
UDC 004.056

Power Analysis Template Attacks on AES-128 Hardware
Implementations and Protection Against Them

Andrii Dehtyariov1 and Mykola Graivoronskyi1

__
Abstract
The purpose of this work is to research AES-128 power analysis template attack and propose a
practical way to mitigate such kind of side-channel attacks. The research includes a review of power
analysis side-channel attacks, an experiment with the collection of Atmega328PU chip power samples
using Hantek 6022BE oscilloscope, processing collected data and modeling – building statistical
template of the device and analyzing parameters of the side-channel attack.
The work is focused on preparation and carrying out the experiment. The experimental bench layout
and procedures of collecting and processing the data are considered in details.
The result of this work is the confirmation of the effectiveness of power analysis template attacks on
AES-128 for Arduino Uno hardware, and a mechanism for mitigating such kind of attacks on the
particular hardware and software implementation. Research materials described in the current work
could be used for developing another side-channel template attack mitigation mechanisms for other
cryptographic implementations.

Keywords: Cryptanalysis, side-channel attacks, power analysis, SPA, DPA, template attacks, traces,
samples, AES-128

Introduction

In today's conditions it is extremely critical to
preserve such properties of information as confi-
dentiality and integrity. Preservation of these pro-
perties becomes possible through extensive use
of the achievements of modern cryptography. It
is difficult to imagine any system for processing
and storing information that does not use interna-
tional or national cryptographic standards.

When accepting the proposed encryption
algorithm as a standard, this algorithm is tested
for compliance with a number of requirements,
including resistance to various attacks: correlati-
on, algebraic, linear and differential cryptanaly-
sis, brute force attacks, etc. On the other hand,
the encryption algorithm must meet purely practi-
cal criteria: relative simplicity of calculations
(especially for streaming ciphers), unpretentious-
ness to such computing resources as RAM, and
other criteria. Algorithms such as AES meet all
these criteria and have been used in information
and computing systems around the world for
about two decades.

However, the practical implementation of
such cryptographic algorithms, being a combina-
tion of a particular physical device and program
code, is usually vulnerable to side-channel
attacks. By sequentially measuring physical envi-
ronmental parameters, such as the current in the
processor power contacts or the energy of the
electromagnetic field generated by the cryptogra-
phic computing device, the attacking party can
infer from observations of changes in these para-
meters, and, in the worst case scenario, recover
encryption keys, thereby compromising these
devices without even interfering with their opera-
tion.

Template attacks belong to profiled side-
channel attacks, and are considered to be the
most powerful. Such attacks include the stage of
building a statistical template of the cryptogra-
phic device under study using a power consump-
tion information leakage side channel, provided
the cryptanalyst has the exact copy of the device
to be attacked. With this template, the cryptana-
lyst can recover a cryptographic encryption key
or certain information about the internal state of
the cryptographic implementation using the mini-

1 Igor Sikorsky Kyiv Polytechnic Institute, Beresteiskyi avenue 37, Kyiv, 03056, Ukraine

___Theoretical and cryptographic problems of cybersecurity

5

mal amount of data at the stage of collecting
power consumption samples.

There are two ways to implement a cryptogra-
phic algorithm: 1) software implementation on
general-purpose computing processors, such as
x86, ARM, and AVR family processors, and 2)
hardware implementation, i.e. the development of
hardware design specifically for the efficient im-
plementation of calculations related to the sele-
cted encryption algorithm. Each of these approa-
ches has its advantages and disadvantages, but
the most common in practice is the software
implementation of the cryptographic algorithm
on general-purpose processors.

In the case of hardware implementations, to
protect against side-channel attacks the vulnera-
ble device must be replaced by another device
that includes a protection mechanism in its de-
sign, while in the case of software implementa-
tions for general-purpose processor, it is possible
to simply replace the vulnerable software with a
less vulnerable one.

The purpose of the study is to investigate a
template attack on the implementation of the
AES-128 encryption algorithm in the AVR As-
sembler programming language for the Atmega
128PU microcontroller from Atmel based on the
Arduino Uno hardware platform [1], and to
propose a mechanism for complicating this attack
in practice.

Using the results obtained in this study, we
can get a software implementation that compli-
cates the task of building a statistical template of
power consumption for Atmega 328PU. It is po-
ssible to develop similar mechanisms of protec-
tion against a similar template attacks for other
hardware platforms.

1. Power consumption side-channel
attacks

1.1. Known power consumption
side-channel attacks review

Information leakage side channels have been
and remain the current vector of attacks on soft-
ware and hardware systems, as they have a num-
ber of advantages, including: no need to directly
interfere in the work of systems and the inability
to track attacks of this kind. The physical nature
of such attacks makes all software and hardware
systems vulnerable to one degree or another and
various side channels can be combined to filter
out noise and more accurately recover informa-

tion processed by the device. There are a number
of different information leakage side channels:
optical, timing, power consumption, and even
acoustic.

In this paper we will investigate power
consumption information leakage side-channel
attacks (power analysis attacks). One example of
the practical application of power analysis attacks
was a study of the “Trezor” crypto-wallet, carried
out by researcher Jochen Hoenickie [2]. Using
the relatively inexpensive Hantek6022BE oscillo-
scope, the researcher was able to recover the pri-
vate key of his crypto-wallet via a side channel.
Trezor later acknowledged the problem and
accepted the patches developed by the researcher
for their software.

Power analysis attacks can be divided into 2
major groups: attacks with building a cryptogra-
phic device template and attacks without building
a template.

