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Abstract  
The purpose of this work is to research AES-128 power analysis template attack and propose a 
practical way to mitigate such kind of side-channel attacks. The research includes a review of power 
analysis side-channel attacks, an experiment with the collection of Atmega328PU chip power samples 
using Hantek 6022BE oscilloscope, processing collected data and modeling – building statistical 
template of the device and analyzing parameters of the side-channel attack.  
The work is focused on preparation and carrying out the experiment. The experimental bench layout 
and procedures of collecting and processing the data are considered in details.  
The result of this work is the confirmation of the effectiveness of power analysis template attacks on 
AES-128 for Arduino Uno hardware, and a mechanism for mitigating such kind of attacks on the 
particular hardware and software implementation. Research materials described in the current work 
could be used for developing another side-channel template attack mitigation mechanisms for other 
cryptographic implementations. 
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Introduction 

In today's conditions it is extremely critical to 
preserve such properties of information as confi-
dentiality and integrity. Preservation of these pro-
perties becomes possible through extensive use 
of the achievements of modern cryptography. It 
is difficult to imagine any system for processing 
and storing information that does not use interna-
tional or national cryptographic standards. 

When accepting the proposed encryption 
algorithm as a standard, this algorithm is tested 
for compliance with a number of requirements, 
including resistance to various attacks: correlati-
on, algebraic, linear and differential cryptanaly-
sis, brute force attacks, etc. On the other hand, 
the encryption algorithm must meet purely practi-
cal criteria: relative simplicity of calculations 
(especially for streaming ciphers), unpretentious-
ness to such computing resources as RAM, and 
other criteria. Algorithms such as AES meet all 
these criteria and have been used in information 
and computing systems around the world for 
about two decades. 

However, the practical implementation of 
such cryptographic algorithms, being a combina-
tion of a particular physical device and program 
code, is usually vulnerable to side-channel 
attacks. By sequentially measuring physical envi-
ronmental parameters, such as the current in the 
processor power contacts or the energy of the 
electromagnetic field generated by the cryptogra-
phic computing device, the attacking party can 
infer from observations of changes in these para-
meters, and, in the worst case scenario, recover 
encryption keys, thereby compromising these 
devices without even interfering with their opera-
tion. 

Template attacks belong to profiled side-
channel attacks, and are considered to be the 
most powerful. Such attacks include the stage of 
building a statistical template of the cryptogra-
phic device under study using a power consump-
tion information leakage side channel, provided 
the cryptanalyst has the exact copy of the device 
to be attacked. With this template, the cryptana-
lyst can recover a cryptographic encryption key 
or certain information about the internal state of 
the cryptographic implementation using the mini-
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mal amount of data at the stage of collecting 
power consumption samples. 

There are two ways to implement a cryptogra-
phic algorithm: 1) software implementation on 
general-purpose computing processors, such as 
x86, ARM, and AVR family processors, and 2) 
hardware implementation, i.e. the development of 
hardware design specifically for the efficient im-
plementation of calculations related to the sele-
cted encryption algorithm. Each of these approa-
ches has its advantages and disadvantages, but 
the most common in practice is the software 
implementation of the cryptographic algorithm 
on general-purpose processors. 

In the case of hardware implementations, to 
protect against side-channel attacks the vulnera-
ble device must be replaced by another device 
that includes a protection mechanism in its de-
sign, while in the case of software implementa-
tions for general-purpose processor, it is possible 
to simply replace the vulnerable software with a 
less vulnerable one. 

The purpose of the study is to investigate a 
template attack on the implementation of the 
AES-128 encryption algorithm in the AVR As-
sembler programming language for the Atmega 
128PU microcontroller from Atmel based on the 
Arduino Uno hardware platform [1], and to 
propose a mechanism for complicating this attack 
in practice. 

Using the results obtained in this study, we 
can get a software implementation that compli-
cates the task of building a statistical template of 
power consumption for Atmega 328PU. It is po-
ssible to develop similar mechanisms of protec-
tion against a similar template attacks for other 
hardware platforms. 

1. Power consumption side-channel 
attacks 

1.1. Known power consumption 
side-channel attacks review 

Information leakage side channels have been 
and remain the current vector of attacks on soft-
ware and hardware systems, as they have a num-
ber of advantages, including: no need to directly 
interfere in the work of systems and the inability 
to track attacks of this kind. The physical nature 
of such attacks makes all software and hardware 
systems vulnerable to one degree or another and 
various side channels can be combined to filter 
out noise and more accurately recover informa-

tion processed by the device. There are a number 
of different information leakage side channels: 
optical, timing, power consumption, and even 
acoustic.  

In this paper we will investigate power 
consumption information leakage side-channel 
attacks (power analysis attacks). One example of 
the practical application of power analysis attacks 
was a study of the “Trezor” crypto-wallet, carried 
out by researcher Jochen Hoenickie [2]. Using 
the relatively inexpensive Hantek6022BE oscillo-
scope, the researcher was able to recover the pri-
vate key of his crypto-wallet via a side channel. 
Trezor later acknowledged the problem and 
accepted the patches developed by the researcher 
for their software. 

