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Abstract  
Non-commutative cryptography studies  cryptographic primitives and systems which are based on 

algebraic structures like groups, semigroups and noncommutative rings. We continue to investigate 

inverse protocols of Non-commutative cryptography defined in terms of subsemigroups of Affine 

Cremona Semigroups over finite fields or arithmetic rings Zm and homomorphic images of these 

semigroups  as possible instruments of Post Quantum Cryptography. This approach allows to 

construct cryptosystem which are not public keys, when protocol finish correspondents have mutually 

inverse transformations on affine space K
n
 or variety (K*)

n
 where K is the field or arithmetic ring.  

The security of such inverse protocol rests on the complexity of word problem to decompose element 

of Affine Cremona Semigroup given in its standard form into composition of given generators. We 

discuss the idea of usage combinations of two cryptosystems with cipherspaces(K*)
n
 and K

n 
to form a 

new cryptosystem with the plainspace(K*)
n
, ciphertextK

n
 and nonbijective highly nonlinear 

encryption map.  

Keywords: Multivariate Cryptography, Noncommutative Cryptography,  stable transformation groups 

and semigroups, semigroups of monomial transformations,  word problem for nonlinear multivariate 

maps, hidden tame homomorphisms, key exchange protocols, cryptosystems, linguistic graphs 
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1. Introduction 

Post-Quantum Cryptography (PQC) is an 

answer to a threat coming from a full-scale 

quantum computer able to execute Shor’s 

algorithm . With this algorithm implemented  on 

a quantum computer, currently used public key 

schemes, such as RSA  and elliptic curve 

cryptosystems, are no longer secure. The U.S. 

NIST made a step toward mitigating the risk of 

quantum attacks by announcing the PQC 

standardisation process [1]. In June 20320 NIST 

published a list of candidates qualified to the 

third round of the PQC process. Some  public 

key candidates  are implemented like PQC 

Round 2 candidate called Round 5 (see [2]) or  

code based classic Mc Eliece algorithm  (see 

[3]). The unique third round candidate defined 

via Multivariate Cryptography was selected in 

the category of digital signatures schemes. 

Noteworthy that during the following  NIST 

project steps  an interesting results on 

cryptanalysis of this candidate known as 

Unbalanced Rainbow Oil and Vinegar digital 

signatures schemes were found (see [34], [35], 

[36]). This scheme is defined via quadratic 

multivariate public rule, which refers to 

MiniRank problem Already selected in July of 

2022 four cryptosystems are developed not in the 

area of Applide Algebra. This fact motivates 

algebraist  to continue design of new 

cryptographical primitives in areas of 

Noncommutative Cryptography and Multivariate 

Cryptography. 

In March 2021 it was announced that 

prestigious Abel prize will be shared by A. 

Wigderson and L.Lovasz. They contribute 

valuable applications of theory of  Expanding 
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graphs to Theoretical Computer Science (see [1], 

[2] and further references). We have been 

working on applications of these graphs to 

Cryptography.  This paper is dedicated to the  

usage of geometrical expanders in sense of N. 

Alon [3] as encryption tools. 

In this  paper  we discuss  the development of   

new cryptosystems within  alternative approach 

([4], [5], [6]) to construct cryptosystems without 

usage of public rules. The idea  is based on 

modifications of Diffie Hellman protocols  on 

the case of multiple generators  to construct 

procedures which output is a pair of mutually 

inverse multivariate transformations of affine  

space K
n
 defined over finite commutative ring K. 

Security of these algorithms rests on the 

complexity of word problem to decompose given 

multivariate map into generators of affine 

Cremona [7] semigroup. The first usage of  the 

complexity of word problem for groups was 

considered in [8].  

In the algorithms of this paper the encryption 

rule is not given publicly. We introduce new 

cryptosystems defined in terms of stable 

semigroups of transformations of affine  K
n
  

which consist on transformations of degree 

bounded by small constant.  Main instruments 

are following. LetK be a commutative ring,  

K[x1, x2,…,xn] be a ring of polynomials inn 

variable. Semigroup of endomorphismsEnd(K[x1, 

x2,…,xn])=S(K
n
) of K[x1, x2,…,xn] isknown as 

Affine Cremona Semigroup, element f of S(K
n
)  

actsnaturally on affine space K
n
  and can be 

given its standard form 

x1→f1(x1,x2,…,xn),x2→f2(x1,x2,…,xn), 

…xn→fn(x1,x2,…,xn),  where f1ϵK[x1, x2,…,xn]. 

We assume that K is a finite commutative 

ring. Symbol C(K
n
) stands for Affine Cremona 

Group of all invertible elements fromS(K
n
).  

