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Abstract
This paper considers the AJPS-1 post-quantum cryptosystem. A feature of this cryptosystem is the use
of arithmetic modulo Mersenne number, in particular, the AJPS cryptosystem uses relations for the
Hamming weight of integers modulo Mersenne number. To create a modification of this cryptosystem
by changing the metric, relations of the 𝑂𝑆𝐷 metric for integers modulo Mersenne number were
obtained. The paper describes the constructed modification of the AJPS-1 cryptosystem with a changed
metric and analyses its advantages compared to the AJPS-1 cryptosystem. This modification allows to
increase the variance of the decryption parameter, which improves the resistance of the cryptosystem to
ciphertext-only (known ciphertext) attacks aimed at determining the private key.

Keywords: post-quantum cryptography, the AJPS cryptosystem, the Mersenne-756839 cryptosystem,
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Introduction

In recent years, there has been rapid progress
in post-quantum cryptography research. Post-
quantum cryptography aims to create crypto-
graphic primitives that can resist attacks from
both quantum and classical computers.

Between 2017 and 2023, the National In-
stitute of Standards and Technology (NIST)
held a competition for quantum-resistant public-
key cryptographic primitives [1]. As a result,
the USA will soon accept new post-quantum
public-key cryptography standards, which will
specify one or more additional digital signature,
public key encryption, and key encapsulation al-
gorithms to augment FIPS 186-4, Digital Signa-
ture Standard (DSS), as well as special publica-
tions SP 800-56A and SP 800-56B [1].

In August 2023, NIST published drafts
of three future standards: FIPS 203 – Key-
Encapsulation Mechanism Standard, and two
Digital Signature Standards: FIPS 204 and
FIPS 205 [2]. An ongoing open discussion is
currently taking place regarding these draft stan-
dards.

Therefore, it is crucial to research various
post-quantum cryptoprimitives to ensure infor-

mation security and to resist future attacks by
quantum computers, which pose a threat to the
security of current cryptosystems.

One of the participants in the first
round of the PQC-NIST competition is the
Mersenne-756839 key encapsulation mechanism,
which relies on the AJPS cryptosystem [3].

The AJPS cryptosystem utilises arithmetic
modulo Mersenne number, which can be effi-
ciently implemented using algorithms for fast
computation of cumbersome modular opera-
tions, such as reduction, multiplication, mod-
ular multiplicative inverse calculation, bitwise
addition, and multiplication modulo Mersenne
number [4, 5, 6]. AJPS has two versions – a bit-
by-bit encryption scheme (AJPS-1) and a scheme
for encrypting a message block (AJPS-2).

This paper presents the results of modifying
the AJPS-1 cryptosystem by changing the metric
used in the cryptosystem.

1. The AJPS-1 cryptosystem

The AJPS-1 cryptosystem [3] allows encrypt-
ing one bit of a message, that is, the plaintext
is the value 𝑏 ∈ {0, 1}.
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The public parameters of the AJPS-1
cryptosystem are:

• Mersenne number 𝑀𝑛 = 2𝑛 − 1, 𝑛 ∈ N;
• the security parameter 𝜆;
• fixed integer ℎ, such that:

1) 𝐶ℎ
𝑛 ≥ 2𝜆;

2) 4ℎ2 < 𝑛 ≤ 16ℎ2.
To simplify notation, we equate numbers

modulo Mersenne number with binary strings
from the set {0, 1}𝑛 ∖ {1𝑛}. Also, we define
the set of numbers that have Hamming weight ℎ
modulo Mersenne number 𝑀𝑛 as follows:

𝐻𝑀𝑛,ℎ = {𝑥 ∈ {0, 1}𝑛 : 𝐻𝑎𝑚(𝑥) = ℎ},
where 𝐻𝑎𝑚(𝑥) is the Hamming weight of 𝑥
(total number of 1’s in the binary representation
of 𝑥). Due to the simplified notation, the set
𝐻𝑀𝑛,ℎ can also be represented as the set of
residues modulo the Mersenne number 𝑀𝑛, with
Hamming weight ℎ.

KeyGen. Let 𝐹 and 𝐺 be 𝑛-bit random inte-
gers, chosen independently and uniformly from
all 𝑛-bit numbers of Hamming weight ℎ:

𝐹,𝐺 ∈𝑅 𝐻𝑀𝑛,ℎ.