Attacks without building a template use power
consumption data collected directly during the
attack. Such attacks include Simple Power Ana-
lysis (SPA), and Differential Power Analysis
(DPA). DPA attacks use known plaintext and,
based on statistical analysis of the power consu-
mption data measured during many known plain-
text encryption iterations, choose the correct hy-
pothesis about the value of the encryption key
used during these iterations. SPA attacks do not
require many iterations of encryption and are ba-
sed on the idea that the encryption key can be in-
ferred from the form of the graph of the depen-
dence of the amount of power consumption on
time. By selecting various plaintexts and analy-
zing the obtained dependency graphs, the crypta-
nalyst can hypothesize the value of part of the
encryption key, or, in some cases, the entire en-
cryption key as a whole. These types of attacks
and their varieties are widely described in the
book [3].

The complexity of these attacks is that in the
case of SPA it is not always possible to suggest at
least one hypothesis, because the difference be-
tween the graphs of dependencies is not obvious,
while in the case of DPA building hypotheses
requires too many iterations of encryption, which
is not always possible to perform in practice.

Template attacks are based on the assumption
that the attacking party has free access to an
exact copy of the attacked device. With such a
copy, it is possible to build a specific statistical
template of the power consumption of this device
based on many iterations of encryption using ma-
ny different combinations of encryption keys and

___Analysis Template Attacks on AES-128 Hardware Implementations and Protection Against Them

6

plaintext. Having such a template, it is enough
for the attacker to obtain data on the power con-
sumption of the device for a relatively small
number of encryption iterations based on various
randomly selected plaintexts. The better and
more accurately constructed the statistical tem-
plate, the less data needed during the attack. In
the best case (from the attacker point of view),
one encryption iteration is enough to recover the
encryption key by power analysis.

The difficulty of this type of attack is mainly
the need to have an exact copy of the cryptogra-
phic device and the need to build a template of
this device, which may require a relatively large
amount of time and tangible computing resour-
ces, especially if the profiling device has protec-
tion against side-channel attacks.

1.2. Model of power consumption
information leakage side channel

Based on observations of the power consump-
tion of different computing devices, an obvious
relationship was found between the instantaneous
power consumption values and the data currently
being processed. Due to the physical nature of
modern processors that use registers and memory
cells to preserve the binary representation of data
before direct processing, as well as the most
logical operations performed on data bits, the
researchers can build a power consumption mo-
del based on the Hamming weight of bytes of this
data. Accordingly, the correlation coefficient be-
tween the Hamming weight of byte and the va-
lues of power consumption during processing of
this byte is given by the equation:

, (1)

where W is the value of power consumption
measured by the oscilloscope, and P is the value
of the Hamming weight for the calculated seque-
nce. Based on this equation, we can build a mo-
del of a power consumption information leakage
side channel.

In the case of a template attack, which we will
consider in this paper, while building the templa-
te, the researchers put the known instantaneous
value of W in accordance with the known Ham-
ming weight P of the key.

During the attack phase, the Hamming weight
of the byte of the key is unknown, but knowing
the instantaneous value W of the consumed ene-
rgy, and with the help of a well-constructed tem-

plate, it is possible to hypothesize the Hamming
weight P of the key.

Obviously, when there is a correlation of the
values of instantaneous power consumption W
with the Hamming weight P, there is also a cor-
relation between the value of W and the value of
byte A, which is obtained by the XOR operation
of the corresponding bytes of the key and plain-
text. Thus, there are 2 models of power consump-
tion on the basis of which one can build a crypto-
graphic device template: the Hamming weight,
and the value of the byte of the key.

1.3. Cryptographic device template
attacks against AES-128

First cryptographic device template attacks
were proposed in work [4]. They were developed
for the RC4 and DES encryption algorithms. But
the principles underlying this family of attacks
make it possible to organize side-channel attacks
of this type against any cryptographic implemen-
tation. Template attacks are the strongest ones
from an information-theoretical point of view [5].

Figure 1: AES basic structure

___Theoretical and cryptographic problems of cybersecurity

7

Template attacks can also be applied to AES-
128 implementations. Looking at the structure of
AES-128 (Figure 1), we can see that there are 2
potentially vulnerable operations that can be atta-
cked: SubByte() at the first round and SubByte()
at the last round.

In this work, we propose to consider the
attack on SubByte() at the zero round, because it
corresponds to the encryption key according to
the AES-128 key schedule. Attacks on the
SubByte() operation at the last round need to ad-
ditionally reproduce the reciprocal transformati-
ons at rounds nine through zero.

 (2)

The statistical template attack is possible due
to the correlation between the Hamming weight
of the bytes ai and ki.

The attack proposed in this work is carried out
on each byte of the key separately using the same
data. Accordingly, a separate statistical template
is built for each of the 16 bytes of the AES-128
encryption key. Such a model of template attack
is based on the assumption that in the encryption
process, the values of the bytes of the key affect
the final power consumption separately, indepen-
dently of each other. In reality, this is not entirely
true, but the dependence of power consumption
on different combinations of bytes is so insignifi-
cant in practice that it can be neglected.

1.4. Types of AES-128 implementa-
tion template attacks

There are a large number of approaches to
build and use a template against the AES-128
implementations. Here is an essential classificati-
on of the attacks.