Density of the map fis total number of 

monomial term in all fi. 

The computations in subgroups  and 

subsemigroups ofS(K
n
) are computationally 

coustly because for transformations g and hin 

‘’general position ‘’ degree ofg(h(x)coincides 

with degree of h(g(x)) and equals 

deg(g)∙deg(h).The density of g
x
is growing fast 

when x  grows. So special conditions on 

subsemigroup S <S(K
n
)  needed to make 

computations feasible. 

We know two such conditions   

(1) stability condition,  group Gsuch for g ϵ 

Gmaximal degree deg(g) is d (the cases d=2or 

d=3are probably the most important). 

(2) minimality of density condition 

(transformationgϵG has to be toric, i.e. its 

standard form is written as xi→ti(x1,x2,…,xn), 

whereti  are monomial expressions. We refer to g 

asEulerian map if coefficients are  regular 

coefficients and the map g is bijective one  on the 

variety  (K*)
n
. Correspondents use this variety as 

the plainspace. Let
n
EG(K) be Eulerian group of 

all such transformations. 

PLATFORMS. We discover classes of 

subgroups of kind (1) or (2) and fast  algorithm 

to generate pairs gand g
-1

. Look at cryptology e-

print archive  papers [9] and [6] and further 

references. 

Notice that security of Diffie-Hellman 

algorithm for groups depends not only on 

abstract group G but on the way of its generation 

in computer memory. For instance if G=Z*p is 

multiplicative group of large prime field then 

discrete logarithm problem (DLP) is difficult one 

and guarantees the security of the protocol, if the 

same abstract group is given as additive group of 

Zp-1 protocol is insecure because DLP will be 

given by linear equation.  

If G is noncommutative group correspondents 

can use conjugations of elements involved in 

protocol, some algorithms of this kind were 

suggested in [10], [11], [12], [13], where group 

G is given with the usage of generators and 

relations. Security of such algorithms is 

connected with Conjugacy Search Problem 

(CSP) and Power Conjugacy Search Problem 

(PCSP), which combine CSP and Discrete 

Logarithm Problem and their generalisations. 

This direction belongs to Non-commutative 

cryptography which is active  area of 

cryptology, where the.cryptographic primitives 

and systems are based on algebraic structures 

like groups, semigroups and noncommutative 

rings (see  [14], [15], [16], [17], [18], [19], [20], 

[23], [24] ). Semigroup based cryptography 

consist of general cryptographical schemes 

defined in terms of wide classes of semigroups 

and their implementations for chosen semigroup 

families (so called platform semigroups). 

Since 2015 several important cryptanalytic 

results have been obtained in this area ([37]-

[42]). 

As we already mentioned we work with 

subsemigroups of affine Cremona semigroup 

S(K
n
) on generalisations and modifications of 
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Diffie – Hellman protocols for the case of several 

generators. Elements of the subsemigroup are 

presented in their standard form of multivariate 

cryptography. 

2. Some schemes of noncommitative 
cryptography with multivariate 
platforms 

LetS’<S(K
n
) be a subsemigroup of affine 

Cremona semigroup andφ be a homomorphism 

fromS’ onto G< S(K
n
), n>m. 

2.1.Additionally we consider a stable 

subsemigroupS, S’<S<S(K
n
)  and assume thatH 

is stable groupH, G<H<C(K
m
). Alice selects 

elementss1, s2, … ,sr , r >1 of 

subsemigroupsS’and computes φ(si)=ui. She 

takes invertible elements hϵS(K
n
)of kind  av, 

deg(a)=1, vϵ Sand fϵC(K
n
),  f=bg,deg(b)=1, 

gϵHand forms pairs (ai=hsih
-1

, bi=f uif
-1

) and 

sends them to Bob.  

He forms word w=(ai(1))
α(1)

(ai(2))
α(2)

… 

(ai(t))
α(t)

, t>r-1, i(j)ϵ{1,2,…,r},α(j)>0,j=1,2,…,t 

and sends it to Alice. Bob changes alphabet via 

the substitution of biinstead ofai and keeps the 

wordu=(bi(t))
α(t)

(bi(t-1))
α(t-1)

… (bi(t))
α(t)

.. 

Alice computes  u
-1

 as fφ(h
-1

wh)f
 -1

. 

So Alice and Bob when the protocol ends 

have mutually inverse encryption/decryption 

tools  u
-1

andu for the plainspaceK
m
. 

Examples of the  implemetation of this 

algorithm can be found in [6].  

2.2. Let us consider above algorithms in the 

case when semigroupS consists on toric 

elements and H<
m
EG(K) and S=S’. 

