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Abstract
In the previous work [1], we proposed a formalized approach to truncated differential cryptanalysis
based on ternary masks which separately consider unchanged, obligatory changed and unknown bits
in differences. A security parameter for S-boxes and encryption mappings that bounds the probability
of truncated differentials from below was also proposed in the previous paper. The subsequent step
involves applying the proposed method to existing real-world ciphers, calculating the defined security
parameter, and assessing the method’s effectiveness and potential applications. Additionally, this paper
extends the applicability of the proposed approach by formalizing the 𝑋𝑂𝑅 operation rules for ternary
masks. This allows us to apply the proposed method to ciphers with a structure of Feistel network.
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Introduction

Truncated differential cryptanalysis, first pro-
posed by Knudsen [2] in 1994, is a generaliza-
tion of differential cryptanalysis. Truncated dif-
ferential cryptanalysis considers differences be-
tween texts which are only partially determined.
The successful attack on 6 rounds of DES ci-
pher using truncated differential cryptanalysis
was described in [2] by Knudsen. There ex-
ists a variety of works that describe application
of truncated differential cryptanalysis to exist-
ing ciphers, such as SAFER [3], KATAN-32 [4],
PRINCE [5], Skinny-64 [6] and others. In gen-
eral, to date, this metodology has proved its
efficiency against word-oriented ciphers, like
byte-wise SP-networks or generalized Feistel net-
works. For word-oriented ciphers, it is com-
mon practice to use templates of two types of
words: unchanged and somehow changed [7, 8].
A formal approach to truncated differential crypt-
analysis was proposed in [9] and then expanded
in [10] and [1]. It is a template-based approach
for truncated differential cryptanalysis that can
be applied to bit-oriented block ciphers in the
first place. This approach is applicable on bit
level and specifies truncated differentials with
ternary masks which consider unchanged, obliga-

tory changed, and unknown bits. There was pro-
posed the security parameter that shows lower
bound of the probability of truncated differen-
tials.

In this work, we explore the applicability
of the previously proposed approach to existing
lightweight ciphers. We examine the applicability
of known methods of differential search to pro-
posed approach of truncated differential construc-
tion. We define the rules of 𝑋𝑂𝑅 operation for
ternary masks which expand the applicability of
the approach to a wider set of ciphers, for exam-
ple, Feistel networks. As practical examples, we
construct high-probability truncated differential
characteristics for ciphers PRESENT [11] and
LBlock [12].

The paper is organized as follows. Section 1
provides a standard notation and a brief descrip-
tion of proposed approach to truncated differen-
tial cryptanalysis. In section 2.1, we examine
the applicability of branch-and-bound method to
constructing truncated differentials according to
considered approach. In sections 2.2, 2.3, and
2.4 we construct truncated differential character-
istics for PRESENT cipher. Section 3.1 provides
the rules of operation 𝑋𝑂𝑅 for ternary masks.
Finally, in section 3.2 we construct truncated
differential characteristics for LBlock cipher.
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1. Main terms and notations

1.1. Basics

An encryption function 𝑓 is a function

𝑓 : ℳ×𝒦 → 𝒞,
where ℳ — set of plain texts, 𝒦 — set of keys,
𝒞 — set of cipher texts, and for all 𝑘 ∈ 𝒦 func-
tion 𝑓𝑘 is bijective. The index 𝑘 means specific
value 𝑘 ∈ 𝒦.

Consider a composition of 𝑟 encryption trans-
formation functions 𝑓 one by one using differ-
ent keys as a new function ℳ×𝒦𝑟 → 𝒞. This
transformation could be presented as sequence
of encryption functions 𝑓𝑘𝑟(. . . 𝑓𝑘2(𝑓𝑘1(𝑥))),
𝑥 ∈ ℳ and we will call it multi-round encryp-
tion transformation.

Let 𝑉𝑛 = {0, 1}𝑛 be a linear space of all 𝑛-
length binary vectors. We consider sets ℳ and
𝒞 as linear space of 𝑛-length binary vectors, so
ℳ = 𝒞 = 𝑉𝑛, and set 𝒦 as linear space of 𝑚-
length binary vectors, 𝒦 = 𝑉𝑚. And we consider
encryption functions 𝑓 as Boolean functions.

