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Abstract
This paper continues the results obtained in [1]. In the previous paper, we formulated the problem
of the unknown vector recovering from linear dependencies with this vector, which act as constraints
on it. The next step, after finding out some algebraic and combinatorial properties, is to give basic
estimates of complexity for the main problem as well as for related problems. Such related problems
can be obtained by fixing some parameters of the main problem or applying constraints on the number
of restrictions in the system. Such an analysis makes possible to arrange the problem of recovering
an unknown vector based on partial information into the general computational complexity framework
in order to approach existing theoretical results to its solution. The obtained theoretical results can be
used in algebraic cryptanalysis of stream ciphers and cryptosystems based on linear codes.
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Introduction

The problem of recovering an unknown vec-
tor based on partial information is to recover
that unknown vector, given some constraints on
it, which are presented in the form of linear de-
pendencies. In the context of computational com-
plexity theory we often use a decision version of
the initial problem, in which it is not necessary
to restore the vector directly, but to provide an
answer to whether it exists. That’s why we will
start with the formalization of such a problem
and its varieties, which can be obtained by fix-
ing certain input parameters, and we will also
provide an estimation of the complexity of these
problems by establishing their belonging to the
complexity classes. In addition, we will formu-
late some partial cases of the decision problem
and also give estimates of their complexity, con-
struct polynomial probabilistic algorithms for one
of these partial cases, as well as a probabilistic
heuristic algorithm for finding several solutions
of the system of linear restrictions.

1. Main notations

Recall the notation of the system of linear
restrictions. The system of linear restrictions

over a field F2𝑘 is a system of expressions of
the form⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑎
(1)
1 𝑥1 + 𝑎

(1)
2 𝑥2 + . . .+ 𝑎(1)𝑛 𝑥𝑛 ̸= 𝑎

(1)
0 ,

𝑎
(2)
1 𝑥1 + 𝑎

(2)
2 𝑥2 + . . .+ 𝑎(2)𝑛 𝑥𝑛 ̸= 𝑎

(2)
0 ,

. . .

𝑎
(𝑚)
1 𝑥1 + 𝑎

(𝑚)
2 𝑥2 + . . .+ 𝑎(𝑚)

𝑛 𝑥𝑛 ̸= 𝑎
(𝑚)
0 ,

where 𝑎
(𝑗)
𝑖 ∈ F2𝑘 for 𝑖 = 0, 𝑛, 𝑗 = 1,𝑚,

𝑥𝑡 ∈ F2𝑘 for 𝑡 = 1, 𝑛, and 𝑚 > 1. The short
notation, that we will use, is 𝐴 · 𝑥 ̸= 𝑎0, where
𝐴 is a 𝑚× 𝑛-matrix of coefficients in left-hand
sides, 𝑎0 is a 𝑚 × 1-vector of coefficients in
right-hand sides and symbol «̸=» is used in un-
typical context and stands for «not equal in all
components». The solution of the system of lin-
ear restrictions is a vector 𝑥0 ∈ F𝑛

2𝑘
such that

𝐴 · 𝑥 ̸= 𝑎0. The solution set of the system of
linear restrictions is a set of all solutions of the
system.

We also recall the property of the system of
linear restrictions [1] for the case of zero right-
hand sides.

Claim 1. Let 𝐷 ⊆ F𝑛
2𝑘

– the solution set of the
system of linear restrictions 𝐴 · 𝑥 ̸= 0 over a finite
field F2𝑘 , then |𝐷| is divisible by 2𝑘 − 1.

This claim makes possible to get several solu-
tions from one known solution by multiplying it
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by all non-zero elements of the field. Also, we
will say that polynomial is identically equal to
zero over field F2𝑘 if and only if it turns zero
on all elements of field F2𝑘 .

2. The main problems related to systems
of linear restrictions

Let’s formulate the SLR (short for System of
Linear Restrictions) problem of the existence of
a solution of a system of linear restrictions over
a finite field.

Problem 1. (SLR) Input. The size of the field
2𝑘, the matrix A of size 𝑚 × 𝑛 over the field
F2𝑘 , the vector 𝑎0 of size 𝑚× 1.

It is necessary to find out whether there is
a solution over the field F2𝑘 for the system of
linear restrictions 𝐴 · 𝑥 ̸= 𝑎0.

Output. «Yes» if the solution exists, «No»
otherwise.

Now we’ll formulate derived problems, in
which either the size of the field or the number
of nonzero elements in each restriction is fixed,
as well other problem, in which these parameters
are fixed simultaneously.

Problem 2. (SLR-F2𝑘 ) Input. The matrix A
of size 𝑚× 𝑛 over the field F2𝑘 , the vector 𝑎0
of size 𝑚× 1.

It is necessary to find out whether there is
a solution over the field F2𝑘 for the system of
linear restrictions 𝐴 · 𝑥 ̸= 𝑎0.

Output. «Yes» if the solution exists, «No»
otherwise.

Problem 3. (𝑞SLR) Input. The size of the
field 2𝑘, the matrix A of size 𝑚 × 𝑛 over the
field F2𝑘 in which each row has no more that 𝑞
non-zero elements, the vector 𝑎0 of size 𝑚× 1.