Alice forms h and h
-1

 from 
n
EG(K)together 

with pair f,f
 -1

 from
m
EG(K) and proceed with the  

modification of previous algorithm. 

Alice selects elementss1, s2, … ,sr , r >1 of 

semigroups Sand computes φ(si )
-1

  = ui. She 

takes invertible elements h and f toform pairs 

(ai=hsih
-1

, bi=f uif
-1

) and sends them to Bob.  The 

rest of the algorithm is identical to case of 

procedure 2.1. 

After the completion of inverse protocol 

Alice and Bob have bijective maps  u
-1

and u on 

the plainspace(K*)
m
. 

Security  base: The adversary has to solve 

the word problemfor the subsemigroupS’, i. e., 

find the decomposition of w from S’into 

generators ai, i= 1, 2,...,t. The general algorithm 

to solve this problem  in polynomial time for the 

variable nis unknown, as well as a procedure to 

get its solution in terms of quantum 

computations. The problem depends heavily on 

the choice of group. 

Remark. Of course in each case alternative 

ways of  computation of the value ϭ(w)  of 

antiisomorphismϭ between semigroup  <a1, a2, 

…,,ar> and group <b1, b2, …,,br> given by the 

ruleϭ(ai)= bihave to be investigated. 

 

2.3. On platforms acting in tandem. 

2.3.1. Alice and Bob use algorithm 2.1 with 

output u
-1

andu on K
m
as  leading procedure. 

Supporting procedure is algorithm of kind 2.2 

with the same commutative ring K and 

parameter m. Alice (or Bob)  deforms the input 

of 2.2  for her/his correspondent  via the change 

ai,bi forai,biv, i=1,2,…, r’ where vis  u
-1

 or u. 

Notice that the maps biv are well defined 

injective mapsof(K*)
m
  intoK

m
,they 

havepolynomial density. 

Bob (or Alice) computes pairs 

(ai,bi)because of his/her possession ofv
-1

. After 

the completion of supporting procedure Alice 

and Bob get mutually inverse elements z
-1

andzof 
m
EG(K).They use (K*)

m
 as plainspace andK

m
as 

cipherspace. 

To encrypt Alice maps her message p to z
-

1
(p)=m  and then she computes theciphertext c= 

u
-1 

(m). 

Bob decrypts via application of u to c and 

computation z(u(c)). 

Similarly Bob encryptsp via consecutive 

computation ofz(p)  and u(z(p)). 

Alice applies u
-1

to ciphertext c and 

computes the plaintext as z
-1 

(u
-1 

(c)).  

Remark. Encryption and decryption 

functions of the above algorithm can be treated 

as polynomial maps  of K
m
 toK

m
 because 

elements of  
m
EG(K)act naturally on K

m
. 

Between encryption and decryption functions 

there is a density gap because decryption map is 

not a transformation of polynomial density. 

Such pairs can be used as non-bijective stream 

ciphers in a spirit of [25]. In the  tandem 

procedure interception of plaintexts with 

corresponding ciphertext attacks  are unfeasible 

without the computation of ϭ(w). 

2.3.2 Alice and Bob can use algorithm 2.2 

with output  u
-1 

andu on (K*)
m
 as  leading 

procedure. Supporting procedure is algorithm of 
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kind2.1 with the same commutative ring Kand 

parameter  m. 

Algorithms of generation of pairs (z, z
-1

) 

from 
m
EG(K) are described in [6]. 

 

3. On groups and semigroups 
defined in terms of linguistic 
graphs 

3.1. On linguistic graphs over 

commutative rings and skating on them.  

The missing definitions of graph-theoretical 

concepts which appear in this paper can be found 

in [28]. All graphs we consider are simple 

graphs, i.e. undirected without loops and 

multiple edges. Let V(G) and E(G) denote the set 

of vertices and the set of edges of G respectively.  

When it is convenient we shall identify G 

with the corresponding anti-reflexive binary 

relation on V(G), i.e. E(G) is a subset of 

V(G)◦V(G) and write v G u for the adjacent 

vertices u and v (or neighbours).  

We refer to |{ x ϵ V(G)| xGv }| as degree of 

the vertex v. 

The incidence structure is the set V with 

partition sets P(points) and L (lines) and 

symmetric binary relation I such that the 

incidence of two elements implies that one of 

them is a point and another one is a line. We 

shall identify Iwith the simple graph of this 

incidence relation or bipartite graph. The pair  x,  

y ,  x ϵ P, yϵ L such that  x I y  is called a  flag of 

incidence structure I. 

