the methods on a real system. Observations from
the analysis of experimental data are presented in the
conclusions section at the end of this article.

1. The main observed problems
This article describes experiments that demonstrate

the possibility of using models based on machine learn-
ing methods to detect malicious programs and zero-day
attacks without prior knowledge of these threats. The
main task of machine learning methods is to find the
connection between the analysed data and the detected
signs of harmfulness. Many different ML methods are
used to determine the connection, starting with Con-
ventional Machine Learning and ending with neural
networks, both simple (with one or a pair of hidden
layers) and more complex, called deep learning.

It is assumed that deep learning methods cope with
the classification task better than classical ML algo-
rithms [3]. However, this is not always possible. In
addition, complex neural networks require significant
computing resources and large datasets to work cor-
rectly, which may not always be optimal for use on a

46

Algorithms and methods of cyber attacks prevention and counteraction



real system. Therefore, in this article, we will look at
the work of four classical machine learning algorithms:

The random forest classifier was chosen as one of
the most statistically productive. The method also
works great with a mixture of numeric and categorical
functions, leading to good results. The random forest
combines two main ideas: using an ensemble of decision
trees and the random subspace method. The algorithm
does not operate with metrics, allowing you to work
with features of a different nature freely. Also, this
method is very stable when working with sparse and
uncalibrated data.

Support Vector Machines have been taken as one of
the most popular algorithms. According to numerous
studies [4, 5], it shows promising results precisely in
problems of binary classification. It is based on the
search for a separating hyperplane with a maximum
gap in this space. In classical SVC, based on kernels,
a vector of weights is trained, which determines the
contribution of each sample to the dividing hyperplane
between classes by solving an optimization problem.

The GridSearch method used for SVC has been cho-
sen as one of the most traditional functional methods
used to optimize the loss function. The grid search
algorithm cyclically selects groups of 𝐶 and 𝑔 values
and computes the model accuracy for each pair. As
a result, we obtain (𝐶, 𝑔), which provides the highest
accuracy.

Also, we used the method of k-nearest neighbours –
the most straightforward metric algorithm for classify-
ing objects. The K-NN is based on the following rule:
an object belongs to the class to which most of its near-
est neighbors belong. It is worth noting that K-NN does
a poor job with large data because with a large number
of subsets, the complexity of calculating the distances
between sets increases. The research described in this
article focuses on the following tasks:
1) Conduct several experiments to investigate various

machine learning models for detecting malicious
software.

2) Conduct a study of algorithms using a wide range
of indicators in a limited and extended dataset.

3) Find out whether at least one of the classification
methods used can work on a real system and what
is required for this.

2. Input Datasets

For the input, the set of executable files from the
Kaggle website are used. According to the information
on the website, the raw dataset contained 14, 599 files
marked as «legitimate» and 5012 files marked as «mali-
cious». The labels were «1» and «0», respectively. The
number of features is reported as – 77. Table 1 contains
the features in the model.

Experiments are conducted on three groups of data
of different sizes, which will allow us to evaluate the
behavior of algorithms with a decrease in the training
sample and an increase in the test set, respectively. The
models are trained on the following data: 90 % for the
first group, 70 % for the second, and 40 % of the main

Table 1. PE features

Features
e_magic MinorImageVersion
e_cblp MajorSubsystemVersion
e_cp MinorSubsystemVersion
e_crlc SizeOfHeaders

e_cparhdr CheckSum
e_minalloc SizeOfImage
e_maxalloc Subsystem

e_ss DllCharacteristics
e_sp SizeOfStackReserve

e_csum SizeOfStackCommit
e_ip SizeOfHeapReserve
e_cs SizeOfHeapCommit

e_lfarlc LoaderFlags
e_ovno NumberOfRvaAndSizes
e_oemid SuspiciousImportFunctions

e_oeminfo SuspiciousNameSection
e_lfanew SectionsLength
Machine SectionMinEntropy

NumberOfSections SectionMaxEntropy
TimeDateStamp SectionMinRawsize

PointerToSymbolTable SectionMaxRawsize
NumberOfSymbols SectionMinVirtualsize

SizeOfOptionalHeader SectionMaxVirtualsize
Characteristics SectionMaxPhysical

Magic SectionMinPhysical
MajorLinkerVersion SectionMaxVirtual
MinorLinkerVersion SectionMinVirtual