To abbreviate the notation of an 𝑛-bit vector
with a large number of identical bits, we use
the notation 0𝑟 to denote a sequence of 𝑟 ze-
ros, and 1𝑟 — sequence of 𝑟 ones, for arbitrary
𝑟 ≥ 1. For example, 0312012 denotes the vector
00011011.

1.2. Differentials

A differential of Boolean function 𝑓𝑘 is an ar-
bitrary pair of vectors (𝛼, 𝛽), 𝛼, 𝛽 ∈ 𝐵𝑛, which
are interpreted as difference between inputs and
as difference between outputs of function 𝑓𝑘
with respect to bitwise addition ⊕. The equation
associated with differential (𝛼, 𝛽) for a function
𝑓𝑘 is 𝑓𝑘(𝑧 ⊕ 𝛼) = 𝑓𝑘(𝑧)⊕ 𝛽.

Differential characteristic of multi-round
transformation is sequence of 𝑛-length binary
vectors (𝛼0, 𝛼1, . . . , 𝛼𝑟), 𝛼𝑖 ∈ 𝑉𝑛, 𝑖 = 0, . . . , 𝑟.
This sequence we consider as sequence of differ-
ences between intermediate cipher texts of multi-
round transformation after each round. So, every
intermediate difference 𝛼𝑖, 𝑖 = 1, . . . , 𝑟 − 1, is a
difference of outputs after 𝑖 round of multi-round
transformation. And 𝛼𝑟 is a final difference after
the last round of multi-round transformation.

In this paper, we consider only Boolean
functions which use bitwise addition ⊕ as op-

eration with key. In such case, considered
Boolean functions are examples of Markov ci-
phers [13]. So, in these cases ∀𝑥 ∈ 𝑀 , ∀𝑘 ∈ 𝐾,
𝑓𝑘(𝑥) = 𝑓(𝑥⊕ 𝑘), then an equation associated
with differential (𝛼, 𝛽) we can present as

𝑓(𝑥⊕ 𝑘 ⊕ 𝛼) = 𝑓(𝑥⊕ 𝑘)⊕ 𝛽.

Let denote 𝑦 = 𝑥⊕ 𝑘, 𝑦 ∈ 𝑀 , then

𝑓(𝑦 ⊕ 𝛼) = 𝑓(𝑦)⊕ 𝛽.

So, we have made sure that value of key in
such Boolean functions has no influence on dif-
ferential probabilities distribution. That is why
we will use notation 𝑓(𝑥), 𝑥 ∈ 𝑀 for Boolean
functions further, assuming all used keys to be
random, uniform and pairwise independent.

A probability of differential (𝛼, 𝛽) for a func-
tion 𝑓 is defined as

𝐷𝑃 𝑓 (𝛼, 𝛽) =
1

2𝑛

∑︁
𝑥∈𝐵𝑛

[𝑓(𝑥⊕ 𝛼) = 𝑓(𝑥)⊕ 𝛽],

where [. . . ] is an Iverson’s brackets (indicator
function): [𝑃 ] = 1, if 𝑃 is true, and [𝑃 ] = 0, if
𝑃 is false.

Probability of differential characteristic
(𝛼0, 𝛼1, . . . , 𝛼𝑟) of 𝑟-round Markov transforma-
tion as a composition of functions 𝑓 is defined
as the product of probabilities of consecutive
round differentials [14]:

𝐷𝐶𝑃 𝑓 (𝛼0, 𝛼1, . . . , 𝛼𝑟) =

𝑟∏︁
𝑖=1

𝐷𝑃 𝑓 (𝛼𝑖−1, 𝛼𝑖).

1.3. Truncated Differentials

In 1994 Lars Knudsen [2] proposed a method
that allows to ease requirements of regular differ-
ential cryptanalysis and enhance its applicability
— truncated differential cryptanalysis. Using this
method, Knudsen has achieved successful attack
on 6 rounds of DES cipher. In general, truncated
differential cryptanalysis considers sets of differ-
ences which combine several possible ordinary
differences at the same time.