The integer 𝐹 is a secret parameter of the cryp-
tosystem and 𝐺 is a private (secret) key. The
public key 𝐻 is then calculated as follows:

𝐻 = 𝐹 ·𝐺−1 mod 𝑀𝑛.

Enc. The encryption algorithm (for en-
crypting 𝑏 ∈ {0, 1}) chooses two random in-
dependent integers 𝐴 and 𝐵 uniformly from
the set 𝐻𝑀𝑛,ℎ. Integers 𝐴 and 𝐵 are secret
ephemeral parameters of the cryptosystem. A
bit 𝑏 is encrypted as:

𝐶 = (−1)𝑏(𝐴 ·𝐻 +𝐵) mod 𝑀𝑛.

Dec. The decryption algorithm computes

𝑑 = 𝐻𝑎𝑚(𝐶 ·𝐺 mod 𝑀𝑛).

Then it returns the value of 𝑏, depending on the
value of 𝑑:

𝑏 =

⎧⎪⎨⎪⎩
0, if 𝑑 ≤ 2ℎ2;

1, if 𝑑 ≥ 𝑛− 2ℎ2;

⊥ (error), else.

The correctness of the decryption follows
from Lemma 1.

Lemma 1. [3] For integers 𝐴,𝐵 ∈ {0, 1}𝑛
and a module 𝑀𝑛 the following properties hold:

1) 𝐻𝑎𝑚(𝐴+𝐵 mod 𝑀𝑛) ≤
≤ 𝐻𝑎𝑚(𝐴) +𝐻𝑎𝑚(𝐵);

2) 𝐻𝑎𝑚(𝐴 ·𝐵 mod 𝑀𝑛) ≤
≤ 𝐻𝑎𝑚(𝐴) ·𝐻𝑎𝑚(𝐵);

3) If 𝐴 ̸= 0𝑛, then

𝐻𝑎𝑚(−𝐴 mod 𝑀𝑛) = 𝑛−𝐻𝑎𝑚(𝐴).

To see the correctness of the decryption algo-
rithm, note that:

𝐶 ·𝐺 mod 𝑀𝑛 = (−1)𝑏(𝐴 ·𝐹 +𝐵 ·𝐺) mod 𝑀𝑛,

which by Lemma 1 has Hamming weight at
most 2ℎ2 if 𝑏 = 0, and at least 𝑛− 2ℎ2 if 𝑏 = 1.

The security of the AJPS-1 cryptosystem is
based on the assumption that the Mersenne Low
Hamming Ratio Search Problem (MLHRSP) is
computationally infeasible. [3].

Definition 1. (MLHRSP) Given a Mersenne
number 𝑀𝑛, an 𝑛-bit integer 𝐻 and an integer ℎ,
find 𝐹 and 𝐺, where 𝐹,𝐺 ∈ 𝐻𝑀𝑛,ℎ, such that:

𝐻 = 𝐹 ·𝐺−1 mod 𝑀𝑛.

The MLHRSP is based on the following
claim.

Claim 1. [3] Let 𝐹 and 𝐺 be such 𝑛-bit inte-
gers, that they both have low Hamming weight ℎ.
Then, when we consider 𝐻 as 𝐹 · 𝐺−1 mod 𝑀𝑛,
𝐻 looks pseudorandom, i.e., it will be hard to
distinguish 𝐻 from a random integer modulo 𝑀𝑛.

It is considered that MLHRSP is hard to
solve. This problem is resistant to many
known attacks, including Meet-in-the-middle at-
tacks, Guess and Win, Lattice-based attacks,
etc [7, 8, 9, 10, 11].

The creators of AJPS recommended utilizing
the following values for 𝑛 and ℎ (Table 1) [3].

Table 1
Suggested values of 𝑛 and ℎ for AJPS-1

𝑛 ℎ 𝜆

1279 17 120

2203 23 174

3217 28 221

4253 32 260

9689 49 432
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Such parameters satisfy all the necessary re-
quirements of the key generation algorithm, and
in this case, it is considered that the value of ℎ
is low enough, compared to 𝑛, so that Claim 1
is fulfilled.