Let K be a finite commutative ring. We refer 

to an incidence structure with a point set 

P=Ps,m=K
s+m

 and a line set L=Lr,m=K
r+m

 as 

linguistic incidence structureImif point   x=(x1, 

x2,…,xs, xs+1, xs+2, …,  xs+m) is incident to line  

y=[y1, y2, … , yr , ,yr+1,yr+2 , …, yr+s ] if and only 

if the following relations hold 

a1xs+1-b1yr+1=f1 (x1,x2 ,… ,xs, y1, y2, …  , yr) 

 a2xs+2-b2yr+2=f2 (x1,x2 ,… ,xs, xs+1, y1, y2, …  

, yr, yr+1) 

                             … 

amxs+m-bmyr+m=fm (x1,x2 ,… ,xs, xs+1,…, xs+m, 

y1, y2, …  , yr, yr+1, …,yr+m) 

where  aj, and bj, j=1,2,,,,m are not zero 

divisors, and fj are multivariate polynomials with 

coefficients from K [29]. Brackets and 

parenthesis allow us to distinguish points from 

lines. 

The colourρ(x)=ρ((x)) (ρ(y)=ρ([y])) of point  

x  (line [y])  is defined as projection of an 

element (x) (respectively [y]) from a free module 

on its initial s (relatively r) coordinates. As it 

follows from the definition of linguistic 

incidence structure for each vertex of incidence 

graph there exists unique neighbour of a chosen 

colour. 

We refer to ρ((x))=(x1, x2 ,… , xs) for  

(x)=(x1, x2 ,… , xs+m) and ρ([y])=(y1, y2, …  , yr) 

for [y]=[y1, y2, …  , yr+m] as the colour of the 

point and the colour of the line respectively. For 

each b ϵ K
r
 and p=(p1, p2 ,… ,ps+m)  there is a 

unique neighbour of the point [l]=Nb(p) with the 

colourb. Similarly for each cϵK
s
 and line l=[l1, l2 

,… , lr+m]  there is a unique neighbour of the line 

(p)= Nc([l]) with the colour c. The triples of 

parameters s,r,m defines type of linguistic graph. 

We consider also linguistic incidence 

structures defined by infinite number of 

equations.  

Linguistic graphs are defined up to 

isomorphism. We refer to written above 

equations asb canonical equations of linguistic 

graph.      

In the case of linguistic graph defined over 

commutative ring  the walk consisting of its 

vertices v0, v1, v2, …,vk  is uniquely defined by 

initial vertex v0, and coloursρ(vi,), i=1, 2,..., k of 

other vertices from the path. We consider the 

equivalence relations on partition sets such that 

(p)≈(p’)([l] ≈ [l’])if pi+s=p’i+s  (li+r=l’i+r ) 

foriϵ{1,2,..m}. 

We define jump operator J(p, a), aϵK
s
 on 

partitions set P (J(l,a), aϵK
r
 on partion set L) by 

conditions J(p,a)≈(p) and ρ(J(p,a))=a ( 

J([l],a)≈[l] and ρ(J([l],a))=a). 

Already definedneighbour computation 

operator (or ground moving operator) N(v, a) 

acts on PUL by rules N(p, a)=[l] where 

(p)I[l],ρ([l])=a and N([l],a)=(p) where 

(p)I[l],ρ((p))=a. 

Let us consider skating chain of the 

linguistic graph with starting point p which is a 

sequence(p, p0, l1, l2, p3, p4, …, lt-3, lt-2, pt-1,pt), 

t=4k, k≥0 such that p≈p0,l2i+1≈l2i+2, i≥0, 

p2i+1≈p2i+2 and p2iIl2i+1fori ≥0. 

Colours of elements from the skating chain 

and the starting point determine the sequence. 

Obviously sequence of alternating jump 

operators Ja and  ground moving operators form 

the skating chain from starting point (p). In fact 

term skating chain is selected because of the 

similarity of computation the sequence with 

competitions on  skating boards, roller skates, 
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figure skating (various jumps and skate surface 

moves). 

 

3.2. Semigroups of  infinite symbolic 

strings and linguistic compression maps.  

Let us consider semigroup S(K
s
) and the 

totalityS
s,r

(K) of maps of kind G:(y1, y2,…, 

yr)→(f1(x1, x2,… ,xs),  f2(x1, x2,… , xs),…, fr(x1, 

x2,… , xs)). If HϵS(K
s
) then G(H) forGϵS

s,r
(K)  is 

the map (y1, y2,…, yr)→(f1(H(x1),H(x2),…, H(xs)), 

f2(H(x1),H(x2),…, H(xs)),…,fr(H(x1),H(x2),…, 

H(xs))). 

When it is convenient we will identify 

elements of S(K
s
) with tuples from K[x1, x2,…, 

xs]
s 

and elements ofS
s,r

(K) with tuples of 

K[x1,x2,…,xs]
r
. 