Power analysis attacks can be divided into 2 
major groups: attacks with building a cryptogra-
phic device template and attacks without building 
a template. 

Attacks without building a template use power 
consumption data collected directly during the 
attack. Such attacks include Simple Power Ana-
lysis (SPA), and Differential Power Analysis 
(DPA). DPA attacks use known plaintext and, 
based on statistical analysis of the power consu-
mption data measured during many known plain-
text encryption iterations, choose the correct hy-
pothesis about the value of the encryption key 
used during these iterations. SPA attacks do not 
require many iterations of encryption and are ba-
sed on the idea that the encryption key can be in-
ferred from the form of the graph of the depen-
dence of the amount of power consumption on 
time. By selecting various plaintexts and analy-
zing the obtained dependency graphs, the crypta-
nalyst can hypothesize the value of part of the 
encryption key, or, in some cases, the entire en-
cryption key as a whole. These types of attacks 
and their varieties are widely described in the 
book [3]. 

The complexity of these attacks is that in the 
case of SPA it is not always possible to suggest at 
least one hypothesis, because the difference be-
tween the graphs of dependencies is not obvious, 
while in the case of DPA building hypotheses 
requires too many iterations of encryption, which 
is not always possible to perform in practice. 

Template attacks are based on the assumption 
that the attacking party has free access to an 
exact copy of the attacked device. With such a 
copy, it is possible to build a specific statistical 
template of the power consumption of this device 
based on many iterations of encryption using ma-
ny different combinations of encryption keys and 
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plaintext. Having such a template, it is enough 
for the attacker to obtain data on the power con-
sumption of the device for a relatively small 
number of encryption iterations based on various 
randomly selected plaintexts. The better and 
more accurately constructed the statistical tem-
plate, the less data needed during the attack. In 
the best case (from the attacker point of view), 
one encryption iteration is enough to recover the 
encryption key by power analysis. 

The difficulty of this type of attack is mainly 
the need to have an exact copy of the cryptogra-
phic device and the need to build a template of 
this device, which may require a relatively large 
amount of time and tangible computing resour-
ces, especially if the profiling device has protec-
tion against side-channel attacks. 

1.2. Model of power consumption 
information leakage side channel 

Based on observations of the power consump-
tion of different computing devices, an obvious 
relationship was found between the instantaneous 
power consumption values and the data currently 
being processed. Due to the physical nature of 
modern processors that use registers and memory 
cells to preserve the binary representation of data 
before direct processing, as well as the most 
logical operations performed on data bits, the 
researchers can build a power consumption mo-
del based on the Hamming weight of bytes of this 
data. Accordingly, the correlation coefficient be-
tween the Hamming weight of byte and the va-
lues of power consumption during processing of 
this byte is given by the equation: 

       
        

               
, (1) 

where W is the value of power consumption 
measured by the oscilloscope, and P is the value 
of the Hamming weight for the calculated seque-
nce. Based on this equation, we can build a mo-
del of a power consumption information leakage 
side channel. 

In the case of a template attack, which we will 
consider in this paper, while building the templa-
te, the researchers put the known instantaneous 
value of W in accordance with the known Ham-
ming weight P of the key. 

During the attack phase, the Hamming weight 
of the byte of the key is unknown, but knowing 
the instantaneous value W of the consumed ene-
rgy, and with the help of a well-constructed tem-

plate, it is possible to hypothesize the Hamming 
weight P of the key. 

Obviously, when there is a correlation of the 
values of instantaneous power consumption W 
with the Hamming weight P, there is also a cor-
relation between the value of W and the value of 
byte A, which is obtained by the XOR operation 
of the corresponding bytes of the key and plain-
text. Thus, there are 2 models of power consump-
tion on the basis of which one can build a crypto-
graphic device template: the Hamming weight, 
and the value of the byte of the key. 

1.3. Cryptographic device template 
attacks against AES-128 

First cryptographic device template attacks 
were proposed in work [4]. They were developed 
for the RC4 and DES encryption algorithms. But 
the principles underlying this family of attacks 
make it possible to organize side-channel attacks 
of this type against any cryptographic implemen-
tation. Template attacks are the strongest ones 
from an information-theoretical point of view [5].  

 

 
Figure 1: AES basic structure 
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Template attacks can also be applied to AES-
128 implementations. Looking at the structure of 
AES-128 (Figure 1), we can see that there are 2 
potentially vulnerable operations that can be atta-
cked: SubByte() at the first round and SubByte() 
at the last round. 

In this work, we propose to consider the 
attack on SubByte() at the zero round, because it 
corresponds to the encryption key according to 
the AES-128 key schedule. Attacks on the 
SubByte() operation at the last round need to ad-
ditionally reproduce the reciprocal transformati-
ons at rounds nine through zero. 

            (2) 

The statistical template attack is possible due 
to the correlation between the Hamming weight 
of the bytes ai and ki. 