2. The Modification of AJPS-1 with OSD

The AJPS cryptosystem uses the Hamming
weight calculation, in particular, the correctness
of the AJPS-1 decryption is based on the rela-
tions for the Hamming weight of integers mod-
ulo the Mersenne number, which are described
in Lemma 1.

The following modification illustrates and jus-
tifies the possibility of using metrics other than
the Hamming weight in the AJPS-1 cryptosys-
tem.

Let the metric 𝑂𝑆𝐷 (One-side disbalance) be
as follows:

𝑂𝑆𝐷(𝑋) = #1(𝑋)−#0(𝑋),

where #1(𝑋) denotes the number of ones in the
binary notation of the number 𝑋 , and, accord-
ingly, #0(𝑋) – the number of zeros in 𝑋 .

The relations for 𝑂𝑆𝐷 of integers modulo
Mersenne number described in the Lemma 2.

Lemma 2. For integers 𝐴,𝐵 ∈ {0, 1}𝑛 and
Mersenne number 𝑀𝑛 = 2𝑛− 1, where 𝑛 ∈ N, the
following relations hold:

1) 𝑂𝑆𝐷(𝐴+𝐵 mod 𝑀𝑛) ≤
≤ 𝑂𝑆𝐷(𝐴) +𝑂𝑆𝐷(𝐵) + 𝑛;

2) 𝑂𝑆𝐷(𝐴 ·𝐵 mod 𝑀𝑛) ≤

≤ 𝑂𝑆𝐷(𝐴) ·𝑂𝑆𝐷(𝐵)

2
+

+𝑛 ·
(︂
𝑂𝑆𝐷(𝐴) +𝑂𝑆𝐷(𝐵) + 𝑛

2
− 1

)︂
;

3) 𝑂𝑆𝐷(−𝐴 mod 𝑀𝑛) = −𝑂𝑆𝐷(𝐴).

Proof. It should be noted that the 𝑂𝑆𝐷
metric can be represented in terms of the 𝐻𝑎𝑚
metric as follows:

𝑂𝑆𝐷(𝑋) = 𝐻𝑎𝑚(𝑋)− (𝑛−𝐻𝑎𝑚(𝑋)) =

= 2 ·𝐻𝑎𝑚(𝑋)− 𝑛,

where 𝑋 is an 𝑛-bit integer.

1) Using the described relation of the
metrics 𝑂𝑆𝐷 and 𝐻𝑎𝑚 to the

value 𝑂𝑆𝐷(𝐴+𝐵 mod 𝑀𝑛), we have:

𝑂𝑆𝐷(𝐴+𝐵 mod 𝑀𝑛) =

= 2 ·𝐻𝑎𝑚(𝐴+𝐵 mod 𝑀𝑛)− 𝑛.

Applying item 1 of Lemma 1, we have:

𝑂𝑆𝐷(𝐴+𝐵 mod 𝑀𝑛) ≤
≤ 2 ·𝐻𝑎𝑚(𝐴) + 2 ·𝐻𝑎𝑚(𝐵)− 𝑛.

Again using the relation between 𝐻𝑎𝑚 and
𝑂𝑆𝐷, we have:

𝑂𝑆𝐷(𝐴+𝐵 mod 𝑀𝑛) ≤
≤ 2 ·𝐻𝑎𝑚(𝐴) +𝑂𝑆𝐷(𝐵) =

= 2 ·𝐻𝑎𝑚(𝐴)− 𝑛+ 𝑛+𝑂𝑆𝐷(𝐵) =

= 𝑂𝑆𝐷(𝐴) +𝑂𝑆𝐷(𝐵) + 𝑛.

2) Employing the relation of 𝑂𝑆𝐷 and 𝐻𝑎𝑚
alongside item 2 of Lemma 1, we obtain:

𝑂𝑆𝐷(𝐴 ·𝐵 mod 𝑀𝑛) =

= 2 ·𝐻𝑎𝑚(𝐴 ·𝐵 mod 𝑀𝑛)− 𝑛 ≤
≤ 2 ·𝐻𝑎𝑚(𝐴) ·𝐻𝑎𝑚(𝐵)− 𝑛.