It is necessary to find out whether there is
a solution over the field F2𝑘 for the system of
linear restrictions 𝐴 · 𝑥 ̸= 𝑎0.

Output. «Yes» if the solution exists, «No»
otherwise.

The parameter 𝑞 will be called the arity of
the linear restriction, and the linear restriction
will be q-ary.

Problem 4. (𝑞SLR-F2𝑘 ) Input. The matrix A
of size 𝑚× 𝑛 over the field F2𝑘 in which each

row has no more that 𝑞 non-zero elements, the
vector 𝑎0 of size 𝑚× 1.

It is necessary to find out whether there is
a solution over the field F2𝑘 for the system of
linear restrictions 𝐴 · 𝑥 ̸= 𝑎0.

Output. «Yes» if the solution exists, «No»
otherwise.

We present a set of statements which helps
to estimate complexity of formulated problems.

Claim 2. Problem 2SLR-F4 is 𝒩𝒫-complete.

Proof. We make sure that this problem
belongs to the 𝒩𝒫 class. The certificate for
this problem is the vector (𝑥1, 𝑥2, . . . , 𝑥𝑛). The
length of this vector is 𝑛, which is bounded by
a polynomial of the size of the input data. Veri-
fication of the certificate consists, in fact, substi-
tuting (𝑥1, 𝑥2, . . . , 𝑥𝑛) into the system of linear
restrictions and checking whether this vector sat-
isfies all restrictions.

The 𝒩𝒫-hardness of this problem was
proved in the work of Selezneva in 2017 [2]
for representation in the multilinear form. The
proof is given for the case of an arbitrary finite
field and is based on the use of the 𝑞COLOR
problem, which consists in finding a coloring of
an arbitrary undirected graph in 𝑞 colors such
that no two adjacent vertices are colored in the
same color. In the case of the 2SLR-F4 problem
we should use 4COLOR problem for reduction.
The idea of the proof is as follows. We establish
a one-to-one correspondence between the set of
four colors and the elements of the F4 field. For
the input graph 𝐺 = (𝑉,𝐸), we build a system
with |𝐸| linear restriction and |𝑉 | variables, in
which each restriction corresponds to a pair of
adjacent vertices (𝑢, 𝑣) ∈ 𝐸 and has the form
𝑥𝑢 + 𝑥𝑣 ̸= 0, where 𝑥𝑢, 𝑥𝑣 ∈ F4 are variables
that encode the color of the corresponding ver-
tices 𝑢 and 𝑣. If the graph is colored in 4 colors,
then each pair of adjacent vertices (𝑢, 𝑣) has a
different color, so the corresponding linear re-
striction 𝑥𝑢+𝑥𝑣 ̸= 0 is automatically fulfilled in
the system. In the case when there is no color-
ing for the graph, the considerations are similar.
■

It follows from the proved statement that
the general SLR problem is automatically 𝒩𝒫-
complete.

Claim 3. The 𝑞SLR problem is 𝒩𝒫-complete
for any 𝑞 ≥ 2.
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Proof. The 𝒩𝒫-completeness of the 2SLR
problem follows from claim 2, since 2SLR-F4

is a partial case of 2SLR. In order to prove the
𝒩𝒫-completeness of problems 𝑞SLR for 𝑞 ≥ 3,
it is necessary to check the fulfillment of the
condition 2SLR ≤𝑝 𝑞SLR for all 𝑞 ≥ 3. This
reduction holds for any 𝑞 ≥ 3, since any restric-
tion that has arity 2, i.e. contains no more than
2 variables, also contains at most 𝑘 variables, i.e.
has 𝑘 arity. ■

Claim 4. Problem SLR-F2𝑘 is 𝒩𝒫-complete
for any of the finite field F2𝑘 except F2.

Proof. The 𝒩𝒫-completeness of the prob-
lem SLR-F4 follows from the claim 2, since the
problem 2SLR-F4 is a partial case of SLR-F4.
In order to prove 𝒩𝒫-completeness of problems
SLR-F2𝑘 for all 𝑘 ≥ 3, we should check condi-
tions SLR-F4 ≤𝑝 SLR-F2𝑘 for all fields 𝑘 ≥ 3.
Let’s fix some field F2𝑘 , where 𝑘 ≥ 3. Let’s con-
struct the mapping 𝜙 : F4 → F2𝑘 , considering
the fields F4 and F2𝑘 purely as sets of certain
elements. This mapping must be injective (it can-
not be subjective, since sizes of these sets are
different); this can be achieved by writing the
elements of these fields in a certain basis, sort-
ing them in lexicographic order and matching
them between F4 and the first four elements of
F2𝑘 . Let (𝐴, 𝑎0) is an instance problem SLR-F4,
then for reduction it is necessary to replace all
constants in the system (𝐴, 𝑎0) according to the
mapping 𝜙 and add to the new system (𝐴′, 𝑎0)
all possible restrictions of the form 𝑥𝑖 ̸= 𝑔 for
𝑖 = 1, 𝑛 and 𝑔 ∈ F2𝑘 ∖ 𝐼𝑚(𝜙). Number of new
restrictions is 𝑛 · (2𝑘 − 4), i.e. is polynomial of
the input length, because the field is a parameter
of the problem and is not provided as an input.
■

It follows from the proved statement that the
problem 𝑞SLR-F2𝑘 is 𝒩𝒫-complete for all 𝑘 ≥
2 and for all of finite fields F2𝑘 except F2.