The attack proposed in this work is carried out 
on each byte of the key separately using the same 
data. Accordingly, a separate statistical template 
is built for each of the 16 bytes of the AES-128 
encryption key. Such a model of template attack 
is based on the assumption that in the encryption 
process, the values of the bytes of the key affect 
the final power consumption separately, indepen-
dently of each other. In reality, this is not entirely 
true, but the dependence of power consumption 
on different combinations of bytes is so insignifi-
cant in practice that it can be neglected. 

1.4. Types of AES-128 implementa-
tion template attacks 

There are a large number of approaches to 
build and use a template against the AES-128 
implementations. Here is an essential classificati-
on of the attacks. 

According to the point of attack on the algo-
rithm, attacks are divided into: 

 AES-128 Zero Round Attack [6]; 
 AES-128 Ninth Round Attack [6]; 
 Attack on the AES-128 key schedule [7]. 
By template building and attack model: 
 Hamming weight model (That is, for 
each byte there are 9 hypotheses: 0-8); 
 Key byte value model (That is, for each 
byte there are 256 hypotheses: 0-255). 
According to the method of building the 

template: 
 Finding the average value of power con-
sumption for each key byte hypothesis [8]; 

 Making assumptions about the distribu-
tion of power consumption depending on the 
byte of the encryption key and finding the 
statistical parameters of the distribution [9]; 
 Training of various machine learning 
models [10]. 
According to the preprocessing method: 
 No preprocessing; 
 Finding the average value of the power 
consumption measurement for each selected 
key and plain text [11]; 
 With decomposition into a spectrum 
using a fast Fourier transform and cutting off 
high-frequency noises [12]. 
According to the method of interpretation of 

the obtained results: 
 Direct interpretation of the received most 
likely hypotheses as correct; 
 Brute-forcing of the received possible 
hypotheses to find the key (to a greater extent 
applies to the Hamming weight model); 
 Template-algebraic attack (TASCA) with 
the selection of hypotheses obtained as a re-
sult of the template attack using the selected 
Boolean function [13]. 
It is possible to combine some selected 

approaches and thus get even more varieties of 
the template attacks. Each of the above families 
of attacks has its own advantages and disadvanta-
ges and is used based on the amount and quality 
of data that can be collected at the statistical 
profiling phase and the attack phase. 

In this paper, we will consider an attack with 
building a statistical template based on the para-
meters of the Gaussian distribution with a byte 
model and without preprocessing the input data 
for the attack. This type of template-building 
attack is simple in structure, but quite powerful 
when applied to raw data collected using a 
cryptographic device with no protection mecha-
nisms against side-channel power analysis 
attacks. 

1.5. Standard view of power con-
sumption data for further analysis 

Usually, the power consumption of cryptogra-
phic chips is measured by an oscilloscope and, 
depending on the operating frequency of the 
cryptographic device itself and the oscilloscope; 
a vector of the appropriate length is recorded for 
each encryption procedure, containing the value 
of instantaneous power consumption in watts. 
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where xi — samples, values of instantaneous po-
wer consumption. The vector T is usually called 
the power consumption trace. An example of 
such a trace obtained by encrypting 16 bytes of 
plain text on the Atmega 328PU chip is shown in 
Figure 2. 
 

 
Figure 2: An example of a power consumption 
trace collected by a Hantek6022BE oscilloscope 
during encryption on an Atmega328PU 

 
In the figure, the interface of the open imple-

mentation of the client program for Hantek osci-
lloscopes — OpenHantek [14] is shown. The 
upper plot demonstrates the power consumption 
data measured by an oscilloscope during the 
entire connection time. Below is the same graph, 
but on a larger scale. The main graph is the 
dependence of the current at the power supply 
pin of the Atmega328PU microcontroller over 
time. The thin line above it is the dependence of 
the current in the signal LED at the 13th digital 
pin of the Atmega328PU. A signal LED was 
used to indicate the start and end of encryption. 

In this graph, we can see the typical power 
consumption peaks corresponding to the AES-
128 key schedule (left) and the ten larger power 
consumption peaks corresponding to the ten 
rounds of AES-128 encryption. 

1.6. Building the AES-128 imple-
mentation template based on multi-
dimensional parameters of Gaussian 
distribution 

In this work, we build the AES-128 imple-
mentation template on the basis of the obtained 

traces of power consumption through the deter-
mination of the parameters of the normal distri-
bution: the mean µ and the variance Σ. Accordin-
gly, we will consider such parameters for each of 
the 16 bytes of the round key with the assump-
tion that the selection of each of the bytes of the 
round key are independent events [15]. 

When constructing a statistical distribution, 
we operate with sample vectors — traces. Thus, 
the obtained parameters µ and Σ are multidi-
mensional and are found according to the 
equations 4, 5: 

   

   

   
   
  

  (4) 

       
 

 
             

 

   

 (5) 

where   and   are every 2 possible vectors of 
mean values. 

Based on equations 4 and 5, the covariance 
matrix has the form: 

   

   
      

       

      
   

       

    
      

      
    

  (6) 

This square covariance matrix has dimension 
   , where n is the number of power 
consumption samples in one trace. In this matrix, 
σ is the value of the covariance between the 
values of the mean samples xi and xj. 