According to the point of attack on the algo-
rithm, attacks are divided into:

 AES-128 Zero Round Attack [6];
 AES-128 Ninth Round Attack [6];
 Attack on the AES-128 key schedule [7].
By template building and attack model:
 Hamming weight model (That is, for
each byte there are 9 hypotheses: 0-8);
 Key byte value model (That is, for each
byte there are 256 hypotheses: 0-255).
According to the method of building the

template:
 Finding the average value of power con-
sumption for each key byte hypothesis [8];

 Making assumptions about the distribu-
tion of power consumption depending on the
byte of the encryption key and finding the
statistical parameters of the distribution [9];
 Training of various machine learning
models [10].
According to the preprocessing method:
 No preprocessing;
 Finding the average value of the power
consumption measurement for each selected
key and plain text [11];
 With decomposition into a spectrum
using a fast Fourier transform and cutting off
high-frequency noises [12].
According to the method of interpretation of

the obtained results:
 Direct interpretation of the received most
likely hypotheses as correct;
 Brute-forcing of the received possible
hypotheses to find the key (to a greater extent
applies to the Hamming weight model);
 Template-algebraic attack (TASCA) with
the selection of hypotheses obtained as a re-
sult of the template attack using the selected
Boolean function [13].
It is possible to combine some selected

approaches and thus get even more varieties of
the template attacks. Each of the above families
of attacks has its own advantages and disadvanta-
ges and is used based on the amount and quality
of data that can be collected at the statistical
profiling phase and the attack phase.

In this paper, we will consider an attack with
building a statistical template based on the para-
meters of the Gaussian distribution with a byte
model and without preprocessing the input data
for the attack. This type of template-building
attack is simple in structure, but quite powerful
when applied to raw data collected using a
cryptographic device with no protection mecha-
nisms against side-channel power analysis
attacks.

1.5. Standard view of power con-
sumption data for further analysis

Usually, the power consumption of cryptogra-
phic chips is measured by an oscilloscope and,
depending on the operating frequency of the
cryptographic device itself and the oscilloscope;
a vector of the appropriate length is recorded for
each encryption procedure, containing the value
of instantaneous power consumption in watts.

___Analysis Template Attacks on AES-128 Hardware Implementations and Protection Against Them

8

 (3)

where xi — samples, values of instantaneous po-
wer consumption. The vector T is usually called
the power consumption trace. An example of
such a trace obtained by encrypting 16 bytes of
plain text on the Atmega 328PU chip is shown in
Figure 2.

Figure 2: An example of a power consumption
trace collected by a Hantek6022BE oscilloscope
during encryption on an Atmega328PU

In the figure, the interface of the open imple-

mentation of the client program for Hantek osci-
lloscopes — OpenHantek [14] is shown. The
upper plot demonstrates the power consumption
data measured by an oscilloscope during the
entire connection time. Below is the same graph,
but on a larger scale. The main graph is the
dependence of the current at the power supply
pin of the Atmega328PU microcontroller over
time. The thin line above it is the dependence of
the current in the signal LED at the 13th digital
pin of the Atmega328PU. A signal LED was
used to indicate the start and end of encryption.

In this graph, we can see the typical power
consumption peaks corresponding to the AES-
128 key schedule (left) and the ten larger power
consumption peaks corresponding to the ten
rounds of AES-128 encryption.

1.6. Building the AES-128 imple-
mentation template based on multi-
dimensional parameters of Gaussian
distribution

In this work, we build the AES-128 imple-
mentation template on the basis of the obtained

traces of power consumption through the deter-
mination of the parameters of the normal distri-
bution: the mean µ and the variance Σ. Accordin-
gly, we will consider such parameters for each of
the 16 bytes of the round key with the assump-
tion that the selection of each of the bytes of the
round key are independent events [15].

When constructing a statistical distribution,
we operate with sample vectors — traces. Thus,
the obtained parameters µ and Σ are multidi-
mensional and are found according to the
equations 4, 5:

 (4)

 (5)

where and are every 2 possible vectors of
mean values.

Based on equations 4 and 5, the covariance
matrix has the form:

 (6)

This square covariance matrix has dimension
 , where n is the number of power
consumption samples in one trace. In this matrix,
σ is the value of the covariance between the
values of the mean samples xi and xj.

However, handling matrices of such a large
dimension can be a very resource-intensive task,
since each additional dimension increases the
number of calculations, which does not always
lead to more accurate results in practice. To
avoid this, there are many methods of data
dimensionality reduction based on byte correla-
tions (SOSD), the difference of the average va-
lues of the traces, T-tests, χ-square tests and
others, which were described in work [5]. All
these techniques aim to reduce the dimensionality
of the profile, leaving only those samples that
contain the most information about the signal and
on the basis of which it is easier to build a
qualitative statistical picture. Samples that carry
the most signal can be seen in Figure 3.

On this plot, they are represented by the peak
values of the function of the correlation vs. the
sample number.

___Theoretical and cryptographic problems of cybersecurity

9

Figure 3: Distribution of the signal between the
samples in the trace

To select the most informative samples, 2

algorithms were considered: based on the diffe-
rence of mean values (DOM) and based on the
square of the difference of mean values (SOSD).

Based on the difference of mean values, the
samples of the resulting vector can be found
from the equation 7:

 (7)

Based on the square of the difference of mean
values, the samples of the resulting vector can
be found using the equation 8:

 (8)

Thus, after obtaining the parameters µ and Σ
for each of the 16 bytes of the AES-128 key, the
cryptanalyst will be able to obtain the value of
the density of the multivariate normal distribution
function based on the obtained measurements on
the attacked device:

 (9)

where xi is the power consumption trace taken
during the attack phase, µ and Σ are parameters
describing the currently selected profile for hypo-
thesis C, n is the dimension of x, µ and Σ. C takes
values from 0 to 255 in the case of the byte
model and from 0 to 9 in the case of the
Hamming weight model.