By replacing the metric according to this
relation:

𝐻𝑎𝑚(𝑋) =
𝑂𝑆𝐷(𝑋) + 𝑛

2
,

we get:

𝑂𝑆𝐷(𝐴 ·𝐵 mod 𝑀𝑛) ≤

≤ 2 · 𝑂𝑆𝐷(𝐴) + 𝑛

2
· 𝑂𝑆𝐷(𝐵) + 𝑛

2
=

=
𝑂𝑆𝐷(𝐴) ·𝑂𝑆𝐷(𝐵)

2
+

+
𝑛 · (𝑂𝑆𝐷(𝐴) +𝑂𝑆𝐷(𝐵)) + 𝑛2

2
− 𝑛.

3) Applying item 3 of Lemma 1 and the de-
pendence of 𝑂𝑆𝐷 on Hamming weight, we
obtain:

𝑂𝑆𝐷(−𝐴 mod 𝑀𝑛) =

= 2 ·𝐻𝑎𝑚(−𝐴 mod 𝑀𝑛)− 𝑛 =

= 2 · (𝑛−𝐻𝑎𝑚(𝐴))− 𝑛 =

= 𝑛−𝐻𝑎𝑚(𝐴) = −𝑂𝑆𝐷(𝐴).

■

Based on the results outlined in Lemma 2,
it is possible to create a modification of the
AJPS-1 cryptosystem, which will use the 𝑂𝑆𝐷
metric instead of the Hamming weight. Let’s
consider such a modification further.
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1) The KeyGen algorithm of the original
AJPS-1 cryptosystem is used to generate
the keys in this modification. It should be
noted that

𝑂𝑆𝐷(𝐹 ) = 𝑂𝑆𝐷(𝐺) = 2ℎ− 𝑛,

because according to the AJPS-1 condition,
Hamming weight of the numbers 𝐹 and 𝐺
is equal to ℎ. For convenience, we denote
𝑞 = 2ℎ− 𝑛.

2) For encryption, this modification uses the
Enc algorithm of the AJPS-1 cryptosystem.
Note that for integers 𝐴 and 𝐵 used in en-
cryption, similarly to the numbers 𝐹 and 𝐺,
we have:

𝑂𝑆𝐷(𝐴) = 𝑂𝑆𝐷(𝐵) = 𝑞.

3) In the decryption algorithm Dec of this
AJPS-1 modification, the value 𝑑 is calcu-
lated as follows:

𝑑 = 𝑂𝑆𝐷(𝐶 ·𝐺 mod 𝑀𝑛).

Then the bit 𝑏 is determined depending on
𝑑 according to following relation:

𝑏 =

⎧⎪⎨⎪⎩
0, if 𝑠 ≤ (𝑛+ 𝑞)2 − 𝑛;

1, if 𝑠 ≥ 𝑛− (𝑛+ 𝑞)2;

⊥, else (decryption error).

The correctness of the decryption follows
from Lemma 2.

The security of the constructed modification
of AJPS-1, as well as the original AJPS-1 cryp-
tosystem, is based on the complexity of the
Mersenne Low Hamming Ratio Search Problem.
This is true because the 𝑂𝑆𝐷 metric can be
represented by the 𝐻𝑎𝑚 metric, which allows
reducing the problem of finding the secret key 𝐺
(in the AJPS-1 modification with 𝑂𝑆𝐷) to the
MLHRSP.

The advantage of the modification of AJPS-1
by changing the metric is increasing the set
of values accepted by decryption parameter 𝑑
according to which the message bit is deter-
mined in the decryption algorithm. This result
was obtained experimentally through a series of
1,000,000 applications of encryption and decryp-
tion algorithms of the AJPS-1 cryptosystem and
its modification with fixed key values.

Thus, the number of possible values of 𝑑
in modification of AJPS-1 with 𝑂𝑆𝐷 metric is
greater than the number of possible values of 𝑑
in the AJPS-1 cryptosystem. The obtained re-
sults are shown in Tables 2 and 3, as well as in
Figures 1 and 2. Note that the interval length
was calculated as the subtraction result between
the maximum and minimum integers among the
obtained results of 𝑑.