Truncated differential by Knudsen [2] is pair
of bit vectors (𝛼1, 𝛽1), where 𝛼1 is subsequence
of 𝛼 and 𝛽1 is subsequence of 𝛽, and (𝛼, 𝛽) —
is ordinary differential. So, for every truncated
differential (𝛼1, 𝛽1), 𝛼1 and 𝛽1 can be consid-
ered as masks of the input and output differences
of a function. More general, a differential that
predicts only parts of an 𝑛-bit value is called a
truncated differential.
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For now, there exists other approaches in the-
ory of truncated differentials (see, e.g., [15]). In
the modern sense, truncated differentials are con-
sidered as pairs (𝐴,𝐵), where 𝐴 and 𝐵 are a
sets of differences. These sets can be described
in different ways, depending on the approach.
For instance, approaches based on masks or tem-
plates have been demonstrated to be effective.

Each mask 𝛼 is associated with a set of possi-
ble differences ∆(𝛼). The set of possible differ-
ences ∆(𝛼) is the set of all possible differences
that are subsequences of 𝛼:

∆(𝛼) = {𝛼′ ∈ 𝑉𝑛 ∖ {0} : 𝛼′ ∨ 𝛼 = 𝛼}.
In work [1], it was proposed an alternative

form of the truncated differential as ternary
pattern-based truncated differential (𝛼, 𝛽) of a
Boolean function 𝑓 : 𝑉𝑛 → 𝑉𝑛 (we will address
it truncated differential further in this paper), in
which the both masks of input and output differ-
ences are defined as ternary vectors:

𝛼, 𝛽 ∈ 𝑇𝑛 = {0, 1, ?}𝑛.
In this case, ∆(𝛼) will contain the ordinary

differences 𝛼′ constructed by following rules:
1) if 0 is in mask 𝛼 at a certain position, then

0 is in difference 𝛼′ at the same position;
2) if 𝛼 has 1 at a certain position, then 𝛼′ has

1 at the same position;
3) if ? is in 𝛼 at a certain position, then 𝛼′

can have both 0 and 1 at the same position.
For each mask 𝛼 ∈ 𝑇𝑛, we define the set

∆(𝛼) as the set of differences 𝛼′ ∈ 𝑉𝑛 ∖{0} that
correspond to the mask 𝛼. For example,

∆(10?) = {100, 101},
∆(??0) = {010, 100, 110}.

In addition, by definition ∆(0) = {0} for a zero
mask.

With every introduced truncated differential
an event is associated: each input difference
from ∆(𝛼) maps into an output difference from
∆(𝛽). A transition differential probability of the
truncated differential for a Boolean function 𝑓 is
defined as follows:

𝑇𝐷𝑃 𝑓 (𝛼, 𝛽) =
1

2𝑛

∑︁
𝑥∈𝑉𝑛

[︁
∀𝛼′∈Δ(𝛼) :

𝑓(𝑥⊕𝛼′)⊕𝑓(𝑥)∈Δ(𝛽)

]︁
.

This parameter provides the lower bound for the
probability of truncated differential, but not the
exact value.

Parameter 𝑇𝐷𝑃 have any sense only if its
value is higher than |Δ(𝛽)|

2𝑛 , as symbol ? in out-
put difference mask brings some level of uncer-
tainty in possible real output differences.

Ternary pattern-based truncated differential
characteristic (we will address it truncated
differential characteristic further in this arti-
cle) of 𝑟-round function 𝐹 is the sequence
of masks (𝛼0, 𝛼1, . . . , 𝛼𝑟), 𝛼𝑖 ∈ 𝑇𝑛, 𝑖 = 0, 𝑟. In
𝑟-round function 𝐹 , each round is a Boolean
function 𝑓 independent of other rounds. In trun-
cated differential characteristic, each consecu-
tive pair of masks (𝛼𝑖−1, 𝛼𝑖) is considered as
truncated differential of corresponding round 𝑖,
𝑖 = 1, 𝑟.

Similar to ordinary differential characteris-
tics, for the truncated differential characteristic
(𝛼0, 𝛼1, . . . , 𝛼𝑟) of 𝑟-round function 𝐹 , where
one round is a Boolean function 𝑓 , we can in-
troduce the transition differential characteristic
probability as

𝑇𝐷𝐶𝑃𝐹 (𝛼0, 𝛼1, . . . , 𝛼𝑟) =

=

𝑟∏︁
𝑖=1

𝑇𝐷𝑃 𝑓 (𝛼𝑖−1, 𝛼𝑖).