Thus, for each trace of the attack phase, pos-
sible hypotheses are sorted, for each hypothesis,
the parameters of the normal distribution prepa-
red for it are applied, and the resulting value p of
the density of the normal distribution is accumu-
lated. After processing all the attack traces, we
get a cumulative value of p for each possible
hypothesis C:

 (10)

The hypothesis that has the largest cumulative
value of p is the most likely hypothesis.

With large amounts of data collected during
the attack, it makes sense to reduce the order of
magnitude of p so that the value of p can be
processed by 64-bit data types. For these reasons,
we used log(p(C)) values in this paper instead of
p(C):

 (11
)

By maximizing the cumulative value of the
distribution density for each hypothesis C of each
of the 16 bytes of the key, the attacker can se-
quentially recover the entire AES-128 encryption
key byte by byte.

In the case of building a template based on the
Hamming weight, the maximum value of the de-
nsity of the normal distribution p(x) would give
an opportunity to hypothesize only the number of
non-zero bits in the key byte, and not the value of
the byte itself. In this case, it is necessary to
restore the value by means of brute-forcing of all
byte values corresponding to this value of the
Hamming weight. If the cryptanalyst knows all
16 values of the Hamming weight, then in the
worst case, when all 16 hypotheses have a
Hamming weight of P = 4, the number of
possible values of the encryption key for brute
force will be N = 7016 ≈ 33 * 1028, since 70 of the
possible values correspond to the Hamming
weight of 4. On the other hand, without
information about P for the key bytes, the
cryptanalyst would have to brute force the
sequences of 16 bytes. In this case, the number of
the possible encryption key values would be N =
25616 = 2128 ≈ 34 * 1037, which is 9 orders of
magnitude more than the number of such
possible values with known Hamming weights.

In practice, in most cases, the Hamming
weight will not always be 4 for all 16 bytes. In
the case when the Hamming weight P = 0, there
is only one key byte value corresponding to this
weight, 0; similarly for P = 8 and other values.
Thus, in real attacks using information about the
Hamming weights of key bytes, the number of
attempts is less than 33 * 1028.

___Analysis Template Attacks on AES-128 Hardware Implementations and Protection Against Them

10

2. Experimental details
2.1. Description of the experimen-
tal layout

To detect changes in the power consumption
by the information processing chip, we need to
register the current consumed by the chip.
Having a stabilized power source (in our case –
the USB power output of the laptop connector),
we can include a serially connected resistor of an
appropriate value into the power supply circuit of
the Atmega328PU microcontroller. Thus, we will
get the following wiring diagram of the controller
and additions to the Arduino UNO board (Figure
4):

Figure 4: Schematic diagram of the experimental
bench wiring

Figure 4 shows the connection diagram of two

oscilloscope probes. The first channel CH1 is
used to register changes in the voltage on the
power contacts of the microcontroller, while the
second channel CH2 is used to record the state of
the signal LED.

The signal LED is necessary to separate the
power consumption data corresponding to the
encryption process itself. While the encryption of
16 bytes of plaintext is taking place, the LED is
on, power is applied to it, and the oscilloscope
registers a plot of the Heaviside function that
makes it possible to separate the trace from other
data of the microcontroller power consumption,
such as downloading plaintexts from the control
computer and uploading data back.

A Hantek 6022BE two-channel USB oscillo-
scope with a total sampling rate of 48 MS/s,
24 MS/s for each channel, was used for the expe-
riments. But in this work, a much lower frequen-
cy of 1 MS/s was used. In practice, it turned out
that a higher frequency creates less informative
traces, which do not lead to greater detail of the
signal leaking through the side channel, but, on
the contrary, increase the noise component. In
addition, a higher frequency produces a larger

amount of data that very quickly fills the oscillo-
scope buffer, which does not have time to down-
load data via the USB 2.0 interface to the control
computer.

Figure 5 shows the assembled experimental
bench. An Arduino Uno board and a 20x20 pin
breadboard were used to assemble the elements.

Control and synchronization of the entire sy-
stem was carried out using a Lenovo ThinkPad
E570 computer with an Intel i5-7200U processor
(4) @ 3.100GHz and 16 GB of RAM running the
Linux operating system, kernel version 5.7.19.

Figure 5: The experimental bench in the assem-
bled state

The open API for Hantek oscilloscopes [16]

in the Python programming language was used to
control the oscilloscope.

To synchronize the Arduino board and the
Hantek oscilloscope, a Python script was develo-
ped implementing the data flow according to the
diagram in Figure 6.

Figure 6: Experimental bench data flow diagram

The most difficult tasks were sending 16 bytes

through the serial interface of the computer to the
board, synchronizing the oscilloscope and the
board with the microcontroller, and analysis of
the output signal from the oscilloscope after each

___Theoretical and cryptographic problems of cybersecurity

11

encryption iteration. Let's consider these three
operations in more detail.

2.2. Communication between the
control computer and the Arduino
Uno board

Both stages of the attack require communica-
tion between the Arduino Uno board and the
computer. This communication is necessary for
both data exchange and synchronization. On the
control computer side, we used the interface
/dev/ttyACM0 provided by the operating system.
The interaction with the interface was carried out
through the Python library pyserial. The data up-
date frequency in the serial interface in our expe-
riment was 9600 updates per second. This fre-
quency is sufficient, while a higher frequency
sometimes leads to overwriting the 64-byte buf-
fer of the Arduino and thus corrupting the trans-
mitted data. A delay of 0.01 seconds was introdu-
ced to ensure that the code on the Atmega328PU
side has time to process the input byte.