Table 2
The interval length to which 𝑑 belong when 𝑏 = 0 (in
AJPS-1 and in the modification of AJPS-1 with 𝑂𝑆𝐷)

𝑛 ℎ Metric Interval length
of 𝑑 when 𝑏 = 0

1279 17
𝐻𝑎𝑚 105
𝑂𝑆𝐷 212

2203 23
𝐻𝑎𝑚 147
𝑂𝑆𝐷 292

3217 28
𝐻𝑎𝑚 171
𝑂𝑆𝐷 370

4253 32
𝐻𝑎𝑚 201
𝑂𝑆𝐷 390

9689 49
𝐻𝑎𝑚 294
𝑂𝑆𝐷 656

Table 3
The interval length to which 𝑑 belong when 𝑏 = 1 (in
AJPS-1 and in the modification of AJPS-1 with 𝑂𝑆𝐷)

𝑛 ℎ Metric Interval length
of 𝑑 when 𝑏 = 1

1279 17
𝐻𝑎𝑚 112
𝑂𝑆𝐷 194

2203 23
𝐻𝑎𝑚 141
𝑂𝑆𝐷 286

3217 28
𝐻𝑎𝑚 170
𝑂𝑆𝐷 352

4253 32
𝐻𝑎𝑚 204
𝑂𝑆𝐷 418

9689 49
𝐻𝑎𝑚 319
𝑂𝑆𝐷 620
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Figure 1 shows the distribution of 𝑑 in the
decryption algorithm of the AJPS-1 cryptosys-
tem and of the modification of AJPS-1 using
the 𝑂𝑆𝐷 metric with the parameters 𝑛 = 1279,
ℎ = 17 and the message bit 𝑏 = 0.

Figure 1: Distribution of 𝑑 in AJPS-1 and in the
modification of AJPS-1 by using the 𝑂𝑆𝐷 metric, with
the parameters 𝑛 = 1279, ℎ = 17 and the message bit
𝑏 = 0

Figure 2 illustrates the distribution of 𝑑 in
both the decryption algorithm of the AJPS-1
cryptosystem and the modified AJPS-1 utilizing
the 𝑂𝑆𝐷 metric, with the parameters 𝑛 = 1279,
ℎ = 17, and the message bit 𝑏 = 1.

Figure 2: Distribution of 𝑑 in AJPS-1 and in the
modification of AJPS-1 by using the 𝑂𝑆𝐷 metric, with
the parameters 𝑛 = 1279, ℎ = 17 and the message bit
𝑏 = 1

The 𝑑 values in the AJPS-1 cryptosystem and
the modification of the AJPS-1 cryptosystem us-
ing the 𝑂𝑆𝐷 metric are random variables with
a normal distribution. However, Figures 1 and 2
show that changing the metric in AJPS-1 in-
creases the variance of the random variable. This
means that the set of possible values of the pa-
rameter 𝑑 in the modification of AJPS-1 with
𝑂𝑆𝐷 is greater than the set of possible values
of 𝑑 in the classic version of AJPS-1.

Thus, the described modification of the
AJPS-1 cryptosystem by changing the metric has

an advantage compared to AJPS-1, because due
to the small number of values of the 𝑑 parame-
ter in the AJPS-1 cryptosystem, ciphertext-only
(known ciphertext) attacks aimed at determining
the secret key 𝐺 may be applied.

Conclusions

This paper presents the research results
of the post-quantum AJPS-1 cryptosystem,
which is one of the versions of the AJPS
(Mersenne-756839) cryptosystem that partici-
pated in the first round of the NIST post-
quantum cryptoprimitives competition. A fea-
ture of this cryptosystem is the use of arithmetic
modulo Mersenne number, in particular, the cryp-
tosystem uses relations for Hamming weight of
integers modulo Mersenne number.

In this paper, we constructed a modification
of the AJPS-1 cryptosystem by changing the
metric – in our modification, we use the 𝑂𝑆𝐷
(one-side disbalance) metric instead of Hamming
weight. To construct such modification, rela-
tions of the 𝑂𝑆𝐷 metric for integers modulo
Mersenne number, which is also described in
this paper, were obtained.

The advantage of this modification of AJPS-1
is to increase the set of values that the decryp-
tion parameter takes. This makes it possible to
increase the resistance of the cryptosystem to
ciphertext-only attacks, which are aimed at de-
termining the secret key.
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