        Let us consider a to totality 
s
BSr(K) of 

sequences of  kind 

u=(H0, G1, G2, H3,H4,G5, G6,…, Ht-1, Ht), 

t=4i, whereHkϵ S(K
s
), 

Gj ϵS
s,r

(K).  We refer to 
s
BSr(K)   as a totality 

of bigraded symbolic strings. 

  We define a product of u with u’=(H’0, G’1, 

G’2, H’3, H’4, G’5, G’6,…, 

 H’l-1, Hl) as w=(H0, G1, G2, H3, H4, G5, G6,…, 

Ht-1, H’0(Ht), G’1(Ht), G’2(Ht),  H’3(Ht), H’4(Ht),  

G’5(Ht), G’6(Ht), …, H’l-1(Ht),  H’l(Ht)). 

It is easy to see that this operation transforms 
s
BSr(K) into the semigroup 

with the unity element (H0), where E0 is an 

identity transformation from S(K
s
).  

Elements of kind  are (H0, G1, G2, H3, H4) are  

generators of the semigroup. 

The refer to generator with H4=E0  as loop 

element. Let L=
s
Lr(K) be the totality of loop 

elements. The semigroup generated by loop 

elements is isomorphic to free semigroup 

F(L)=
s
Fr(K) of words in the alphabet L. We refer 

to F(L) as semigroup of loop strings. 

It is easy to see that 
s
BSr(K) is isomorphic to 

semidirect product of F(L) and affine Cremona 

semigroup  S(K
s
). 

    Let us consider the homomorphism of the 

group 
s
BSr(K) into Cremona 

Semigroup S(K
s+m

) defined in terms of 

linguistic graph I=I
m
(K). Notice that one can 

consider graph I
m
(K’) over the extension K’ of K 

with the usage of the same equations.Let us take 

K’=K[x1, x2,…, xm+s] where xi are formal 

variables and consider an infinite graph  I 
m
(K[x1,x2,…,xn]), n=m+s 

with partition sets P’=K[x1,x2,…, xm+s]
m+s

and 

L’=K[x1, x2,…, xm+s]
m+r

. After that we take a 

bipartite string u=(H0, G1, G2, H3, H4, G5, G6,…, 

Ht-1, Ht) formed by a totality of multivariate 

polynomials from the subring  K[x1, x2,…,xs] of 

K[x1, x2,…,xn] and the  point (x)=(x1, x2,…, xn) 

formed by generic elements of K’. This data 

defines uniquely a skating chain 

(x),J((x),H0)=(
1
x),N((

1
x),G1)=[

2
x],J([

2
x],G2)=

[
3
x],N([

3
x],H3)=(

4
x),J((

4
x),H4)=(

5
x),…, J([

t-

2
x],Gt-2)=[

t-1
x],N([

t-1
x],Ht-1)=(

t
x),J((

t
x),Ht)=(

t
x). 

Let (
t
x)be the tuple (Ht, F2, F3,…,Fn) where Fi 

ϵK[x1, x2,…, xn]. We define 
I
Ψ(u) as the map (x1, 

x2,…, xn)→(Ht, F2, F3,…,Fn) and refer to it as 

chain transition of point variety. 

The statement written below follows from the 

definition of the map.    

 

Lemma 1 [44]. The map ψ=
I
ψ: 

s
BSr(K)→S(K

n
) is a homomorphism of 

semigroups. 

We refer to 
I
ψ(

s
BSr(K))=

I
CT(K) as a chain 

transitions semigroup of linguistic graph I(K) 

and to map ψ as linguistic compression map. 

Notice that in the case of finite commutative ring 

ψ maps infinite semigroup into finite set of  

chain transitions. 

 

3.3. Some subsemigroups of symbolic 

strings and their homomorphic linguistic 

graphs over commutative rings and skating on 

them.  

We define subsemigroup
s
GSr(K) of symbolic 

ground strings as a totalityof bipartite 

stringsu=(H0, G1, G2, H3, H4, G5, G6,…, Ht-1, Ht) 

in
s
BSr(K) with 

H0=E0, G1=G2, H3=H4,G5=G6,…, Ht-1=Htand 

refer to 
I
ψ(

s
GSr(K)=

I
GCT(K) as semigroup of 

ground chain transitions on linguistic graph I. 

    Let us assume that Htis bijective map and 

its inverse is a polynomial map (in the case of 

infinite ring K).  Then we can consider a reverse 

bigraded string Rev(u)= (Ht-1(Ht
-1

), Gt-2(Ht
-1

), Gt-

3,(Ht
-1

), Ht-4(Ht
-1

),Ht-5
1
(Ht), …,G2(Ht

-1
),  G1(Ht

-1
), 

H0(Ht
-1

), Ht
-1

) and refer to u as reversible string.  