Claim 5. Having the system of linear restric-
tions with 𝑛 variables and 𝑚 by restrictions over
the field F2𝑘 , in which each restriction contains
no more than 𝑞 variables, where 4 ≤ 𝑞 ≤ 𝑛, we
can construct an equivalent system over F2𝑘 , in
which each the restriction contains (𝑞 − 1) vari-
ables, adding a polynomial from 2𝑘 and 𝑚 quantity
of new restrictions and variables. In other words,
𝑞SLR-F2𝑘 ≤𝑝 (𝑞 − 1)SLR-F2𝑘 .

Proof. Consider the linear restriction

𝑎
(1)
1 𝑥1 + 𝑎

(1)
2 𝑥2 + . . .+ 𝑎(1)𝑛 𝑥𝑛 ̸= 𝑎0,

where 𝑞 coefficients are not equal to zero. Let’s
choose a pair of indices 𝑖 and 𝑗, where 𝑖 < 𝑗,
which corresponds to a pair of monomials 𝑎

(1)
𝑖 𝑥𝑖

and 𝑎
(1)
𝑗 𝑥𝑗 is restriction. We will make a re-

placement 𝑎
(1)
𝑖𝑗 = 𝑎

(1)
𝑖 𝑥𝑖 + 𝑎

(1)
𝑗 𝑥𝑗 . In fact, by

substituting a new variable in the restriction
and by adding a new equation to the system,
you can get an equivalent system of restrictions,
but the system of restrictions cannot contain ex-
pressions that are equations. So the equation
𝑎
(1)
𝑖𝑗 + 𝑎

(1)
𝑖 𝑥𝑖 + 𝑎

(1)
𝑗 𝑥𝑗 = 0 is needed to replace

with a set of 2𝑘 − 1 restrictions of the form
𝑎
(1)
𝑖𝑗 + 𝑎

(1)
𝑖 𝑥𝑖 + 𝑎

(1)
𝑗 𝑥𝑗 ̸= 𝑔, where 𝑔 ∈ F*

2𝑘
. Then

we should replace 𝑎
(1)
𝑖 𝑥𝑖 + 𝑎

(1)
𝑗 𝑥𝑗 on 𝑎

(1)
𝑖𝑗 in the

system. Thus, the number of terms in the restric-
tion was reduced on 1 by adding one additional
variable and 2𝑘 − 1 restrictions with three terms.
We perform such a transformation with each re-
striction and as a result the system got 𝑚·(2𝑘−1)
new restrictions and 𝑚 new variables. ■

Since in practice it is often necessary to find
the solution itself, then weformulate the SLRS
(short for SLR Search) problem of finding a so-
lution of the system of linear restrictions.

Problem 5. (SLRS) Input. The size of the
field 2𝑘, the matrix 𝐴 of size 𝑚 × 𝑛 over the
field F2𝑘 , the vector 𝑎0 of size 𝑚× 1.

It is necessary to find at least one solution
over the field F2𝑘 of the system of linear restric-
tions 𝐴 · 𝑥 ̸= 𝑎0.

Output. The solution of the system of linear
restrictions 𝐴 · 𝑥 ̸= 𝑎0 or «⊥» if it does not
exist.

Consider a claim that, in a certain sense, re-
duce the search problem solution to the problem
of checking the existence of a solution.

Claim 6. Problems of SLR-F2𝑘 and SLRS-F2𝑘

are Turing equivalent.

Proof. In order to prove the Turing equiva-
lence of two problems, it is necessary and suf-
ficient to show that each of these problems is
reducible by Turing to another.

SLR reduces to SLRS because having the an-
swer from the SLR oracle, the algorithm returns
«Yes» if the answer is an 𝑛-dimensional vector
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and the answer is «No» if this answer consists
of the symbol «⊥».

In order to prove the Turing reducibility of
SLRS to SLR, it is necessary to use calls to the
SLR oracle and restore a vector (𝑥1, 𝑥2, . . . , 𝑥𝑛)
component-wise. To restore the first component
𝑥1 of the vector 𝑥, we transfer term 𝑎

(𝑗)
1 𝑥1 to

the right-hand side for all 𝑗 = 1,𝑚 (according
to properties of the system of linear restrictions
from [1] this is not changes the solution set of
the system) and gradually fix the value of 𝑥1
with elements of the field F2𝑘 . If the answer on
some element 𝑑 is «Yes», then we fix the com-
ponent 𝑥1 with this value 𝑑 and modify the ini-
tial system of linear restrictions by replacing the
right-hand sides 𝑎

(𝑗)
0 on 𝑎

(𝑗)
0 +𝑎

(𝑗)
1 𝑑 for 𝑗 = 1,𝑚.

We proceed to the search of the next component
with modified matrix 𝐴′ of dimension 𝑚×(𝑛−1)
and vector 𝑎′.