However, handling matrices of such a large 
dimension can be a very resource-intensive task, 
since each additional dimension increases the 
number of calculations, which does not always 
lead to more accurate results in practice. To 
avoid this, there are many methods of data 
dimensionality reduction based on byte correla-
tions (SOSD), the difference of the average va-
lues of the traces, T-tests, χ-square tests and 
others, which were described in work [5]. All 
these techniques aim to reduce the dimensionality 
of the profile, leaving only those samples that 
contain the most information about the signal and 
on the basis of which it is easier to build a 
qualitative statistical picture. Samples that carry 
the most signal can be seen in Figure 3.  

On this plot, they are represented by the peak 
values of the function of the correlation vs. the 
sample number. 
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Figure 3: Distribution of the signal between the 
samples in the trace 

 
To select the most informative samples, 2 

algorithms were considered: based on the diffe-
rence of mean values (DOM) and based on the 
square of the difference of mean values (SOSD). 

Based on the difference of mean values, the 
samples of the resulting vector   can be found 
from the equation 7: 

           

 

   

 

   

 (7) 

Based on the square of the difference of mean 
values, the samples of the resulting vector   can 
be found using the equation 8: 

           

 

   

 

   

 (8) 

Thus, after obtaining the parameters µ and Σ 
for each of the 16 bytes of the AES-128 key, the 
cryptanalyst will be able to obtain the value of 
the density of the multivariate normal distribution 
function based on the obtained measurements on 
the attacked device: 

      
    

  
 

                 

         
 (9) 

where xi is the power consumption trace taken 
during the attack phase, µ and Σ are parameters 
describing the currently selected profile for hypo-
thesis C, n is the dimension of x, µ and Σ. C takes 
values from 0 to 255 in the case of the byte 
model and from 0 to 9 in the case of the 
Hamming weight model. 

Thus, for each trace of the attack phase, pos-
sible hypotheses are sorted, for each hypothesis, 
the parameters of the normal distribution prepa-
red for it are applied, and the resulting value p of 
the density of the normal distribution is accumu-
lated. After processing all the attack traces, we 
get a cumulative value of p for each possible 
hypothesis C:  

        

 

    (10) 

The hypothesis that has the largest cumulative 
value of p is the most likely hypothesis. 

With large amounts of data collected during 
the attack, it makes sense to reduce the order of 
magnitude of p so that the value of p can be 
processed by 64-bit data types. For these reasons, 
we used log(p(C)) values in this paper instead of 
p(C): 

              

 

        (11
) 

By maximizing the cumulative value of the 
distribution density for each hypothesis C of each 
of the 16 bytes of the key, the attacker can se-
quentially recover the entire AES-128 encryption 
key byte by byte. 

In the case of building a template based on the 
Hamming weight, the maximum value of the de-
nsity of the normal distribution p(x) would give 
an opportunity to hypothesize only the number of 
non-zero bits in the key byte, and not the value of 
the byte itself. In this case, it is necessary to 
restore the value by means of brute-forcing of all 
byte values corresponding to this value of the 
Hamming weight. If the cryptanalyst knows all 
16 values of the Hamming weight, then in the 
worst case, when all 16 hypotheses have a 
Hamming weight of P = 4, the number of 
possible values of the encryption key for brute 
force will be N = 7016 ≈ 33 * 1028, since 70 of the 
possible values correspond to the Hamming 
weight of 4. On the other hand, without 
information about P for the key bytes, the 
cryptanalyst would have to brute force the 
sequences of 16 bytes. In this case, the number of 
the possible encryption key values would be N = 
25616 = 2128 ≈ 34 * 1037, which is 9 orders of 
magnitude more than the number of such 
possible values with known Hamming weights. 

In practice, in most cases, the Hamming 
weight will not always be 4 for all 16 bytes. In 
the case when the Hamming weight P = 0, there 
is only one key byte value corresponding to this 
weight, 0; similarly for P = 8 and other values. 
Thus, in real attacks using information about the 
Hamming weights of key bytes, the number of 
attempts is less than 33 * 1028. 
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2. Experimental details 
2.1. Description of the experimen-
tal layout 

To detect changes in the power consumption 
by the information processing chip, we need to 
register the current consumed by the chip. 
Having a stabilized power source (in our case – 
the USB power output of the laptop connector), 
we can include a serially connected resistor of an 
appropriate value into the power supply circuit of 
the Atmega328PU microcontroller. Thus, we will 
get the following wiring diagram of the controller 
and additions to the Arduino UNO board (Figure 
4): 

 
Figure 4: Schematic diagram of the experimental 
bench wiring 

 
Figure 4 shows the connection diagram of two 

oscilloscope probes. The first channel CH1 is 
used to register changes in the voltage on the 
power contacts of the microcontroller, while the 
second channel CH2 is used to record the state of 
the signal LED. 

The signal LED is necessary to separate the 
power consumption data corresponding to the 
encryption process itself. While the encryption of 
16 bytes of plaintext is taking place, the LED is 
on, power is applied to it, and the oscilloscope 
registers a plot of the Heaviside function that 
makes it possible to separate the trace from other 
data of the microcontroller power consumption, 
such as downloading plaintexts from the control 
computer and uploading data back. 