Since the frequency of the controller is much
higher than the frequency of the serial port, there
is a need for an infinite loop that checks the
buffer of the slow serial port for incoming data.
Upon receiving 16 bytes of input, the Arduino
board stops waiting for new data and continues
the algorithm for processing the received data.

While the controller board has a serial USB
port buffer limited to 64 bytes, there is no such
limit in the case of the Linux OS, so the huge
difference in the frequency of operation between
the controller and the Python script is compensa-
ted by an almost unlimited buffer on the side of
the control computer.

Thus, it is possible to transfer and receive
bytes of data through the USB serial port succe-
ssfully in most cases. However, in some rare
cases various desynchronizations occur, that lead
to data corruption at any of the four described
stages. Such problems are very difficult to debug
and they can be reliably solved by development
of more complex synchronization algorithms,
what goes far beyond the scope of this paper.

2.3. Synchronization of the oscillo-
scope and the microcontroller

Synchronization between these two nodes of
the experimental bench turned out to be a diffi-
cult task for several reasons:

 Limitation of internal buffer of
Hantek6022BE oscilloscope
 Limitation of the packet transfer rate
from the oscilloscope to the USB interface of
the computer and limitation of these packets
size
 Different initialization and clearing times
of Hantek6022BE oscilloscope buffer
These reasons determine the following feature

implemented in the controller firmware – encryp-
tion with the same plain text and key occurs 100
times, both at the stage of building the template
and at the attack stage. The number 100 was cho-
sen through experimental studies, as this number
of encryption stages is sufficient to expand the
window of successive encryptions enough to
overlap it with the measurement window of the
oscilloscope, which by then manages to initialize
in most cases.

The measurement window of an oscilloscope
with a frequency of 1 MS/s was also quite small.
In practice it was observed that in most cases it
was even less than 100 iterations of encryptions
on the controller. In all cases observed, the avai-
lable measurement window was less than 1 ms
required to send one byte to the controller and
process it. Hence, it is impossible to first start the
measurement and only then send data to the
Arduino Uno board.

Figure 7: Trace view within a window of 100
encryptions

A window with several iterations of encrypti-

on, created for synchronization purposes, can be
seen in Figure 7 in the form of consecutive iden-
tical traces, separated by a rectangular signal with

___Analysis Template Attacks on AES-128 Hardware Implementations and Protection Against Them

12

a low duty cycle, which corresponds to the time
interval during which the encryption takes place.

2.4. Analysis of the output signal

After receiving the output signal, we have a
graph similar to the one shown in Figure 8. To
separate and record one trace from it, we use the
signal from the second channel containing rectan-
gular pulses. Each of these pulses defines a part
of the power consumption data that corresponds
to the encryption process. Only this short part of
the signal contains data about the encryption key.

Figure 8: Traces from two oscilloscope channels
combined on one time interval

To isolate this part of the signal, we need to

set a threshold parameter for the pulse signal. Its
value depends on the operating frequency of the
board, the operating frequency of the oscillosco-
pe, the level of its sensitivity, the quality of the
digital signal generator used in the microcontrol-
ler. For our measurements, the threshold value of
0.7 V was chosen experimentally.

The data registration algorithm, implemented
as a Python function, skips part of the square wa-
ve at the beginning, to account for the possibility
that the measurement started in the middle of the
square wave, and we no longer have the first part
of the trace. Next, upon registering the leading
edge of the rectangular signal, the function re-
cords all the values of the samples from the po-
wer supply pins of the Atmega328PU controller,
corresponding in time to the moment of encryp-
tion.

As the result, we get a trace of 286 samples
(Figure 9):

Figure 9: Sample values vs time for a sample
trace collected on the experimental bench

2.5. Firmware for Arduino for the
profiling stage and for the attack
stage

Two variants of firmware for the Arduino
Uno board were developed in the sketch langua-
ge and using the library [1]. The first sketch was
designed to gather data at the profiling phase to
build the template, while the second sketch was
designed to gather data at the attack phase to
register traces of power consumption.

At the stage of data collection to build the
statistical template of the Atmega328PU, acco-
rding to the described algorithm for building a
window to synchronize the Arduino and the
oscilloscope, we form 100 iterations of encryp-
tion with the same plaintext and the same key,
which we received through the serial USB port
from the control computer. The Arduino board
receives pre-generated encryption keys, and to
obtain pseudo-random plaintexts, a chaining me-
chanism is used, which uses the previous cipher-
text as the plaintext for the next encryption. In
our experiment, the first plaintext was the string:
"0123456789012345", the length of which corre-
sponds to 16 bytes in ASCII encoding.

A fixed key, ‘1234567890123451’ was used
to collect power consumption data at the attack
stage. The firmware for the attack is identical to
the firmware for the profiling stage and differs
only in that the plaintext received from the con-
trol computer is copied at 100 encryption repeti-
tions.

___Theoretical and cryptographic problems of cybersecurity

13

3. Implementation of the template
attack and analysis of the obtain-
ed results

3.1. Building an attack template

Based on the mathematical model described in
the Section 1, we developed a software impleme-
ntation of the algorithm for building a profile for
cryptographic calculations on an unprotected
AVR general-purpose Atmega328PU processor.
Let's consider this implementation in detail.