From a computational point of view, to re-
store one component we require at most |F2𝑘 | =
2𝑘 oracle access operations. For all components
of the vector we need 𝑛·2𝑘 operations to the ora-
cle, which is polynomial according to the length
of the input.

Correctness of the algorithm. The process of
finding the vector 𝑥 can be represented by in the
form of a tree, where each vertex has |F2𝑘 | de-
scendants, and the number of leaves of the tree
is 2𝑘𝑛. The search problem consists in finding
a path to the tree leaf that corresponds to the
value of the vector 𝑥, which is the solution of
the system of linear restrictions, and the oracle,
in fact, helps to prevent the search of all possi-
ble paths, i. e. search the path level by level,
discarding the exponential number of wrong op-
tions on each level. Because on every steo we
choose exactly such value of the component of
the vector that the entire vector, including the
unknowns component, is a solution, then we are
guaranteed to find a solution. So, the solution
cannot be restored if and only if on the first
component we will receive all «No» answers
from the oracle, which will indicate the absence
solutions in the system. ■

3. The complexity of the SLR partial cases

Let’s consider some partial cases of the SLR
problem.

Claim 7. The problem SLR-F2 belongs to the
complexity class 𝒫 .

Proof. If the field in the problem description
is fixed and equal to F2, then for the system of
linear restrictions⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑎
(1)
1 𝑥1 + 𝑎

(1)
2 𝑥2 + . . .+ 𝑎(1)𝑛 𝑥𝑛 ̸= 𝑦1,

𝑎
(2)
1 𝑥1 + 𝑎

(2)
2 𝑥2 + . . .+ 𝑎(2)𝑛 𝑥𝑛 ̸= 𝑦2,

. . .

𝑎
(𝑚)
1 𝑥1 + 𝑎

(𝑚)
2 𝑥2 + . . .+ 𝑎(𝑚)

𝑛 𝑥𝑛 ̸= 𝑦𝑚,

where 𝑎
(𝑗)
𝑖 , 𝑦𝑗 ∈ F2 for 𝑖 = 1, 𝑛, 𝑗 = 1,𝑚, it’s

possible to obtain an equivalent system of equa-
tions by substituting ̃︀𝑦𝑗 = 𝑦𝑗 + 1 for 𝑗 = 1,𝑚:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑎
(1)
1 𝑥1 + 𝑎

(1)
2 𝑥2 + . . .+ 𝑎(1)𝑛 𝑥𝑛 = ̃︀𝑦1,

𝑎
(2)
1 𝑥1 + 𝑎

(2)
2 𝑥2 + . . .+ 𝑎(2)𝑛 𝑥𝑛 = ̃︀𝑦2,

. . .

𝑎
(𝑚)
1 𝑥1 + 𝑎

(𝑚)
2 𝑥2 + . . .+ 𝑎(𝑚)

𝑛 𝑥𝑛 = ̃︀𝑦𝑚.

There are polynomial algorithms for solving
such systems, for example, the Gaussian elimina-
tion. It also can be used to calculate the rank of
a matrix which defines a system of linear equa-
tions, and having the rank of the matrix, we can
give the answer to the question of whether there
are solutions for the input system of linear equa-
tions. Complexity of the Gaussian algorithm is
cubic with respect to the length of the input data,
so it bounded by a polynomial of the length of
the input data. ■

Consider an approximate version of the SLR
problem, in which it is not necessary to find a
solution for all linear restrictions in the system,
but can be found a partial solution that satisfies
at least 1 ≤ 𝑙 ≤ 𝑚 linear restrictions.

Problem 6. (Max-SLR) Input. The size of the
field 2𝑘, the matrix A of size 𝑚 × 𝑛 over the
field F2𝑘 , the vector 𝑎0 of size 𝑚 × 1, number
𝑙, 1 ≤ 𝑙 ≤ 𝑚.

It is necessary to find out whether there is
a solution over the field F2𝑘 for the system of
linear restrictions that formed from at least 𝑙
linear restrictions of the input system of linear
restrictions 𝐴 · 𝑥 ̸= 𝑎0.

Output. «Yes» if the solution exists, «No»
otherwise.

Claim 8. The Max-SLR problem is 𝒩𝒫-
complete.
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Proof. We make sure that this problem be-
longs to the 𝒩𝒫 complexity class. The certifi-
cate for this problem, as in the case of SLR, is
the vector (𝑥1, 𝑥2, . . . , 𝑥𝑛). The length of this
vector is 𝑛, which is bounded by a polynomial
in size input data. To check the certificate we
should substitute (𝑥1, 𝑥2, . . . , 𝑥𝑛) in the system
of linear restrictions and count the number of
linear restrictions for which (𝑥1, 𝑥2, . . . , 𝑥𝑛) is
a solution.