Since 𝑇𝐷𝑃 𝑓 (𝛼𝑖−1, 𝛼𝑖) is the lower bound of
the probability of the round truncated differential,
and all round differentials are independent, we
can say that 𝑇𝐷𝐶𝑃 is the lower bound for the
truncated differential characteristic.

Furthermore, we illustrate the potential and
limitations of utilizing the approach outlined
in [1] and [9] to search for truncated differ-
entials and truncated differential characteristics
with high transition probability.

2. Approaches to Construct High-
probability Truncated Differentials
and Differential Characteristics

In this section, we examine the potential of
using the branch-and-bound method to construct
high-probability truncated differentials similarly
to ordinary differentials. We will also provide
the advantages and disadvantages of constructing
truncated differential characteristics in compari-
son with ordinary ones.
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2.1. Branch-and-bound Method

The branch-and-bound method is usually used
to find differentials or differential characteristics
with high probability. In general, its goal is to
optimize the solution search on a decision tree,
considering only branches that meet certain crite-
ria. When branch-and-bound method is utilized
it differential cryptanalysis, the decision tree is
built as follows:

• a root is the input difference,
• edges are rounds of encryption,
• selection criteria is the probability of the

differential or differential characteristics.
The differential probability for a single round
of encryption is usually easy to calculate. The
differential probability after several rounds of en-
cryption for one branch of the tree is the product
of the probabilities of all one-round differentials
for that branch. In the case, where different
branches are mapped to one output difference,
the differential probability from the root to this
output difference will be the sum of probabilities
across all possible branches.

Let’s consider f — a 8-bit Boolean function
with two 𝑆-boxes of the PRESENT cipher [11]
and the bit permutation layer described in Ta-
ble 1.

Table 1
8-bit permutation layer of model Boolean function 𝑓

𝑖 0 1 2 3 4 5 6 7
𝑃 (𝑖) 0 4 1 5 2 6 3 7

Let’s try to find high-probability masks of
truncated differentials for as many rounds as pos-
sible of such encryption round.

Consider as the input of the first round
040001. Here are 𝑇𝐷𝑃 values for three trun-
cated differentials:

• 𝑇𝐷𝑃 𝑓 (040001, 040100) = 0.25;
• 𝑇𝐷𝑃 𝑓 (040001, 040101) = 0.125;
• 𝑇𝐷𝑃 𝑓 (040001, 04010?) = 0.375.
The next step is to provide each of the men-

tioned output masks as input to the second
round and compute 𝑇𝐷𝑃 with one output mask
???1?4:

• 𝑇𝐷𝑃 𝑓 (040100, ???1?4) = 0.75 — by defi-
nition of 𝑇𝐷𝑃 , this means that 3

4 of all
plaintexts 𝑥 ∈ 𝑉8 transition input mask
040100 into output mask ???1?4 for func-
tion 𝑓 ;

• 𝑇𝐷𝑃 𝑓 (040101, ???1?4) = 0.75 — this also
means that 3

4 of all plaintexts 𝑥 ∈ 𝑉𝑛 tran-
sition input mask 040101 into output mask
???1?4;

• 𝑇𝐷𝑃 𝑓 (04010*, ???1?4) = 0.5 — and this
means that 1

2 of all plaintexts 𝑥 ∈ 𝑉𝑛 tran-
sition both input mask 040100 and input
mask 040101 in the same time into output
mask ???1?4, because by definition of the
masks, the set ∆(04010?) consists of two
differences 040100 and 040101.

Let denote differences we use:
• 𝛼 = 040001
• 𝛽1 = 040100
• 𝛽2 = 040101
• 𝛽3 = 04010?
• 𝛾 =???1?4

According to branch-and-bound method, to
calculate 𝑇𝐷𝑃 {𝑓,𝑓}(𝛼, 𝛾) (the probability of the
mask 𝛼 transitions to the mask 𝛾 after two en-
cryption rounds 𝑓 ), we have to add all the proba-
bilities of the truncated differential characteristics
below (using different branches):

• 𝑇𝐷𝐶𝑃 (𝛼, 𝛽1, 𝛾) = 0.25 · 0.75 = 0.1875;
• 𝑇𝐷𝐶𝑃 (𝛼, 𝛽2, 𝛾) = 0.125 · 0.75 = 0.09375;
• 𝑇𝐷𝐶𝑃 (𝛼, 𝛽3, 𝛾) = 0.375 · 0.5 = 0.1875.