Let 
s
BRr(K) stands for the semihroup of 

reversible strings. 

 

Lemma 2 [44]. The homomorphic image 
I
ψ(

s
BRr(K))=BCTI(K) is a subgroup of affine 

Cremona group C(K
n
). 

Really 
I
ψ(u·Rev(u)), uϵ

s
BRr(K) is an identity 

map. 

We refer to BCTI(K) as subgroup of bijective 

chain transitions of linguistic graph I. 
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4. On semigroups and groups 
related to Double Schubert 
graphs and  corresponding 
inverse protocols 
 

4.1. Construction of graphs, related 

semigroups and their homomorphisms.    
We define Double Schubert Graph  DS(k,K) 

over commutative ring K as incidence structure 

defined as disjoint union of  partition sets 

PS=K
k(k+ 1)

  consisting of points which are tuples 

of kind x =(x1 , x2, … , xk, x11 , x12, … , xkk ) and 

LS=K
k(k+1) 

consisting of lines which are tuples of 

kindy =[y1 ,y2, … ,yk, y11 ,y12, … ,ykk], where x is 

incident to y, if and only if xij- yij=xi yj for i=1, 

2,..., k and j=1, 2,..., k. It is convenient to assume 

that the indices of kind i,j are placed for tuples 

tuples of K
k(k+1) 

in the lexicographical order. 

 

Remark. 

The term Double Schubert Graph is chosen, 

because points and lines of DS(k, Fq)  can be 

treated as subspaces ofFq
(2k+1) 

of dimensions k+1 

and k, which form two largest Schubert cells. 

Recall that the largest Schubert cell is the largest 

orbit of group of unitriangular  matrices acting 

on the variety of subsets of given dimensions. 

We will consider these connection in details in 

the next section. 

We define the colour of point x =(x1 , x2, … , 

xk, x11 , x12, … , xkk )  from  PS as tuple(x1 , x2, … , 

xk,) and the colour of a line y =[y1 ,y2, … ,yk,y11 

,y12, … ,ykk] as the tuple (y1 , y2, … ,yk). For each 

vertex v  of DS(k, K), there is the unique 

neighboury=Na(v) of a given colour a=(a1,a2, … 

,ak). It means the graphs  DS(k, K) form a family 

of linguistic graphs.  

Let us consider the subsemigroup
k
Y(d, K)  

of  
k
BSk(K) consisting ofstrings u=(H0, G1, G2, 

H3, H4, G5, G6,…, Ht-1, Ht) such that maximum of 

parameters deg(H0)+deg(G1), deg(G2)+deg(H3), 

deg(H4)+deg(G5), 

deg(G6)+deg(H7), deg(Gt-2)+deg(Ht-1),  

deg(Ht)=1 

equals to d, d>1. 

 

Theorem 1. Let I(K) be an incidence 

relation of Double Schubert graph DS(k, K). 

Then 
I
ψ(

k
Y(d, K))=

k
U(d,K) form a family of 

stable semigroups of degree d.  

The proof is based on the fact that chain 

transition u from 
k
U(d, K) moves xi,jinto 

expression xi,j+T(u), where T(u) is a linear 

combination of products fϵK[x1, x2,…, xk],  

gϵK[y1, y2,…, yk] wheredeg( f)+deg(g)≤d. 

New semigroup 
k
U(d, K) consists of 

transformations of the free moduleK
t
, t=(k+1)k. 

If d=2 then 
k
U(d, K) containsemigroups of 

quadratic transformationdefined in [9], which 

consists of ground chain transitions.  

Let J be subset of the Cartesian square of 

M={I,2,…,k}. We can identify its element (i,j) 

with the indexijofDouble Schubert Graph 

DS(k,K). 

 

Proposition 1 [44]. Each subset J of M
2
 

defines symplectic homomorphism δJof DS(k, K) 

onto linguistic graph DSJ (k,K). 

     It is easy to see that in the case of empty 

set corresponds to complete bipartite graph with 

the vertex set K
k
UK

k
. 

 

Corollary 1. Let I(J, K)) be an incidence 

relation of linguistic graph    DSJ (k, K). Then 
I(J,K)

ψ(
k
Y(d, K))=

k
UJ(d,K) form a family of stable 

semigroups of degree d.  

 

4.2. Implementation of inverse protocols 

and their extensions with double Schubert 

graphs and their symplectic homomorphisms.    