We will prove that this problem is 𝒩𝒫-hard.
For this we will use the Max-XORSAT problem
[3], but first let’s recall it. The input of the prob-
lem is a formula presented in CNF, in which all
disjunction operations in disjuncts are replaced
by the XOR operation. The formula contains
𝑛 variables (𝑥1, 𝑥2, . . . , 𝑥𝑛) and 𝑚 XOR expres-
sions, which can be named XOR-expressions.
An XOR-expression can include both a variable
and its own negotiation. Also, natural number 𝑙
is given as an input, that is upper bound for the
number of XOR expressions. It is necessary to
determine whether exists a vector that satisfies
at least 𝑙 XOR-expressions in the given formula.

This formula can be written in the form of a
system of equations, equating each XOR expres-
sion to one, then the question will be whether
it is possible find a vector that is a solution for
at least 𝑙 equations of this system. Note, that all
negation operations in XOR expressions can be
replaced by XOR variable with a 1. Then only
variables will remain in the left parts of the equa-
tions; the right-hand sides of the equations will
be zero in the case when XOR-expression con-
tained an odd number of variables with negation,
and one in all others cases.

So, the system will look like this:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑥
𝑖
(1)
1

+ 𝑥
𝑖
(1)
2

+ . . .+ 𝑥
𝑖
(1)
𝑘1

= 𝑦1,

𝑥
𝑖
(2)
1

+ 𝑥
𝑖
(2)
2

+ . . .+ 𝑥
𝑖
(2)
𝑘2

= 𝑦2,

. . .

𝑥
𝑖
(𝑚)
1

+ 𝑥
𝑖
(𝑚)
1

+ . . .+ 𝑥
𝑖
(𝑚)
𝑘𝑚

= 𝑦𝑚,

where 1 ≤ 𝑘𝑠 ≤ 𝑛 for 𝑠 = 1,𝑚 is the
number of variables in each XOR-expression,
𝑖
(𝑠)
𝑗 ∈ {1, 2, . . . , 𝑛} for 1 ≤ 𝑘𝑠 ≤ 𝑛, 𝑠 = 1,𝑚

are indices that define variables in each XOR-
expression (note that XOR-expression cannot
contain variables with the same indices or
a variable and its negation simultaneously),

𝑦𝑠 ∈ {0, 1} for 𝑠 = 1,𝑚 is a set of values that
corresponding XOR-expression take.

We see that indices in this formula actually
reflect the presence of some variable from the
set (𝑥1, 𝑥2, . . . , 𝑥𝑛) in some of the 𝑚 equations.
This formula can be simplified if we introduce
artificial variables, each of which will be an in-
dicator of whether some variable is present in
some equation. Then this system takes the fol-
lowing form:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑎
(1)
1 𝑥1 + 𝑎

(1)
2 𝑥2 + . . .+ 𝑎(1)𝑛 𝑥𝑛 = 𝑦1,

𝑎
(2)
1 𝑥1 + 𝑎

(2)
2 𝑥2 + . . .+ 𝑎(2)𝑛 𝑥𝑛 = 𝑦2,

. . .

𝑎
(𝑚)
1 𝑥1 + 𝑎

(𝑚)
2 𝑥2 + . . .+ 𝑎(𝑚)

𝑛 𝑥𝑛 = 𝑦𝑚,

where 𝑎
(𝑗)
𝑖 ∈ {0, 1} for 𝑖 = 1, 𝑛, 𝑗 = 1,𝑚

are these artificial variables and 𝑦𝑗 ∈ {0, 1} for
𝑗 = 1,𝑚. Note that such a transformation affects
only the representation of the system equations
and does not change the solution set.

Since 𝑦𝑗 for 𝑗 = 1,𝑚 takes only two values,
we can denote ̃︀𝑦𝑗 = 𝑦𝑗 + 1 for 𝑗 = 1,𝑚. Then
the system takes such form:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑎
(1)
1 𝑥1 + 𝑎

(1)
2 𝑥2 + . . .+ 𝑎(1)𝑛 𝑥𝑛 ̸= ̃︀𝑦1,

𝑎
(2)
1 𝑥1 + 𝑎

(2)
2 𝑥2 + . . .+ 𝑎(2)𝑛 𝑥𝑛 ̸= ̃︀𝑦2,

. . .

𝑎
(𝑚)
1 𝑥1 + 𝑎

(𝑚)
2 𝑥2 + . . .+ 𝑎(𝑚)

𝑛 𝑥𝑛 ̸= ̃︀𝑦𝑚.

(1)

We obtained a system of linear restrictions
over the field F2. Therefore, the Max-XORSAT
problem is actually a sub-case of the Max-
SLR problem. The reduction function 𝑓 which
matches each instance of the Max-XORSAT
problem with an instance of the Max-SLR prob-
lem is the transformation described above of the
Boolean formula with XOR-expressions into the
system of linear restrictions over F2. It is clear
that the function 𝑓 saves while mapping a set of
instances of the Max-XORSAT problem with the
answer «Yes» – it follows from the construction
of the function 𝑓 . The complexity of the func-
tion 𝑓 calculation is bounded by a polynomial
from the input data length since it only needs
several iterations of matrix 𝐴 and vector 𝑎0. ■

We formulate a version of the SLR problem
by bounding 𝑚 ≤ 2𝑘−1 the number of linear re-
strictions in the system. Note that formulated in
a such way problem is a promise one [4]. This
means that within this problem not all possible
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input data must be answered «Yes» or «No» –
to part of inputs for which 𝑚 > 2𝑘−1, we can
return nothing.