After receiving profiling traces, we must first
classify them according to the combination of
plaintext and encryption key. Depending on
which byte of the encryption key we attack, we
must specify which byte numbers should be used
for the XOR operation to sort all traces. Also, the
number of equivalence classes in our data parti-
tion depends on the classification model: in the
case of the byte model, it is 256 classes, while in
the case of the Hamming weight model, it is 9
equivalence classes.

Having obtained the necessary equivalence
classes, we need to build a profile based on them
for each set of traces. From a practical point of
view it is necessary to reduce the dimensionality
of the data, because it is very difficult to operate
with matrices of 286 by 286 samples even on the
most modern server processors, taking into
account the fact that for the attack stage we need
to perform such resource-intensive operations as,
for example, building inverse matrix.

To select points of interest for both described
algorithms, it is necessary to find a signal trace.
In the case of the DOM algorithm, it corresponds
to the difference of the mean values, and in the
case of the SOSD algorithm, it corresponds to the
square of the difference of the mean values.

For each i-th and j-th element, we find the
mean value of the sample in the set correspon-
ding to the current i-th and j-th element in the
corresponding equivalence classes. At the same
time, i cannot be equal to j, because in this case
the sought difference will always be equal to 0,
which makes no practical sense. Then, k search
samples are selected, in which the difference be-
tween the corresponding samples has the largest
absolute value, where k is a parameter that allows
us to adjust the dimensionality of the templates,
and therefore the speed and accuracy of the
algorithm.

After choosing a certain sample as a signifi-
cant one, it must be zeroed, as well as the sam-

ples that are close to it on the time scale, because
with a high probability they represent the same
signal and the choice of the adjacent samples
would result in us obtaining the same information
multiple times, potentially missing other impor-
tant signals.

Now, with trace partitioning classes and
current points of interest selected, we are ready to
construct the templates, namely the covariance
matrix Σ and mean vectors µ.

As a result of the operation of this algorithm,
we will eventually receive 9 pairs of Σ and µ
parameters, ready for use at the attack stage for
the Hamming weight model, and 256 such pairs
for the byte model.

3.2. Attack phase using a pre-built
template

Now, having collected power consumption
data from the attacked device, in our case the sa-
me device — an Atmega328PU with a software
implementation of AES-128 in AVR assembly
language, we can use pre-built templates to reco-
ver the encryption key from the information
leaked via the side channel.

To do this, we need to find the density value
of the multivariate normal distribution for each
trace collected and find the sum of logarithms of
these values for the entire data set (see equation
11).

One of the problems that may arise at the
attack stage when finding the value of the density
of the normal distribution is the irreversibility of
the covariance matrix. In this case, it is necessary
to change the parameter k – the number of the
most important samples, which was chosen
during the construction of the profile, and to
rebuild the profile anew. With a high probability,
the inverse matrix can be found for all reconstru-
cted covariance matrices.

3.3. The results of the template
attack on a non-protected AES-128
software implementation

As we have mentioned above, the attack was
carried out on the AES-128 encryption key
K="1234567890123451". Several bytes of the
cryptographic key were selected for analysis, in
particular, the byte #3 0x34, which corresponds
to the ASCII character of the code: '4'.

___Analysis Template Attacks on AES-128 Hardware Implementations and Protection Against Them

14

Using the example of this part of the encryp-
tion key, it is easiest and most obvious to consi-
der the results of the attack. To restore this byte,
relatively small amount of data is required, only
20,000 traces to build the template and 10,000
traces of power consumption at the stage of the
attack. In addition, to reproduce the results de-
scribed below, it is enough to select only 11 out
of 286 samples to reduce the dimensionality of
the data. Thus, it will be quite a simple task to
reproduce the given results on an experimental
bench.

Figure 10 shows a graph of the density values
of the multivariate normal distribution for byte
#3.

Figure 10: Density values of the normal distri-
bution for the encryption key byte hypotheses

It can be seen that apart from the hypothesis

with the highest value of the normal distribution
density, which corresponds to the correct hypo-
thesis 5210 (in the graph) or 0x34, there are se-
veral incorrect hypotheses that also show fairly
high values of the normal distribution density.
This suggests that more data is needed in the pro-
filing phase for more accurate results.

Let's consider the graph of reduction of gues-
sing hypotheses entropy regarding the value of
byte #3 of the AES-128 encryption key (Figure
11).

Figure 11: Value of encryption key guess entropy
for byte #3

It can be seen from this figure that the correct

hypothesis consistently wins only after about
3,000 traces required for the attack phase.

The value of the logarithm of the density of
the Gaussian distribution for the correct hypothe-
sis was: p = 3.61022*105.

By changing the parameter of the number of
traces used for the attack and the parameter of the
number of selected points in each trace, you can
achieve more accurate results, while losing the
speed of the algorithm. However, in some cases,
the speed of the attack is not the main parameter.

4. Countering AVR328PU template
attacks at the software level

4.1. An overview of some tech-
niques for protection against power
analysis attacks

According to the book [3], masking and noise
contamination are the most commonly used
methods of protection against power analysis
attacks.

Masking can be thought of as a type of rando-
mization of data processed by a cryptographic
device. In this way, we separate the signal flo-
wing through the side channel from the data
being processed. When masking is used, leak-
sensitive data is divided into several shares. The-
se layers are created from raw data and processed
separately until the very end of data processing.
After that, by inverse transformation, they are re-
stored as if the data processing took place with-
out division into parts.