SizeOfCode SectionMaxPointerData
SizeOfInitializedData SectionMinPointerData

Size Of UnintializedData SectionMaxChar
AddressOfEntryPoint SectionMainChar

BaseOfCode DirectoryEntryImport
ImageBase DirectoryEntryImportSize

SectionAlignment DirectoryEntryExport
FileAlignment ImageDirectoryEntryExport

MajorOperatingSystemVersion ImageDirectoryEntryImport
MinorOperatingSystemVersion ImageDirectoryEntryResource

MajorImageVersion ImageDirectoryEntrySecurity

dataset for the third group, respectively. The model
trained on the first group is tested on "unlabelled" data
containing 1962 files. The second and third groups
are tested on samples containing 5884 and 11767 files,
respectively.

For data standardization, we use StandardScaler func-
tion from Python library sklearn. StandardScaler im-
plies equating the mean of each feature in the dataset
to zero. This is especially useful for methods like K-NN
and SVC. Then the principal component analysis (PCA)
is used to reduce the dimension of the input data.

3. Accuracy assessments methods

As an indicator for the accuracy of our models, we
will use not only the standard accuracy metric but also
F1-score, which is calculated from precision and recall.
This metric will provide us with more representative
results. Formulas for computing all the metrics are
represented in equations (1), (2), (3), (4). Moreover,
the confusion_matrix function is used to assess the
accuracy. The function can be found in Python’s library
sklearn. The function is used to calculate the confusion
matrix is displayed in Fig. 1. Where 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 ,
and 𝐹𝑁 represent True Positives, True Negatives, False
Positive, and False Negatives, respectively. Based on
these four parameters, type I and type II errors are
calculated. Type I error – is a false-positive result, i.e.,
we falsely suppose that a file is malicious. Type II error
occurs when we mark a malicious file as legitimate.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1)
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𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2)

𝐹1 =
2 * 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 * 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑟𝑒𝑐𝑎𝑙𝑙

(3)

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
(4)

Fig. 1. Confusion matrix

4. Explored algorithms

4.1. K-nearest neighbors algorithm
K - nearest neighbors algorithm implements the qual-

ification via KNeighborsClassifier function. The algo-
rithm is based on calculating similarity scores between
two objects. In our model, the similarity between two
points 𝑥 and 𝑦 is calculated via Minkowski metric:

𝑝(𝑥, 𝑦) = (

𝑛∑︁
𝑖=1

|𝑥𝑖 − 𝑦𝑖|𝑝)1/𝑝 (5)

For building the model, the following parameters are
used:

KNeighborsClasifier(algorithm=’ball_tree’,
leaf_size=30, metric=’minkowski’,
metric_params=None, n_jobs=None,
n_neighbors=18, p=2, weights=’uniform’)

Parameter «uniform» means that all the weights are
equal. Parameter «ball_tree» means that distances
between objects are stored in a trees structure, which
increases the speed of finding the closest neighbors.
«leaf_size» – the threshold for activation of full screen-
ing if we used «BallTree» for finding neighbors. The
larger the leaf_size, the faster the tree is built since
fewer nodes need to be created. Minkowski metric with
parameters «p» and «n_neighbors» are optimal quan-
tities of the nearest neighbors, which have been found
empirically.

4.2. Support vector machine method
Support vector machine method maps initial data to

the space with more dimensions, which allows building

an optimal separating hyperplane with the maximum
clearance in this dimension [6]. SVC method in multidi-
mensional space uses Kernel of a radial basis function,
which lets us optimally separate non-linear data into a
linear one.

The kernel function RBF finds the similarity between
two objects via the following equation:

𝐾(𝑥, 𝑦) = 𝑒𝑥𝑝(−𝜆||𝑥− 𝑦||2) (6)

The principle of the kernel is visualized in Fig. 2.