Problem 7. (RSLR) Input. The size of the
field 2𝑘, the matrix A of size 𝑚 × 𝑛 over the
field F2𝑘 , the vector 𝑎0 of size 𝑚×1, 𝑚 ≤ 2𝑘−1.

It is necessary to find out whether there is
a solution over the field F2𝑘 for the system of
linear restrictions 𝐴 · 𝑥 ̸= 𝑎0.

Output. «Yes» if the solution exists, «No»
otherwise.

Claim 9. The RSLR problem belongs to the
complexity class ℛ𝒫 .

Proof. To prove this fact, it is necessary to
show that exists polynomial probability algorithm
𝐵 such that:

1) if the RSLR problem on the input
(2𝑘, 𝐴, 𝑎0) answers «Yes», then the condi-
tion

Pr [𝐵(2𝑘, 𝐴, 𝑎0) = 1] ≥ 1

2
holds;

2) if the RSLR problem on the input
(2𝑘, 𝐴, 𝑎0) answers «No», then the condi-
tion

Pr [𝐵(2𝑘, 𝐴, 𝑎0) = 1] = 0

holds.
Let’s build such algorithm 𝐵.
Input. The size of the field 2𝑘, the matrix A

of size 𝑚× 𝑛 over the field F2𝑘 , the vector 𝑎0
of size 𝑚× 1, 𝑚 ≤ 2𝑘−1.

1) Randomly generate (𝑟1, 𝑟2, . . . , 𝑟𝑛), where
𝑟𝑖 ∈ F2𝑘 , 𝑖 = 1, 𝑛.

2) Calculate 𝐹 (𝑟1, 𝑟2, . . . , 𝑟𝑛), where

𝐹 (𝑥) =

𝑚∏︁
𝑖=1

[(𝑎(𝑖), 𝑥) + 𝑎
(𝑖)
0 ].

3) If 𝐹 (𝑟1, 𝑟2, . . . , 𝑟𝑛) ̸= 0 then return 1, oth-
erwise return 0.

In this case, we used the equivalent form of
the problem of a system of linear restrictions
from [1].

This algorithm is polynomial in the length
of the input as it requires 𝑚 · 𝑛 multiplication
operations in the field. We make sure that the
conditions are met.

1) Assume that the RSLR on the input
(2𝑘, 𝐴, 𝑎0) answers «No», then 𝐹 (𝑥) ≡ 0.
In this case, the answer of the algorithm

in all possible cases will be 0, since there
is no vector, on which value of polynomial
differs from zero, for identically equal to
zero polynomial.

2) Assume that the RSLR at the input
(2𝑘, 𝐴, 𝑎0) answers «Yes», then 𝐹 (𝑥) ̸≡ 0.
In this case, the probability that 𝐹 (𝑥) will
be equal to zero can be estimated using the
Schwarz-Ziepel lemma [4] (here we also
use 𝑚 ≤ 2𝑘−1):

Pr
𝑟1,𝑟2,...,𝑟𝑛∈F2𝑘

[𝐹 (𝑟1, 𝑟2, . . . , 𝑟𝑛) = 0] ≤ 1

2
.

We can calculate the probability of the op-
posite event:

Pr
𝑟1,𝑟2,...,𝑟𝑛∈F2𝑘

[𝐹 (𝑟1, 𝑟2, . . . , 𝑟𝑛) ̸= 0] ≥ 1

2
.

Since the answer is 1 only if the polyno-
mial 𝐹 is not equal to zero, then the proba-
bility that algorithm 𝐵 will give an answer
of 1, is greater than 0.5.

Table 1
Error matrix of B on input 𝑥 = (2𝑘, 𝐴, 𝑎0)

𝐵(𝑥) = 1 𝐵(𝑥) = 0

RSLR returns «Yes» ≥ 1
2

≤ 1
2

RSLR returns «No» 0 1

Calculation of algorithm errors completes the
proof (see table 1). ■

Moreover, the test given in claim 9 can be
used repeatedly for a fixed number of times 𝑑
which will reduce the error of algorithm expo-
nentially. Such an iterative version of the algo-
rithm 𝐵 will be called 𝑆𝐸 (short for Solution
Exists). Errors of the algorithm 𝑆𝐸 are given in
table 2.

Table 2
Error matrix of 𝑆𝐸 on input (2𝑘, 𝐴, 𝑎0)

𝐵(𝑥) = 1 𝐵(𝑥) = 0

RSLR returns «Yes» ≥ 1−
(︀
1
2

)︀𝑑 ≤
(︀
1
2

)︀𝑑
RSLR returns «No» 0 1

Let’s analyze the complexity of this algorithm.
Calculation the value of the polynomial on some
input requires: 𝑚× 𝑛 multiplication operations
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in the field for calculation of all intermediate
values of the left-hand sides of the system, as
well as 𝑚 operations of multiplication to find the
total product. We get 𝑚(𝑛 + 1) multiplication
operations in the field. This procedure must be
repeated 𝑑 times, so in general, 𝑑𝑚(𝑛 + 1) =
𝑂(𝑑𝑚𝑛) operations are needed, thereofore the
given the algorithm is polynomial probabilistic.