Let us consider the implementation of 

algorithm 2.1 in the case of S=S’ and G=H. We 

consider the family of graphs DS(k, K) and form 

the family DSJ(k)(k, K). We assume that 

j(k)=|J(k)| and   c’(k
2
)<j(k)<c(k

2
) for some  

constants 0<c’<c<1.  We set S= 
k
S=

I
ψ(

k
Y(d, 

K))=
k
U(d,K) which is a subgroupof affine 

Cremona group C(K
n
), n=k+k

2
 and 

G=
k
G=

k
UJ(d,K)<C(K

m
),  m=k+j(k)

2
. Alice 

selects elementsui=(
 i

H0,  
i
G1, 

i
G2, 

i
H3, 

i
H4,

 i
G5, 

i
G6,…, 

i
Ht-1, 

i
Ht(i)), i=1,2, … , r,r >1 of 

subsemigroup
k
Y(d, K) and computes Rev(ui). 

She takes hϵ
k
Y(d, K) together with Rev(h). 

Alice forms elements ui  and Rev(ui)=vi and 

computes φ(huiRev(h))=a’i for φ=
 I
ψ.   

She takes f from 
k
Y(d, K) and forms 

stringsfRev(ui)Rev(f).  Alice computes 
I(J,K)

ψ(f 

Rev(ui)Rev(f))=b’i.  She takes invertible affine 

j=1,2,…,t transformations T and L of free 

modules K
n
andK

m
 of kind and forms pairs 

(ai=Ta’iT
-1

, bi=L bi L
-1

) and sends them to Bob.  

He forms word w=(ai(1))
α(1)

(ai(2))
α(2)

… 

(ai(t))
α(t)

, t>r-1, i(j)ϵ{1,2,…,r},α(j)>0,and sends it 

to Alice. Bob changes alphabet via the 

substitution of bi instead ofai and keeps the 

reverse wordu=(ai(t))
α(t)

(ai(t-1))
α(t-1)

… (ai(t))
α(t)

. 
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Alice computes  u
-1

as Lψ(f)fϭ(φ(h)
-1

(T
-1

wT) 
1
φ(h))ψ(f)

 -1
)

.
L

-1
 where ψ=

 I(J,K)
ψand ϭ 

homomorphism of
k
U(d,K) onto

k
UJ(d,K) induced 

by graph homomorphismδJ. So Alice and Bob 

when the protocol ends have mutually inverse 

encryption/decryption tools  u
-1

and u for the 

plainspace K
m
. 

 The algorithm is implemented in the cases 

of K=Zp, p=2
t
 and K=Fp, p=2

t
t=7, 8,…, 32 for 

d=2. 

 

4. 3. Remarks on complexity. 

Let us estimate the complexity of 

computations for Bob. He need to create two 

words of finite lengths in corresponding affine 

Cremona semigroup via several compositions of 

quadratic polynomials in n=k
2
+2k variables. It 

takes him O(n
7
) elementary ring operations. 

Computation of quadratic map in given point of 

K
n
, n=k

2
+2k takes time O(k

6
). Thus the total 

complexity of computations for Bob is O(n
7
).  

Let us estimate the complexity of decryption 

process for Alice. She need computation of 

product of linear and quadratic maps, product 

oftwoquadratic maps of densities O(k
2
) and 

O(k
4
), product of two quadratic maps of densities 

O(k
4
) and O(k

2
). It requires O(k

10
) operations. 

 

5. On Eulerian semigroups 
and corresponding  inverse 
protocols 

Let K be a finite commutative ring with the 

multiplicative group K* of regular elements of 

the ring. We take Cartesian power 
n
E(K) =(K*)

n
  

and consider an Eulerian semigroup 
n
ES(K) of 

transformations of kind x1 → ϻ1x1
a(1,1)

x2
a(1,2)

 … 

xn
a(1,n)

 , x2 → ϻ2x1
a(2,1)

x2
a(2,2)

 … xn
a(2,n)

 ,…,xn 

→ϻnx1
a(n,1)

x2
a(n,2)

 … xn
a(n,n)

 ,where a(i,j) are 

elements of arithmetic ring Zd, d=|K*|, ϻiϵK*. 

Let 
n
EG(K) stand for Eulerian group of 

invertible transformations from 
n
ES(K). It is easy 

to see that the group of monomial linear 

transformations Mn  is a subgroup of 
n
EG(K).  So 

semigroup 
n
ES(K) is a highly noncommutative 

algebraic system.  Each element from 
n
ES(K) can 

be considered  as transformation of a free module 

K
n
.  