A Hantek 6022BE two-channel USB oscillo-
scope with a total sampling rate of 48 MS/s, 
24 MS/s for each channel, was used for the expe-
riments. But in this work, a much lower frequen-
cy of 1 MS/s was used. In practice, it turned out 
that a higher frequency creates less informative 
traces, which do not lead to greater detail of the 
signal leaking through the side channel, but, on 
the contrary, increase the noise component. In 
addition, a higher frequency produces a larger 

amount of data that very quickly fills the oscillo-
scope buffer, which does not have time to down-
load data via the USB 2.0 interface to the control 
computer. 

Figure 5 shows the assembled experimental 
bench. An Arduino Uno board and a 20x20 pin 
breadboard were used to assemble the elements. 

Control and synchronization of the entire sy-
stem was carried out using a Lenovo ThinkPad 
E570 computer with an Intel i5-7200U processor 
(4) @ 3.100GHz and 16 GB of RAM running the 
Linux operating system, kernel version 5.7.19. 

 

 
Figure 5: The experimental bench in the assem-
bled state 

 
The open API for Hantek oscilloscopes [16] 

in the Python programming language was used to 
control the oscilloscope. 

To synchronize the Arduino board and the 
Hantek oscilloscope, a Python script was develo-
ped implementing the data flow according to the 
diagram in Figure 6. 

 

 
Figure 6: Experimental bench data flow diagram 

 
The most difficult tasks were sending 16 bytes 

through the serial interface of the computer to the 
board, synchronizing the oscilloscope and the 
board with the microcontroller, and analysis of 
the output signal from the oscilloscope after each 
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encryption iteration. Let's consider these three 
operations in more detail. 

2.2. Communication between the 
control computer and the Arduino 
Uno board  

Both stages of the attack require communica-
tion between the Arduino Uno board and the 
computer. This communication is necessary for 
both data exchange and synchronization. On the 
control computer side, we used the interface 
/dev/ttyACM0 provided by the operating system. 
The interaction with the interface was carried out 
through the Python library pyserial. The data up-
date frequency in the serial interface in our expe-
riment was 9600 updates per second. This fre-
quency is sufficient, while a higher frequency 
sometimes leads to overwriting the 64-byte buf-
fer of the Arduino and thus corrupting the trans-
mitted data. A delay of 0.01 seconds was introdu-
ced to ensure that the code on the Atmega328PU 
side has time to process the input byte.  

Since the frequency of the controller is much 
higher than the frequency of the serial port, there 
is a need for an infinite loop that checks the 
buffer of the slow serial port for incoming data. 
Upon receiving 16 bytes of input, the Arduino 
board stops waiting for new data and continues 
the algorithm for processing the received data. 

While the controller board has a serial USB 
port buffer limited to 64 bytes, there is no such 
limit in the case of the Linux OS, so the huge 
difference in the frequency of operation between 
the controller and the Python script is compensa-
ted by an almost unlimited buffer on the side of 
the control computer.  

Thus, it is possible to transfer and receive 
bytes of data through the USB serial port succe-
ssfully in most cases. However, in some rare 
cases various desynchronizations occur, that lead 
to data corruption at any of the four described 
stages. Such problems are very difficult to debug 
and they can be reliably solved by development 
of more complex synchronization algorithms, 
what goes far beyond the scope of this paper. 

2.3. Synchronization of the oscillo-
scope and the microcontroller 

Synchronization between these two nodes of 
the experimental bench turned out to be a diffi-
cult task for several reasons: 

 Limitation of internal buffer of 
Hantek6022BE oscilloscope 
 Limitation of the packet transfer rate 
from the oscilloscope to the USB interface of 
the computer and limitation of these packets 
size  
 Different initialization and clearing times 
of Hantek6022BE oscilloscope buffer 
These reasons determine the following feature 

implemented in the controller firmware – encryp-
tion with the same plain text and key occurs 100 
times, both at the stage of building the template 
and at the attack stage. The number 100 was cho-
sen through experimental studies, as this number 
of encryption stages is sufficient to expand the 
window of successive encryptions enough to 
overlap it with the measurement window of the 
oscilloscope, which by then manages to initialize 
in most cases. 

The measurement window of an oscilloscope 
with a frequency of 1 MS/s was also quite small. 
In practice it was observed that in most cases it 
was even less than 100 iterations of encryptions 
on the controller. In all cases observed, the avai-
lable measurement window was less than 1 ms 
required to send one byte to the controller and 
process it. Hence, it is impossible to first start the 
measurement and only then send data to the 
Arduino Uno board. 

 

 
Figure 7: Trace view within a window of 100 
encryptions 

 
A window with several iterations of encrypti-

on, created for synchronization purposes, can be 
seen in Figure 7 in the form of consecutive iden-
tical traces, separated by a rectangular signal with 
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a low duty cycle, which corresponds to the time 
interval during which the encryption takes place. 

2.4. Analysis of the output signal 

After receiving the output signal, we have a 
graph similar to the one shown in Figure 8. To 
separate and record one trace from it, we use the 
signal from the second channel containing rectan-
gular pulses. Each of these pulses defines a part 
of the power consumption data that corresponds 
to the encryption process. Only this short part of 
the signal contains data about the encryption key.  