Note that in partial cases we can find out
whether solutions exist only according to the
form of this system. For example, if the sys-
tem contains such 𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑛, that all coef-
ficients of 𝑎

(𝑗)
𝑖 ̸= 0 for 𝑗 = 1,𝑚, then solutions

to the system are guaranteed to exist. Vectors,
in which on the 𝑖-th position a non-zero element
and all other components are equal to zero, will
be such solutions. For the case of multilinear
forms the corresponding polynomial will contain
this 𝑥𝑖 in every factor. In general case such 𝑥𝑖
for 1 ≤ 𝑖 ≤ 𝑛 does not always exist.

We can present the results of the problems
complexity on figure 1 (for convenience, the fig-
ure assumes that 𝒫 ≠ 𝒩𝒫). On this figure nota-
tion 𝒩𝒫𝒞 stands for 𝒩𝒫-complete.

𝒫

SLR-F2

ℛ𝒫

RSLR

𝒩𝒫
𝒩𝒫𝒞

SLR

𝑞SLR-F2𝑘

Max-SLR

Figure 1: Problems complexity

4. Algorithms for finding solutions of the
system of linear restrictions

To obtain a polynomial probability search al-
gorithm in the case of 𝑚 ≤ 2𝑘−1 the 𝑆𝐸 algo-
rithm can be combined with the results of claim
5. Field size 2𝑘 is a fixed parameter.

Algorithm 1. Input. The matrix A of size
𝑚× 𝑛 over the field F2𝑘 , the vector 𝑎0 of size
𝑚× 1, 𝑚 ≤ 2𝑘−1.

Sort the elements of the field F2𝑘 in the poly-
nomial basis as binary strings in ascending order.
These bit strings will form an array 𝐵, where
|𝐵| = 2𝑘.

Fix 𝑑 ∈ N, then the error of 𝑆𝐸 one run will
be 2−𝑑.

Loop for 𝑖 from 1 to 𝑛:
1) Loop for 𝑗 from 1 to 2𝑘:

a) Form the matrix 𝐴′ from the matrix
𝐴 by removing in the left-hand sides
of all restrictions terms with 𝑥𝑖. Form
the vector 𝑎′0 from the vector 𝑎0 by as-
signing 𝑎′0

(𝑗) the value of 𝑎
(𝑗)
0 + 𝑎

(𝑗)
0 +

𝑎
(𝑗)
𝑖 𝐵𝑗 for 𝑗 = 1,𝑚.

b) Calculate 𝑑 = 𝑆𝐸(2𝑘, 𝐴, 𝑎0).
c) If 𝑑 = 1, then put 𝑥𝑖 = 𝐵𝑗 , 𝐴 = 𝐴′,

𝑎0 = 𝑎′0 and break the loop on 𝑗.
2) If 𝑑 = 0, then return «⊥».

Return vector (𝑥1, 𝑥2, . . . , 𝑥𝑛).
Output. Vector (𝑥1, 𝑥2, . . . , 𝑥𝑛) or «⊥».

The given algorithm for finding solution can
be simplified if the 𝑆𝐸 algorithm, in addition to
the value 1, will also return a vector on which
holds 𝐹 (𝑥) ̸= 0. Then to find solution we will
only need 𝑛 checks for the first component. But
in this case, algorithm 1 will lose its universality.
Therefore, this algorithm is constructed so that
instead of the 𝑆𝐸 algorithm it was possible to
use an arbitrary polynomial algorithm for check-
ing the solution existence with a one-sided error
2−𝑑.

So, the total complexity of the algorithm in
the worst case is 𝑂(𝑛2𝑚2𝑘𝑑) and remains poly-
nomial of the input length. Because the value of
𝑑, which fixes the error rate, is set in advance,
then it is possible to choose it much larger than
the number of iterations of the probabilistic algo-
rithm, to prevent error accumulating throughout
the algorithm. In that case the error will not
accumulate because the number of calls to 𝑆𝐸
is polynomial, and the function is 2−𝑑 decreases
exponentially with increasing 𝑑.

Note that such an algorithm can be used in
the case of 𝑚 > 2𝑘−1, but then it becomes em-
pirical, since there’s no theoretical reasoning for
the correctness of its work. The possibility of
using it caused by the fact that the algorithm
𝑆𝐸 of checking the existence of solutions has
one-sided error, that is, it may accidentally re-
ject some valid ones solutions, but never returns
vectors that are not solutions. So there may be
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a situation when a solution for the system of
linear restrictions was existed and the solution
search algorithm returned «⊥», but it can’t be a
situation when this algorithm returned a vector
that is not a solution.