However, this is not possible with our definition
of 𝑇𝐷𝑃 , because a half of all plaintexts 𝑥 ∈ 𝑉𝑛

in the second encryption round will be taken into
account three times in each of the transitions.
This situation can result to a value of 𝑇𝐷𝑃 > 1
with an essential number of branches for a given
output mask, which leads to the inconsistency of
the parameter 𝑇𝐷𝑃 as probability bound.

Therefore, we demonstrated that the branch-
and-bound method in unsuitable for the search of
high-probability ternary pattern-based truncated
differentials.

2.2. Truncated Differential Characteris-
tics of PRESENT

PRESENT [11] cipher was selected to exam-
ine the feasibility of the proposed approach of
constructing truncated differentials and to eval-
uate the security of encryption transformations
against cryptanalysis based on truncated differen-
tials.

PRESENT cipher is a 31-round 64-bit
𝑆𝑃 -network, one round of which consists of key
addition, 16 4-bit 𝑆-boxes and a linear trans-
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formation. Further, we denote one round of
PRESENT cipher as 𝑓 .

Since the branch-and-bound method cannot
be applied to truncated differentials, we will con-
sider differential characteristics based on trun-
cated differentials in the same way as ordinary
differentials.

Consider one round of encryption, 𝛼 = 0631
as the input mask, and both 𝛽1 = 0151015?0311
and 𝛽2 = 015101500311 as output masks. The
output masks are distinguished by a difference
in a single bit in the 32𝑛𝑑 position. Calculated
𝑇𝐷𝑃 values for considered input and output
masks for one encryption round of PRESENT
cipher 𝑓 are:

• 𝑇𝐷𝑃 𝑓 (𝛼, 𝛽1) = 0.5,
• 𝑇𝐷𝑃 𝑓 (𝛼, 𝛽2) = 0.25.
As one can see, the value of 𝑇𝐷𝑃 is larger

for a truncated differential that has an output
mask containing the character ”?”. If the mask
does not contain the ”?” character, then it plays
the role of an ordinary difference between two
texts.

At the same time, according to our calcu-
lations the most probable (in terms of 𝑇𝐷𝑃 )
output mask for input mask 𝛽1 is mask
𝛾1 = 0310111031011107?011103?071:

𝑇𝐷𝑃 𝑓 (𝛽1, 𝛾1) = 0.015625,

and the most probable output mask for input
mask 𝛽2 is mask 𝛾2 = 0310111031011?01910111:

𝑇𝐷𝑃 𝑓 (𝛽2, 𝛾2) = 0.125.

Then, if we calculate 𝑇𝐷𝐶𝑃 values for con-
sidered truncated differential characteristics, we
will get the next result:

• 𝑇𝐷𝐶𝑃 {𝑓,𝑓}(𝛼, 𝛽1, 𝛾1) = 0.0078125,
• 𝑇𝐷𝐶𝑃 {𝑓,𝑓}(𝛼, 𝛽2, 𝛾2) = 0.03125.
Therefore, the 𝑇𝐷𝐶𝑃 value for the most

probable characteristic where the mask in the
middle of the characteristic contains the ? sym-
bol is much smaller than the other. So, we can
observe that the usage of a truncated differential
in a differential characteristic gives an advan-
tage over ordinary differential characteristic if
the mask has the symbol ”?” in the last round
only.