Fig. 2. How kernel works

The SVC function implements the classification,
where the vector of weights "𝛼" is trained based on
kernels. The vector of weights determines the contri-
bution of each sample to the separating hyperplane
between classes by solving the following optimization
problem:

(
1

2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖, 𝑥𝑗)−
𝑛∑︁

𝑖=1

𝛼𝑖) = 𝑆𝑘(𝛼) (7)

subject to the constraints:

𝑛∑︁
𝑖=1

𝛼𝑖𝑦𝑖 = 0, (8)

0 ⩽ 𝛼𝑖 ⩽ 𝐶 (9)

For building the model the following parameters are
used:

SVC(C=1.0, cache_size=200, class_weight=None,
coef0=0.0, decision_function_shape=’ovr’, degree=3,
gamma=’auto_deprecated’, kernel=’rbf’,
max_iter=-1, probability=True, radom_state=None,
shrinking=True, tol=0.00, verbose=False)

Coefficient «𝐶» – is the parameter that allows adjust-
ing the relationship between maximizing the separating
bandwidth and minimizing the total error. Parameter
«gamma» is the «bandwidth» of the RBF kernel. It
is involved in constructing the model and can cause
overfitting. In our case, this parameter is selected auto-
matically based on the number of features.

4.3. Random forest classifier
Random forest algorithm is implemented via Random-

ForestClassifier, which creates a set of decision trees
from randomly selected subsets of the training sample.
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Table 2. The Python packages and parameter settings

Classifier Type Python Package Parameter Set & Values
k-Nearest Neighbors Supervised Learning KNeighborsClassifier(...) n_neighbors=17, metric=’minkowski’
SVC Supervised Learning SVC(...) probability = True
Random forest classifier Ensemble Learners RandomForestClassifier(...) n_estimators = 30, max_depth = 6
Greed in SVC Supervised Learning GridSearchCV(...) param_grid = {’C’:[50,100], ’gamma’:[0.1]}

Fig. 3. Construction of random forest

It takes into account all the results from the trees to
classify the test object. Final RF-classifier «𝛼(𝑧𝑟𝑓 )»
decides by the majority of votes found by decision trees.
[7]:

𝛼(𝑧𝑟𝑓 ) = 𝑠𝑖𝑔𝑛(

𝑟∑︁
𝑗=1

𝑏(𝑧𝑗𝑟𝑓 )) (10)

Where 𝑏(𝑧𝑗𝑟𝑓 ) – the solution of the base classifier of
𝑗 − 𝑡ℎ tree (𝑗 = 1, 𝑟), and 𝑧𝑗𝑟𝑓 – random subsample.

Constructing of random forest is demonstrated in
Fig. 3. For building the model the following parameters
are used:

RandomForestClassifier(bootstrap=True,
class_weight=None, criterion=’gini’, max_depth=6,
max_features=’sqrt’, max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_impurity_split=None, min_samples_leaf=1,
min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=30,
n_jobs=None, oob_score=True, random_state=0,
verbose=0, warm_start=False)

Parameter n_estimators – number of trees. The
more trees – the better quality, but the learning and
computing time increases. max_depth – maximum
depth of trees. The less the depth, the faster RFC
builds and functions. With the increase in depth, the
quality of learning dramatically increases as well [8].
The rest of the parameters have default values.

4.4. Gridsearch
Functional method Gridsearch is used to optimize

the loss function of SVC method [9]. The grid search
algorithm cyclically selects groups of 𝐶 and 𝑔 values and
calculates model accuracy for each pair. It then prints
out the pair (𝐶, 𝑔) that provides the highest precision.
The following parameters are used to build our model:

GridSearchCV(cv=’warn’,
error_score=’raise-deprecating’,
estimator=SVC(C=1.0, cache_size=200,
class_weight=None, coef0=0.0,
decision_function_shape=’ovr’, degree=3,
gamma=’auto_deprecated’, kernel=’rbf’,
max_iter=-1, probability=True, random_state=None,
shrinking=True, tol=0.001, verbose=False),
iid=’warn’, n_jobs=None, param_grid=’C’: [50, 100],
’gamma’: [0.1], pre_dispatch=’2*n_jobs’, refit=True,
return_train_score=False, scoring=None, verbose=3)

«param-grid» – dictionary of hyperparameters, where
we supply selected values, based on which the Grid-
SearchCV training will be conducted. We have to train
ten models to assess SVC’s efficiency for specific values
of 𝐶 and gamma via a five-block cross-validation check.
The main drawback of cross-validation checks is the
time needed to train all the models. Parameter estima-
tor is a model to be trained. The rest of the parameters
have default values.