The problems of constructions of large 

subgroups G of 
 n

EG(K), pairs (g, g
-1

), gϵG, and 

tame Eulerianhomomorphismsϻ:G→H, i. e. 

computable in polynomial time 

t(n)homomorphisms of subgroup G of 
 n

EG(K) 

onto  H<
 m

EG(K) are motivated by tasks of 

Nonlinear Cryptography. 

Each element of the semigroup  
n
ES(K) is 

written in the chosen basis e1, e2 ,…, en. 

Let J={i(1), i(2),…, i(k)} be a subset of 

{1,2,..,n}and WJ=<ei(1), ei(2) ,…, ei(k)> be a 

corresponding  symplectic subspace .  We refer 

to totality 
n
PJ (K) of maps  F ϵ

n
ES(K)  preserving  

WJ  as parabolic semigroup  of
n
ES(K) .  The map 

F from
n
PJ (K) transforms tuple (xi(1), xi(2) , …, 

xi(n))  according to the  rule xi(1) 

→ϻi(1)xi(1)
a(1,1)

xi(2)
a(1,2)

…xi(k)
a(1,k)

,xi(2) 

→ϻi(2)xi(1)
a(2,1)

xi(2)
a(2,2)

…xi(k)
a(2,k)

,…, xi(k) 

→ϻi(k)xi(1)
a(k,1)

xi(2)
a(k,2)

…xi(k)
a(2,k)

. 

Let πJ be the restriction of element F from 
n
PJ (K) onto WJ . The map  πJ  defines canonical 

homomorphism of 
n
PJ (K) onto 

k
ES(K).     

 

 

6.Conclusion 
 

The usage of stable inverse platforms was 

discussed in [4].  For instance correpondents can 

use cubical collision rules keeping in mind 

attacks by adversary with the interception of 

plaintext – ciphertext pairs. In the case of 

plainspace K
n 

adversary has to intercept O(n
3
) 

pairs to conduct successful linearization attack in 

time O(n
10

).  Thus correspondents can follow 

natural recommendation to start a new session of 

the inverse protocol after the exchange of O(n
2
) 

messages. Instead of a new  protocol Alice can 

use idea of deformation rule. She can use same 

platform to generate its element  g  together with 

its inverse g
-1

, combine g with two affine 

bijective maps T1 and T2, use her encryption map 

eA already elaborated  during the session of 

inverse protocol and send  eA(T1gT2) (or 

T1gT2(eA)) to Bob. He can restore T1gT2 and use 

it as the new encryption rule. Alice can decrypt 

because of her knowledge of the inverse map. 

We believe that the case of single toric 

inverse algorithm has similarity with the case of 

stable protocol. Adversary has to intercept set of 

pairs plaintext /ciphertext of polynomial 

cardinality to interpolate encryption function. 

Research on finding of exact upper bounds 

is an in interesting task. Other interesting 

question is about the existence of polynomial 

algorithm to find the inverse of element g from 
n
EG(K) (or 

n
EG’(K)). Similarly to the problem of 

finding the inverse of bijective multivariable map  

a polynomial algorithm to invert g is currently 

unavailable. 
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Despite the difference in interpolation of 

encryption functions security of both toric and 

stable inverse protocols rests on the same 

difficult word decomposition problem for the 

large semigroup, which is intractable with 

ordinary Turing machine and Quantum 

Computer.  

The  usage of tandem which consists of toric 

and stable inverse protocol allows to create 

‘’eternal’’ encryption rule similar to public key 

but not given publicly. Let us assume that toric 

and stable protocols of tandem algorithm 

elaborate pairs of maps (
t
eA , 

 s
eA) and (

t
eB , 

 s
eB)  

for Alice and Bob. The problem to interpolate 

composition 
s
eA(

t
eA ), which is non-bijective  map 

of (K*)
n
 to K

n
 of unbounded degree and 

polynomial density is unfeasible task and  

decryption function has non polynomial density. 

Example of inverse protocols based on  toric 

and stable platforms with outputs  acting on (K*) 
n
and K

n
 gives algorithms 5.3 with arbitrary 

parameter k and l+|J|=n together with algorithm 

4.4 with usage graphs DS(k’, K) and DSJ’(l’,K) 

where l’+|J’|=n and K is a finite field or 

arithmeticring.  Implementation of different from 

4.4  stable algorithms is given in [31], [32], [33], 

alternative to procedure of 5.3 is given in [6]. 

Notice that in all mentioned above platforms 

group enveloped inverse Diffie – Hellman 

protocol [4] can be used instead of inverse 

protocols 2.1 and 2.2. Recently some new 

platforms which are formed by families of stable 

subsemigroups of affine Cremona semigroups 

have been constructed (see [43], [45], [46]). 

They can be also used in the combinations with 

the subsemigroups of Eulerian transformations. 
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