2.3. Comparison of Truncated and Ordi-
nary Differential Characteristics for
PRESENT Cipher

The paper [16] gives us the differential char-
acteristic for 4 rounds of the cipher PRESENT
with the probability 2−18. The differential char-
acteristic have differences:

• 𝜔0 = 0491011102,
• 𝜔1 = 02810210281021,
• 𝜔2 = 0231071032,
• 𝜔3 = 0510104510108,
• 𝜔4 = 0491011102;

In this characteristic, the probability of the
last round differential is equal to 2−6. We
substitute the last round differential with a
truncated differential with output difference
𝜔′
4 = 0101110310111031?02. New the last round

truncated differential have high value of 𝑇𝐷𝑃 :

𝑇𝐷𝑃 𝑓 (𝜔3, 𝜔
′
4) = 0.09375 = 3× 2−3.

We did not change the differentials of the
previous rounds. So, we can achieve a higher
value of 𝑇𝐷𝐶𝑃 for the truncated differential
characteristic:

𝑇𝐷𝐶𝑃 𝑓 (4)
(𝜔0, 𝜔1, 𝜔2, 𝜔3, 𝜔

′
4) = 3× 2−15.

In this case, the value of 𝑇𝐷𝐶𝑃 = 3 · 2−15

is much larger than the value 2−18 of differential
characteristic achieved by ordinary differentials.
Note that only one symbol ”?” is used in the
last template. So, the effective probability is

𝑇𝐷𝑃

|∆(𝜔′
4)|

=
3 · 2−15

2
= 3 · 2−16,

which is still more than 2−18.
Table 2 shows examples of two truncated dif-

ferential characteristics 𝐶2 and 𝐶3 and compares
the value of 𝑇𝐷𝑃 with the differential charac-
teristic given in [16] — 𝐶1.

In the table 2 the following notations are
used:

• 𝛼0 = 0491011102

• 𝛼1 = 02810210281021
• 𝛼2 = 0231071032

• 𝛼3 = 0510104510108

• 𝛼4 = 0491011102

• 𝛽4 = 0101110310111031?02

• 𝛾1 = 0281021015?0121021
• 𝛾2 = 07107107107107103?031011?04

• 𝛾3 = (01)605(10)6013?03?02(10)41?102?0
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Table 2
Comparison of 4 round differential characteristics of the cipher PRESENT. 𝑇𝐷𝑃 (𝜔𝑖−1, 𝜔𝑖) is a one round
transition probability.

Round difference 𝐶1 𝑇𝐷𝑃 (𝜔𝑖−1, 𝜔𝑖) 𝐶2 𝑇𝐷𝑃 (𝜔𝑖−1, 𝜔𝑖) 𝐶3 𝑇𝐷𝑃 (𝜔𝑖−1, 𝜔𝑖)

𝜔0 𝛼0 — 𝛼0 — 𝛼0 —
𝜔1 𝛼1 2−4 𝛼1 2−4 𝛾1 3× 2−3

𝜔2 𝛼2 2−4 𝛼2 2−4 𝛾2 2−6

𝜔3 𝛼3 2−4 𝛼3 2−4 𝛾3 2−16

𝜔4 𝛼4 2−6 𝛽4 3× 2−3 — —

The differential characteristic 𝐶2 is con-
structed in such a way that the differential of
only the last round is changed compared to the
given characteristic 𝐶1. This allows 𝐶2 to obtain
a higher probability than 𝐶1.

The differential characteristic 𝐶3 is con-
structed using a different method: at each round,
the truncated differential with the highest 𝑇𝐷𝑃
value is selected. This leads to a better transition
probability only for the first round (when a trun-
cated differential with output mask contains ”?”
appears). But then the transition probabilities
become lower than in the ordinary differential
characteristic proposed in [16].

2.4. Improved Differential Characteristic
for PRESENT Cipher

In the paper [16], it was presented differen-
tial characteristic of 14 rounds PRESENT cipher
with probability 2−62. Truncated differentials
helps us to at least improve probability for 14
rounds differential characteristics.

We can construct truncated differential charac-
teristic as ordinary differential characteristic pro-
vided in [16], but instead of the last (14) round
ordinary differential we use truncated differential

(0491011102, 0281021012?02?0121021).

This truncated differential has 𝑇𝐷𝑃 value for
one round of PRESENT cipher encryption equal
to 2−2.83. Full constructed truncated differential
could be obtained as combination of presented
in the Table 3 and presented in [16].

In the Table 3 we denote
𝛼14 = 0281021012?02?0121021.