5. Results

According to Table 3, all our explored methods of
classification have a good accuracy. To make sure of
this, let us analyze another metric – F1 score.

Just as has been expected, the best result demon-
strated the ensemble method of random forest. The
high percentage of F1-score – 93 %, insignificant type I
and type II errors, and the short time for training give
an exciting prospect of using this method for solving
real systems. Also, note that GridSearch method for
SVC slightly improved the results of basic SVC but
dramatically slowed down the execution speed, which
makes this method less attractive to use. In spite of its
simplicity, K-nearest neighbors algorithm also showed a
decent result in terms of precision and time of training.
This result is justified by the optimally selected number
of neighbors (𝑛 = 17).

Let us pay attention to type I and type II errors.
Note that in our case, not detecting a malicious file is
more dangerous than marking a «legitimate» file as ma-
licious. Except for the SVC method, all of our studied
classification methods have a type II error within 2 %.
It has given the worst performance in this regard, with
an error of about 5 %.

We also note that with an increase in the volume
of the test sample and a proportional decrease in the
training sample, all the studied methods behave simi-
larly: the accuracy slightly decreases, and, accordingly,
the training time of the model decreases.
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Table 3. Results

Trainset Metrics Random forest classifier SVC Greed in SVC K Nearest Neighbors
Accuracy 96.32% 91.23% 94.92% 94.33 %
F1-score 92.78% 82.28% 90.23% 90.98 %

90% Type 1 error 1.70% 3.56% 2.93% 2.62 %
Type 2 error 1.98% 5.20% 2.14% 2.03 %

Time 721 ms 5.20% 4min 20s 42.8 ms
Accuracy 95.83% 91.00% 93.92% 94.02%
F1-score 91.73% 81.82% 88.24% 88.23%

70% Type 1 error 1.70% 3.70% 3.32% 2.82%
Type 2 error 2.47% 5.29% 2.75% 3.14%

Time 413 ms 9.45 s 55.7 s 22.2 ms
Accuracy 95.49% 90.61% 94.31% 93.69%
F1-score 92.13% 81.09% 87.78% 87.49%

40% Type 1 error 1.97% 4.38% 3.06% 2.98%
Type 2 error 2.53% 4.99% 2.61% 3.32%

Time 389 ms 6.12 s 45.1 s 9.7 ms

6. Using Random Forest in real system

After analyzing the results of our methods, it can
be noted that the random forest method has shown
good efficiency and has good prospects for its use for
detecting malicious programs on real systems.

Based on the experimental data obtained, it is pos-
sible to determine the throughput of the model (the
number of files divided by the time spent on training
the model). According to table 3, the RFC model is ca-
pable of training 25 thousand files in one second, which
is a good result.

The dataset taken from the Kaggle website is suffi-
cient to cover many different types of malware relevant
to the modern world. However, it does not cover all
possible types. Before launching a project, the model
should be trained on the maximum number of different
types of malware in an actual application. It is also nec-
essary to investigate the problems of choosing various
essential features that describe the file, both numerical
and categorical.

Conclusions

After analyzing the results of the experiments, it can
be argued that the random forest is applicable to the
detection of malicious files. It showed the best result:
96 % is the accuracy metric, and almost 93 % is the
F-score. The main limitation of the method is that
the use of a large number of trees significantly affects
the computational speed of the algorithm, which is
ineffective for real-time prediction. Therefore, should
optimally select all the parameters for building the
model. In most natural systems, the random forest
algorithm is fast enough, but situations may arise when
the speed and performance at runtime are low. Then
it is preferable to use other faster methods without
loss of performance in detection accuracy. It is also
worth noting that the k-nearest neighbor’s method can
well be used on a natural system with a good choice
of parameters and relevant input data. It showed the
accuracy result in a couple of percent less than the

random forest algorithm: 94 % accuracy metric and
91 % – F-score.

Also, the analysis of the performed experiments has
demonstrated that the efficiency of the conventional
support vector machine can be significantly improved
with the help of the selection of hyperparameters along
the grid. Accuracy has increased from 91 % to 94 %.
Such an operation entails an increase in the operating
time of the method by about eight times. This problem
can be solved by using enormous hardware computing
resources to run the algorithm.
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