As the number of shares increases, the amount
of power consumption data required for cryptana-
lysis increases exponentially. On the other hand,
the use of such a mechanism of protection against
signal leaks via side channels requires a source of
entropy, which is known to provide an additional
computational load for the cryptographic imple-
mentation.

There are several schemes for constructing
secret partition schemes or shares: threshold
scheme, Shamir scheme, Blackley scheme, sche-
mes based on the Chinese remainder theorem,
etc. Let's consider the threshold scheme in more
detail.

The threshold scheme [17] proposes to reduce
the required entropy for data masking through the
use of permutations, similar to what is done in
the underlying AES – Rijendael algorithm. Thus,

___Theoretical and cryptographic problems of cybersecurity

15

there is no need to generate a pseudo-random
sequence at each round of AES-128 encryption.
So, by using the threshold scheme, we can reduce
the computational load on our cryptographic im-
plementation. In figure 12 the scheme of masking
according to the threshold scheme is presented,
where x is the original secret, x1, ... , xs are shares.

Figure 12: Scheme of masking using shares [18]

The effectiveness of masking increases expo-

nentially with the increase in the number of sha-
res.

The noise contamination of the signal consists
in adding entropy to the power consumption side
channel itself. Examples of the implementation
of this idea can be the direct addition of white
noise to the power circuit, and the construction of
circuits with a double power source.

The mentioned methods of protection against
attacks through an information leakage side cha-
nnel have proven themselves well in practice,
mostly in combination.

All mentioned mechanisms are effective in
countering power consumption side-channel at-
tacks. However, a well-implemented and confi-
gured template attack can easily cope with these
countermeasures [19].

4.2. Proposed countermeasures
against cryptographic device
template attacks, available for
implementation in the form of
firmware

The above-mentioned side-channel leakage
prevention mechanisms are definitely necessary
for implementation in secure cryptographic devi-
ces, but they are not a complete protection
against higher-level attacks.

If it is not possible to replace an existing
vulnerable device with a more secure one, there
is a way to at least increase the amount of data
required for a successful template attack. For this
purpose, it is possible to add random complex
calculations intended to:

 Randomly increase the power consump-
tion of the device
 Create additional noise in the outgoing
signal
 Complicate building of a statistical profi-
le and blur the statistical picture
Therefore, an algorithm was proposed that

calculates the square root of a random number.
The effect of running this algorithm on the entro-
py of guessing hypotheses after building a profile
and attacking the software implementation of the
AES-128 algorithm on the Atmega328PU micro-
controller described in the previous sections is
demonstrated in the Figure 13:

Figure 13: Key guessing entropy dependence vs.
the number of traces for encryption key byte #3
after addition of the random calculations

As we can see, this algorithm made it almost

impossible to build high-quality statistical tem-
plates for the byte value model when using
20,000 traces at the template construction stage
and 10,000 traces at the attack stage with the
parameter k=10 for the encryption key byte #3.

The graph of the density values of the multi-
variate normal distribution for our hypotheses is
shown in the Figure 14:

Figure 14: Density of normal distribution for
encryption key byte hypotheses

Thus, we managed to complicate the process

of building a profile for this cryptographic imple-
mentation.

We have to emphasize that this does not mean
a complete protection against template attacks.
Having sufficient data to analyze and, according-
ly, well-chosen parameters, it is still possible to
at least significantly reduce the number of possi-

___Analysis Template Attacks on AES-128 Hardware Implementations and Protection Against Them

16

ble variants of key byte values for brute force
attack.

However, by combining this mechanism with
masking and noise contamination, it is possible to
achieve such a level of protection against tem-
plate attacks in which the amount of data requi-
red for collection and analysis is so huge that it
makes this type of attack purely theoretical.

Conclusions

Side channels of information leakage were
and remain a promising direction for cryptanaly-
sis, because they open up the possibility of
attacking not the encryption algorithm, but its
implementation. Moreover, information leakage
side channels, and the power consumption infor-
mation leakage channel in particular, cannot be
completely eliminated due to their physical
nature. Finally, it is impossible to track or in
some way understand at what exact moment in
time a side-channel attack is carried out, because
there is no interference in the operation of a
particular device.

To carry out such an attack, a cryptanalyst
needs only a copy of the device and an oscillo-
scope. Building the device power consumption
template with the correct choice of the profiling
algorithm and dimensionality reduction can be
fast enough, and the resulting templates can be
accurate enough to quickly recover the encryp-
tion key even with a small amount of data
obtained at the direct attack stage.

In our work, we made a review of various
types of power analysis attacks, and chose a
particular type to carry out a simulation of such
attack, namely, an attack with building a statisti-
cal template based on the parameters of the Gau-
ssian distribution with a byte model and without
preprocessing the input data for the attack. The
object of the attack was the implementation of
the AES-128 encryption algorithm in the AVR
Assembler for the Atmega 128PU microcon-
troller from Atmel based on the Arduino Uno
hardware platform

During the preparation of the experimental
bench, we found that while the wiring is quite
simple, the serious problems exist in synchroni-
zation of the three main components – the micro-
controller under investigation, the oscilloscope,
and the control computer, and the most proble-
matic were the limitations of the Hantek 6022BE
oscilloscope buffer. We compensated these limi-
tations by forging the firmware for the micro-

controller, and while such solution was accepta-
ble for our experiments, it would not be accepta-
ble for a real attack on a cryptographic device.
Thus, the requirements for the oscilloscope may
be quite demanding.