The 𝑇𝐷𝐶𝑃 of the 14 round truncated dif-
ferential characteristic of PRESENT is equal to
2−60.83. This value is greater then the probabil-
ity of ordinary differential characteristic provided
in [16] — 2−62. At the same time, truncated dif-

Table 3
The 14 round truncated differential characteristic of
PRESENT

Round diff. Mask 𝑇𝐷𝑃 (𝜔𝑖−1, 𝜔𝑖)

𝜔0 05130451308 —
...

...
...

𝜔13 0491011102 2−6

𝜔14 𝛼14 2−2.83

ferential characteristic we constructed allows to
estimate change of the same amount of bits as
ordinary. In our case, we have 2 unpredicted bits
(”?”) in the final mask. This means that proba-
bility of guessing the rest of the bits is equal to
2−(64−2) = 2−62. So, since the calculated value
of 𝑇𝐷𝐶𝑃 is less then 2−62, it also show us that
such truncated differential characteristic can be
useful for cryptanalysis.

3. Truncated Differentials for Functions
with More Complex Structure

The approach described above is not applica-
ble to ciphers whose structure uses more com-
plex linear transformations than bit permutations.
For example, Feistel-like ciphers. In this sec-
tion, we provide rules for applying the bitwise
addition (𝑋𝑂𝑅, ⊕) operation to ternary masks
we consider, which allows to adopt proposed ap-
proach to Feistel-like ciphers and SP-networks
with relatively simple linear layers. As example,
we construct truncated differential characteristic
for 7 rounds of LBlock cipher.

3.1. Definition of Bitwise Addition Opera-
tion (𝑋𝑂𝑅) for Ternary Masks

Since we use ternary masks (that contain ele-
ment ”?”) instead of bit vectors, it is impossible
to apply the usual bitwise modulo two addition
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operation to them. Therefore, we have to extend
bitwise addition to our ternary masks.

By definition of ternary mask, the element ”?”
means that both 0 and 1 could be at this posi-
tion in actual difference (actual bit vector). Sine
𝑋𝑂𝑅 operation is commutative, it is enough to
determine the interaction of each element with
each element of {0, 1, ?} without taking into ac-
count the order of elements. Let us consider
further examples:

1) 0 ⊕ ? =

{︃
0 ⊕ 0 = 0

0 ⊕ 1 = 1
⇒ ?;

2) 1 ⊕ ? =

{︃
1 ⊕ 0 = 1

1 ⊕ 1 = 0
⇒ ?;

3) ? ⊕ ? =

{︃
0 ⊕ ? = ?

1 ⊕ ? = ?
⇒ ?.

We can see that addition with the element ”?”
results in the element ”?”. So, it is possible to
define the bitwise addition operation for ternary
masks as it given in the Table 4.

Table 4
𝑋𝑂𝑅 operation for ternary masks

𝑥
𝑦

0 1 ?

0 0 1 ?
1 1 0 ?
? ? ? ?

3.2. Truncated Differential Characteris-
tics of LBlock Cipher

LBlock [12] is a 32 rounds lightweight block
cipher with the 64-bit block size and the struc-
ture of Feistel-like network. The 𝑖-th round of
LBlock is a transformation

(𝑋𝑖, 𝑋𝑖−1) → (𝐿(𝑋𝑖−1)⊕ 𝐹 (𝑋𝑖,𝐾𝑖), 𝑋𝑖),

where 𝐹 is the round function described in
Fig. 1, 𝐿 is the cyclic shift of 32-bit vectors
by 8 bits to the left, 𝐾𝑖 is a round subkey.

Internal function 𝐹 consists of confusion and
diffusion layers. Confusion layer consists of
eight 4-bit 𝑆-boxes (defined in [12]) in paral-
lel. Diffusion layer is defined as a permutation
of eight 4-bit words, described in Fig. 1.

Thus far, no comprehensive search for dif-
ferential characteristics has been conducted for

Figure 1: Internal function 𝐹 of LBlock cipher

LBlock. The existing researches only provide
upper bounds on the probabilities of differential
characteristics, which were obtained with rela-
tively coarse methods, primarily based on esti-
mating the number of active S-boxes [12].