 

 
Figure 8: Traces from two oscilloscope channels 
combined on one time interval 

 
To isolate this part of the signal, we need to 

set a threshold parameter for the pulse signal. Its 
value depends on the operating frequency of the 
board, the operating frequency of the oscillosco-
pe, the level of its sensitivity, the quality of the 
digital signal generator used in the microcontrol-
ler. For our measurements, the threshold value of 
0.7 V was chosen experimentally.  

The data registration algorithm, implemented 
as a Python function, skips part of the square wa-
ve at the beginning, to account for the possibility 
that the measurement started in the middle of the 
square wave, and we no longer have the first part 
of the trace. Next, upon registering the leading 
edge of the rectangular signal, the function re-
cords all the values of the samples from the po-
wer supply pins of the Atmega328PU controller, 
corresponding in time to the moment of encryp-
tion. 

As the result, we get a trace of 286 samples 
(Figure 9): 

 
Figure 9: Sample values vs time for a sample 
trace collected on the experimental bench 

2.5. Firmware for Arduino for the 
profiling stage and for the attack 
stage  

Two variants of firmware for the Arduino 
Uno board were developed in the sketch langua-
ge and using the library [1]. The first sketch was 
designed to gather data at the profiling phase to 
build the template, while the second sketch was 
designed to gather data at the attack phase to 
register traces of power consumption.  

At the stage of data collection to build the 
statistical template of the Atmega328PU, acco-
rding to the described algorithm for building a 
window to synchronize the Arduino and the 
oscilloscope, we form 100 iterations of encryp-
tion with the same plaintext and the same key, 
which we received through the serial USB port 
from the control computer. The Arduino board 
receives pre-generated encryption keys, and to 
obtain pseudo-random plaintexts, a chaining me-
chanism is used, which uses the previous cipher-
text as the plaintext for the next encryption. In 
our experiment, the first plaintext was the string: 
"0123456789012345", the length of which corre-
sponds to 16 bytes in ASCII encoding. 

A fixed key, ‘1234567890123451’ was used 
to collect power consumption data at the attack 
stage. The firmware for the attack is identical to 
the firmware for the profiling stage and differs 
only in that the plaintext received from the con-
trol computer is copied at 100 encryption repeti-
tions. 
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3. Implementation of the template 
attack and analysis of the obtain-
ed results 

3.1. Building an attack template 

Based on the mathematical model described in 
the Section 1, we developed a software impleme-
ntation of the algorithm for building a profile for 
cryptographic calculations on an unprotected 
AVR general-purpose Atmega328PU processor. 
Let's consider this implementation in detail. 

After receiving profiling traces, we must first 
classify them according to the combination of 
plaintext and encryption key. Depending on 
which byte of the encryption key we attack, we 
must specify which byte numbers should be used 
for the XOR operation to sort all traces. Also, the 
number of equivalence classes in our data parti-
tion depends on the classification model: in the 
case of the byte model, it is 256 classes, while in 
the case of the Hamming weight model, it is 9 
equivalence classes.  

Having obtained the necessary equivalence 
classes, we need to build a profile based on them 
for each set of traces. From a practical point of 
view it is necessary to reduce the dimensionality 
of the data, because it is very difficult to operate 
with matrices of 286 by 286 samples even on the 
most modern server processors, taking into 
account the fact that for the attack stage we need 
to perform such resource-intensive operations as, 
for example, building inverse matrix. 

To select points of interest for both described 
algorithms, it is necessary to find a signal trace. 
In the case of the DOM algorithm, it corresponds 
to the difference of the mean values, and in the 
case of the SOSD algorithm, it corresponds to the 
square of the difference of the mean values.  

For each i-th and j-th element, we find the 
mean value of the sample in the set correspon-
ding to the current i-th and j-th element in the 
corresponding equivalence classes. At the same 
time, i cannot be equal to j, because in this case 
the sought difference will always be equal to 0, 
which makes no practical sense. Then, k search 
samples are selected, in which the difference be-
tween the corresponding samples has the largest 
absolute value, where k is a parameter that allows 
us to adjust the dimensionality of the templates, 
and therefore the speed and accuracy of the 
algorithm. 

After choosing a certain sample as a signifi-
cant one, it must be zeroed, as well as the sam-

ples that are close to it on the time scale, because 
with a high probability they represent the same 
signal and the choice of the adjacent samples 
would result in us obtaining the same information 
multiple times, potentially missing other impor-
tant signals. 

Now, with trace partitioning classes and 
current points of interest selected, we are ready to 
construct the templates, namely the covariance 
matrix Σ and mean vectors µ.  

As a result of the operation of this algorithm, 
we will eventually receive 9 pairs of Σ and µ 
parameters, ready for use at the attack stage for 
the Hamming weight model, and 256 such pairs 
for the byte model.  