Consider an empirical algorithm that allows
us to search several solutions of a system of
linear restrictions. By 𝐹𝑂𝑆(𝐴, 𝑎0) (short for
Find One Solution) we will denote the polyno-
mial probability algorithm 1, which finds one
solution of the system of linear restrictions with
high probability. We can apply the algorithm for
finding one solution in the following way: after
finding some solution, impose a restriction on it,
and continue iteratively running the probabilis-
tic algorithm to find the next solutions, adding
the corresponding restrictions to the system for
each of them. In this case, the running time
of the algorithm is no longer limited by a poly-
nomial, since the number of solutions of the
system of linear restrictions can potentially be
exponential, that is, not limited by a polynomial
in the length of the input data. For the case of
zero right-hand sides, statement 1 provides an in-
sights about the structure of solutions, and more
precisely, it states that the number of solutions
of the system is 𝑠 × (2𝑘 − 1), where 𝑠 is the
number of equivalence classes according to the
«proportionality» relation on the set of solutions
of the system. Thus, for the case of zero right
parts, after finding one solution, it is necessary
to add its equivalence class to the set of solu-
tions, that is, the set of vectors proportional to
it.

To implement such an algorithm, it is nec-
essary to be able to search a restriction for the
found solution. Such a restriction can be a vec-
tor orthogonal to the found solution. The task of
finding an orthogonal vector is not difficult, you
can use the deterministic algorithm 2, which we
will call 𝑂𝑆 (short for Orth Search).

Algorithm 2. Input. Vector 𝑥 ∈ F𝑛
2𝑘

.
1) If 𝑥 = 0, then return the vector

𝑢 = (1, 0, . . . , 0).
2) If 𝑥 ̸= 0, then there is at least one non-zero

component. We will denote the position of
this component 𝑖, 1 ≤ 𝑖 ≤ 𝑛.

3) Put 𝐼 = {1, 2, . . . , 𝑛} – the set of indices
of the vector 𝑥. Calculate

𝑠 =
∑︁

𝑗∈𝐼∖{𝑖}

𝑥𝑗 .

4) Return a vector 𝑢 of the following form:

𝑢 = (1, 1, . . . , 1, 𝑥−1
𝑖 · 𝑠, 1, . . . , 1),

where 𝑥−1
𝑖 · 𝑠 is contained on the position

with index 𝑖.
Output. Vector 𝑢 ̸= 0 such that (𝑢, 𝑥) = 0.

We verify that 𝑢 ̸= 0 is indeed orthogonal
to 𝑥:

(𝑢, 𝑥) = 𝑥1+. . .+𝑥−1
𝑖 𝑠·𝑥𝑖+. . .+𝑥𝑛 = 𝑠+𝑠 = 0.

Note that the proposed method of constructing
an orthogonal vector not the only one.

Having the procedure for finding an orthog-
onal vector, we can formulate algorithm 3 for
finding several solutions of the system of linear
restrictions.

Algorithm 3. Input. The matrix A of size
𝑚× 𝑛 over the field F2𝑘 , the vector 𝑎0 of size
𝑚× 1, 𝑚 ≤ 2𝑘−1.

Initialize 𝐷 = ∅.
Repeat:

1) 𝑑 = 𝐹𝑂𝑆(𝐴, 𝑎0).
2) If 𝑑 is not equal to «⊥», then:

a) If 𝑎0 = 0, then 𝐷 = {𝑐 · 𝑑, 𝑐 ∈ F*
2𝑘
},

otherwise 𝐷0 = {𝑑}.
b) Update 𝐷 = 𝐷 ∪𝐷0.
c) Find the vector 𝑢 = 𝑂𝑆(𝑑).
d) Update matrix 𝐴′ by adding the vector

𝑢 to it. Update vector 𝑎0 by adding
the element 0 to it.

Until 𝑑 is not equal to «⊥».
Output. A subset 𝐷 of the solution set of the
input system of linear restrictions 𝐴 · 𝑥 ̸= 𝑎0.

This algorithm is heuristic, because when we
add a restriction at each step, we reject not only
1 solution (or 2𝑘 − 1 solutions in the case of
𝑎0 = 0), but at least 1, – it may happen that
in the solution set there is a solution that is or-
thogonal to the restriction added to the system.
During the practical application of this algorithm
we established empirically that it shows the best
results when the power of the solution set is
small. For example, in the case of the field F8,
𝑛 = 5 and the solution number approximately
1-10, the algorithm found all these solutions. So
it is advisable to use the algorithm in a situa-
tion when the system of linear restrictions has
a sufficient number of linear restrictions and its
solution set consists of small number of vectors.
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Conclusions

In this paper, we formulated problems of
checking the existence of solution and finding
solution for the system of linear restrictions, as
well as related problems, in which certain input
parameters are fixed, and also we estimated com-
plexity of all these given problems. We proved
the Turing equivalence of decision and search
problems when a field size is fixed. Also we
formulated several partial cases of the original
problem of checking the solution existence for
systems of linear restrictions. We established be-
longing to the appropriate complexity class for
all these partial cases. The obtained results al-
low us to build a polynomial probabilistic search
algorithm for at least one solution of the system
of linear restrictions in the case of 𝑚 ≤ 2𝑘−1.
Algorithm was implemented and tested on spe-
cific input data sets. Based on this algorithm,
we built another heuristic search algorithm for
finding several solutions of the system of linear
restrictions. During the testing, it was found that

the best results this algorithm shows in the case
when the power of the system solution set is
approximately 1-10 vectors.
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