Further we describe a truncated differential
characteristic for LBlock. Input difference is
0631. For each encryption round we select an
output mask with maximum value of 𝑇𝐷𝑃 . At
the same time, the output mask should have at
most one more ”?” element than the input mask.
If no output mask with at most one more ”?”
element was found, we select the output mask
with minimum number of ”?” elements. As a
result, we construct truncated differential char-
acteristic for 7 rounds of LBlock cipher with
𝑇𝐷𝐶𝑃 value 2−44 and 19 unpredicted bits (19
elements ”?” in the final output mask). Used
difference masks are:

• 𝛼0 = 0631,
• 𝛼1 = 0231040,
• 𝛼2 = 017?1036108,
• 𝛼3 = 015108?001021?1013,
• 𝛼4 = 05(10)2?1016(01)2?015108?00104,
• 𝛼5 = (100)201041??1?00130?013(10)2?108

08(01)2?,
• 𝛼6 = 1?00?1??11071?(01)2?0?1(10)211001
031041??1?00130?08,

• 𝛼7 =?4(1??)20013?01?1(10)203?1?001?00?
1??1071?(01)2?0?1(10)21.

Transition probabilities of truncated differential
characteristic is presented in the Table 5.

Constructed truncated differential characteris-
tic allow us to predict the values of 45 bits after
7 rounds of encryption. Also, our characteristic
is better than random guessing of 45 bits, be-
cause 2−45 is less than calculated 𝑇𝐷𝐶𝑃 value.

This demonstrates that proposed ternary
pattern-based approach can be used for crypt-
analysis of Feistel-like ciphers.

Application of Ternary Pattern-based Truncated Differential Cryptanalysis to Specific Block Ciphers
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Table 5
7 round LBlock truncated differential characteristic.
𝑇𝐷𝑃 (𝛼𝑖−1, 𝛼𝑖) is a (𝛼𝑖−1, 𝛼𝑖) differential transition
probability. 𝑇𝐷𝐶𝑃 is a (𝛼0, 𝛼𝑖) characteristic
transition probability.

Mask 𝑇𝐷𝑃 (𝛼𝑖−1, 𝛼𝑖) 𝑇𝐷𝐶𝑃

𝛼0 — —
𝛼1 1 1
𝛼2 2−1 2−1

𝛼3 2−4 2−5

𝛼4 2−6 2−11

𝛼5 2−6 2−17

𝛼6 2−12 2−29

𝛼7 2−15 2−44

Conclusions

In this paper, we examine the applicability of
the branch-and-bound method to the construc-
tion of truncated differentials and characteris-
tics, based on the previously proposed ternary
pattern-based approach and proposed earlier pa-
rameter 𝑇𝐷𝑃 which limits the probabilities of
truncated differentials from below. We demon-
strated that the branch-and-bound method is un-
suitable for constructing high-probability multi-
round truncated differentials in terms of usage
𝑇𝐷𝑃 parameter for evaluation the probabilities.
In general, the branch-and-bound method could
be used for constructing multi-round truncated
differentials, but it should be considered differ-
ent methods or parameters for evaluation of trun-
cated differentials probability. Despite this, the
branch-and-bound method remains viable for the
construction of truncated differential characteris-
tics in terms of parameter 𝑇𝐷𝑃 .

Furthermore, we extended the 𝑋𝑂𝑅 oper-
ation to ternary masks, enabling the applica-
tion of the proposed differential cryptanalysis
approach to a broader class of block ciphers, in-
cluding Feistel-like structures. This enhancement
expands the practical utility of the method, mak-
ing it applicable to both simple and moderately
complex cipher structures. By providing spe-
cific examples, such as the construction of trun-
cated differential characteristics for a 14-round
PRESENT cipher and a 7-round LBlock, we il-
lustrated the practicality of our approach. These
examples achieved a lower bound of probabil-
ity better than random guessing, showcasing the
method’s potential for real-world cryptanalysis.

The presented results demonstrate that the
proposed ternary pattern-based approach is not
only theoretically robust but also practically ap-
plicable to real bit-oriented ciphers. However,
the method’s full potential can only be realized
through further research. Future work should fo-
cus on developing advanced algorithms for con-
struction of high-probability truncated differential
characteristics and exploring their applications to
a wider range of cryptographic primitives.
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