Our experiment demonstrated the possibility
to relatively easy recover bytes of the cryptogra-
phic key with a fairly small amount of input data,
both for profiling the attacked device and for the
attack. For greater accuracy in determining key
byte hypotheses, an effective way (besides in-
creasing the collected amount of data) is to com-
bine attacks with an encryption key byte value
model and a Hamming weight model. In our
case, such a combination could be used for those
bytes of the key for which the correct hypothesis
is not found immediately, or does not reach the
maximum value of the logarithm of the density of
the normal distribution.

Various methods of protection against this
type of attack have been developed, which inclu-
de noise contamination, masking, and a number
of other countermeasures. In this work, one of the
protection mechanisms (i.e., adding some random
calculations to the encryption process) against
power analysis template attacks was proposed
and tested. It demonstrated its effectiveness in
this specific case. Among the shortcomings of the
proposed mechanism, its resource-intensiveness
should be mentioned.

However, it is not a universal protection
neither against this type of attack nor against
other side-channel attacks. To prove the absence
of information leakage through a side channel,
statistical tests should be used in each individual
case.

References

[1] Avr-crypto-lib. URL:
https://github.com/cantora/avr-crypto-lib

[2] TrezorWalletBroken. URL:
http://johoe.mooo.com/trezor-power-
analysis/

[3] S. Mangard, E. Oswald, T. Popp, Power
analysis attacks – revealing the secrets of
smart cards: Springer, 2007.

[4] S. Chari, J. R. Rao, P. Rohatgi, Template
attacks, in Proceedings of the 4th
International Workshop on Cryptographic
Hardware and Embedded Systems (CHES
2002), Redwood Shores, CA, USA, August
13-15, 2002, pp. 13–28. doi: 10.1007/3-540-
36400-5_3

___Theoretical and cryptographic problems of cybersecurity

17

https://github.com/cantora/avr-crypto-lib
http://johoe.mooo.com/trezor-power-analysis/
http://johoe.mooo.com/trezor-power-analysis/
https://dx.doi.org/10.1007/3-540-36400-5_3
https://dx.doi.org/10.1007/3-540-36400-5_3

[5] G. Fan, Y. Zhou, H. Zhang, et al, How to
Choose Interesting Points for Template
Attacks? Cryptology ePrint Archive, 2014,
URL: https://eprint.iacr.org/2014/332.pdf.

[6] NewAE Template Attacks: URL:
https://wiki.newae.com/Template_Attacks.

[7] Yoo-Seung Won, Bo-Yeon Sim, J.-Y. Park,
Key schedule against template attack-based
simple power analysis on a single target,
Applied Sciences, 10 (2020), p. 3804.

[8] O. Choudary, M. G., Kuhn, Efficient tem-
plate attacks, in: Revised Selected Papers of
the 12th International Conference on Smart
Card Research and Advanced Applications
(CARDIS 2013), Berlin, Germany,
November 27-29, 2013, Springer, 2013,
pp. 253–270.

[9] S. Picek, A. Heuser, S. Guilley, Template
attack vs Bayes classifier, Cryptology ePrint
Archive, 2017, URL:
https://eprint.iacr.org/2017/531

[10] L. Lerman, R. Poussier, G. Bontempi, et al,
Template attacks vs. Machine learning
revisited (and the curse of dimensionality in
side-channel analysis), in: Revised Selected
Papers of the 6th International Workshop
on Constructive Side-Channel Analysis and
Secure Design (COSADE 2015), Berlin,
Germany, April 13-14, 2015, pp. 20–33.
doi:10.1007/978-3-319-21476-4_2

[11] M. O. Choudary, M. G. Kuhn, Efficient
stochastic methods: profiled attacks beyond
8 bits, Cryptology ePrint Archive, 2014,
URL: https://eprint.iacr.org/2014/885

[12] C. Archambeau, E. Peeters, F.-X. Standaert,
et al, Template attacks in principal

subspaces, in Proceedings of the 8th
International Workshop on Cryptographic
Hardware and Embedded Systems (CHES
2006), Yokohama, Japan, October 10-13,
2006, Springer, 2006, pp. 1–14.

[13] Y. Oren, O. Weisse, A. Wool, Practical
template-algebraic side channel attacks with
extremely low data complexity, in:
Proceedings of the 2nd International
Workshop on Hardware and Architectural
Support for Security and Privacy (HASP
'13), June 2013, Article No.: 7, pp. 1–8.
doi: 10.1145/2487726.2487733

[14] OpenHantek. URL: http://openhantek.org/
[15] J. Heyszl, K. Miller, F. Unterstein, et al,

Investigating profiled side-channel attacks
against the DES key schedule, Cryptology
ePrint Archive, 2019, URL:
https://eprint.iacr.org/2019/1448

[16] Hantek Python API. URL:
https://github.com/Ho-Ro/Hantek6022API

[17] B. Bilgin, B. Gierlichs, S. Nikova, et al, A
more efficient AES threshold implementati-
on, Cryptology ePrint Archive, 2013, URL:
https://eprint.iacr.org/2013/697.pdf

[18] CryptoBlog: URL:
https://www.esat.kuleuven.be/cosic/blog/hig
her-order-threshold-implementations-
wedding-cryptanalysis-to-masking/.

[19] E. Oswald, S. Mangard, Template attacks on
masking – Resistance is futile, in: Topics in
Cryptology – CT-RSA 2007, The
Cryptographers’ Track at the RSA
Conference 2007, San Francisco, CA, USA,
February 2007, pp. 243–256.

___Analysis Template Attacks on AES-128 Hardware Implementations and Protection Against Them

18

http://dx.doi.org/10.1007/978-3-319-21476-4_2