3.2. Attack phase using a pre-built 
template 

Now, having collected power consumption 
data from the attacked device, in our case the sa-
me device — an Atmega328PU with a software 
implementation of AES-128 in AVR assembly 
language, we can use pre-built templates to reco-
ver the encryption key from the information 
leaked via the side channel. 

To do this, we need to find the density value 
of the multivariate normal distribution for each 
trace collected and find the sum of logarithms of 
these values for the entire data set (see equation 
11). 

One of the problems that may arise at the 
attack stage when finding the value of the density 
of the normal distribution is the irreversibility of 
the covariance matrix. In this case, it is necessary 
to change the parameter k – the number of the 
most important samples, which was chosen 
during the construction of the profile, and to 
rebuild the profile anew. With a high probability, 
the inverse matrix can be found for all reconstru-
cted covariance matrices. 

3.3. The results of the template 
attack on a non-protected AES-128 
software implementation 

As we have mentioned above, the attack was 
carried out on the AES-128 encryption key 
K="1234567890123451". Several bytes of the 
cryptographic key were selected for analysis, in 
particular, the byte #3 0x34, which corresponds 
to the ASCII character of the code: '4'. 
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Using the example of this part of the encryp-
tion key, it is easiest and most obvious to consi-
der the results of the attack. To restore this byte, 
relatively small amount of data is required, only 
20,000 traces to build the template and 10,000 
traces of power consumption at the stage of the 
attack. In addition, to reproduce the results de-
scribed below, it is enough to select only 11 out 
of 286 samples to reduce the dimensionality of 
the data. Thus, it will be quite a simple task to 
reproduce the given results on an experimental 
bench. 

Figure 10 shows a graph of the density values 
of the multivariate normal distribution for byte 
#3. 

 

 
Figure 10: Density values of the normal distri-
bution for the encryption key byte hypotheses 

 
It can be seen that apart from the hypothesis 

with the highest value of the normal distribution 
density, which corresponds to the correct hypo-
thesis 5210 (in the graph) or 0x34, there are se-
veral incorrect hypotheses that also show fairly 
high values of the normal distribution density. 
This suggests that more data is needed in the pro-
filing phase for more accurate results. 

Let's consider the graph of reduction of gues-
sing hypotheses entropy regarding the value of 
byte #3 of the AES-128 encryption key (Figure 
11). 

 

 
Figure 11: Value of encryption key guess entropy 
for byte #3 

 
It can be seen from this figure that the correct 

hypothesis consistently wins only after about 
3,000 traces required for the attack phase. 

The value of the logarithm of the density of 
the Gaussian distribution for the correct hypothe-
sis was: p = 3.61022*105. 

By changing the parameter of the number of 
traces used for the attack and the parameter of the 
number of selected points in each trace, you can 
achieve more accurate results, while losing the 
speed of the algorithm. However, in some cases, 
the speed of the attack is not the main parameter. 

4. Countering AVR328PU template 
attacks at the software level 

4.1. An overview of some tech-
niques for protection against power 
analysis attacks 

According to the book [3], masking and noise 
contamination are the most commonly used 
methods of protection against power analysis 
attacks. 

Masking can be thought of as a type of rando-
mization of data processed by a cryptographic 
device. In this way, we separate the signal flo-
wing through the side channel from the data 
being processed. When masking is used, leak-
sensitive data is divided into several shares. The-
se layers are created from raw data and processed 
separately until the very end of data processing. 
After that, by inverse transformation, they are re-
stored as if the data processing took place with-
out division into parts. 

As the number of shares increases, the amount 
of power consumption data required for cryptana-
lysis increases exponentially. On the other hand, 
the use of such a mechanism of protection against 
signal leaks via side channels requires a source of 
entropy, which is known to provide an additional 
computational load for the cryptographic imple-
mentation. 

There are several schemes for constructing 
secret partition schemes or shares: threshold 
scheme, Shamir scheme, Blackley scheme, sche-
mes based on the Chinese remainder theorem, 
etc. Let's consider the threshold scheme in more 
detail. 

The threshold scheme [17] proposes to reduce 
the required entropy for data masking through the 
use of permutations, similar to what is done in 
the underlying AES – Rijendael algorithm. Thus, 
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there is no need to generate a pseudo-random 
sequence at each round of AES-128 encryption. 
So, by using the threshold scheme, we can reduce 
the computational load on our cryptographic im-
plementation. In figure 12 the scheme of masking 
according to the threshold scheme is presented, 
where x is the original secret, x1, ... , xs are shares. 

 
Figure 12: Scheme of masking using shares [18] 

 
The effectiveness of masking increases expo-

nentially with the increase in the number of sha-
res. 

The noise contamination of the signal consists 
in adding entropy to the power consumption side 
channel itself. Examples of the implementation 
of this idea can be the direct addition of white 
noise to the power circuit, and the construction of 
circuits with a double power source. 

The mentioned methods of protection against 
attacks through an information leakage side cha-
nnel have proven themselves well in practice, 
mostly in combination. 

All mentioned mechanisms are effective in 
countering power consumption side-channel at-
tacks. However, a well-implemented and confi-
gured template attack can easily cope with these 
countermeasures [19]. 

4.2. Proposed countermeasures 
against cryptographic device 
template attacks, available for 
implementation in the form of 
firmware 

The above-mentioned side-channel leakage 
prevention mechanisms are definitely necessary 
for implementation in secure cryptographic devi-
ces, but they are not a complete protection 
against higher-level attacks. 

If it is not possible to replace an existing 
vulnerable device with a more secure one, there 
is a way to at least increase the amount of data 
required for a successful template attack. For this 
purpose, it is possible to add random complex 
calculations intended to: 

 Randomly increase the power consump-
tion of the device 
 Create additional noise in the outgoing 
signal 
 Complicate building of a statistical profi-
le and blur the statistical picture 
Therefore, an algorithm was proposed that 

calculates the square root of a random number. 
The effect of running this algorithm on the entro-
py of guessing hypotheses after building a profile 
and attacking the software implementation of the 
AES-128 algorithm on the Atmega328PU micro-
controller described in the previous sections is 
demonstrated in the Figure 13: 

 

 
Figure 13: Key guessing entropy dependence vs. 
the number of traces for encryption key byte #3 
after addition of the random calculations 

 
As we can see, this algorithm made it almost 

impossible to build high-quality statistical tem-
plates for the byte value model when using 
20,000 traces at the template construction stage 
and 10,000 traces at the attack stage with the 
parameter k=10 for the encryption key byte #3. 

The graph of the density values of the multi-
variate normal distribution for our hypotheses is 
shown in the Figure 14: 

 

 
Figure 14: Density of normal distribution for 
encryption key byte hypotheses 

 
Thus, we managed to complicate the process 

of building a profile for this cryptographic imple-
mentation. 

We have to emphasize that this does not mean 
a complete protection against template attacks. 
Having sufficient data to analyze and, according-
ly, well-chosen parameters, it is still possible to 
at least significantly reduce the number of possi-
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ble variants of key byte values for brute force 
attack. 

However, by combining this mechanism with 
masking and noise contamination, it is possible to 
achieve such a level of protection against tem-
plate attacks in which the amount of data requi-
red for collection and analysis is so huge that it 
makes this type of attack purely theoretical. 

Conclusions 

Side channels of information leakage were 
and remain a promising direction for cryptanaly-
sis, because they open up the possibility of 
attacking not the encryption algorithm, but its 
implementation. Moreover, information leakage 
side channels, and the power consumption infor-
mation leakage channel in particular, cannot be 
completely eliminated due to their physical 
nature. Finally, it is impossible to track or in 
some way understand at what exact moment in 
time a side-channel attack is carried out, because 
there is no interference in the operation of a 
particular device.  

To carry out such an attack, a cryptanalyst 
needs only a copy of the device and an oscillo-
scope. Building the device power consumption 
template with the correct choice of the profiling 
algorithm and dimensionality reduction can be 
fast enough, and the resulting templates can be 
accurate enough to quickly recover the encryp-
tion key even with a small amount of data 
obtained at the direct attack stage. 

In our work, we made a review of various 
types of power analysis attacks, and chose a 
particular type to carry out a simulation of such 
attack, namely, an attack with building a statisti-
cal template based on the parameters of the Gau-
ssian distribution with a byte model and without 
preprocessing the input data for the attack. The 
object of the attack was the implementation of 
the AES-128 encryption algorithm in the AVR 
Assembler for the Atmega 128PU microcon-
troller from Atmel based on the Arduino Uno 
hardware platform 

During the preparation of the experimental 
bench, we found that while the wiring is quite 
simple, the serious problems exist in synchroni-
zation of the three main components – the micro-
controller under investigation, the oscilloscope, 
and the control computer, and the most proble-
matic were the limitations of the Hantek 6022BE 
oscilloscope buffer. We compensated these limi-
tations by forging the firmware for the micro-

controller, and while such solution was accepta-
ble for our experiments, it would not be accepta-
ble for a real attack on a cryptographic device. 
Thus, the requirements for the oscilloscope may 
be quite demanding.  

Our experiment demonstrated the possibility 
to relatively easy recover bytes of the cryptogra-
phic key with a fairly small amount of input data, 
both for profiling the attacked device and for the 
attack. For greater accuracy in determining key 
byte hypotheses, an effective way (besides in-
creasing the collected amount of data) is to com-
bine attacks with an encryption key byte value 
model and a Hamming weight model. In our 
case, such a combination could be used for those 
bytes of the key for which the correct hypothesis 
is not found immediately, or does not reach the 
maximum value of the logarithm of the density of 
the normal distribution. 

Various methods of protection against this 
type of attack have been developed, which inclu-
de noise contamination, masking, and a number 
of other countermeasures. In this work, one of the 
protection mechanisms (i.e., adding some random 
calculations to the encryption process) against 
power analysis template attacks was proposed 
and tested. It demonstrated its effectiveness in 
this specific case. Among the shortcomings of the 
proposed mechanism, its resource-intensiveness 
should be mentioned. 

However, it is not a universal protection 
neither against this type of attack nor against 
other side-channel attacks. To prove the absence 
of information leakage through a side channel, 
statistical tests should be used in each individual 
case.  
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