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Abstract  
We suggest  the family of  ciphers 

s
En, n=2,3,.... with the space of plaintexts (Z*2

s
)

n
, s >1 such that 

the encryption map is the composition of kind G=G1A1G2A2 where Ai  are  the affine transformations 

from AGLn(Z2
s
) preserving the variety  (Z*2

s
)

n
 .  

Eulerian endomorphism Gi , i=1,2 of K[x1, x2,...., xn] moves xi to monomial term                  

ϻx1
d(1)

x2
 d(2)

...xn
d(n)

 ,  ϻϵ Z*2
s
 and act on  (Z*2

s
)

n
 as bijective transformations.  

The cipher is converted to a protocol supported cryptosystem. Protocols of Noncommutative 

Cryptography implemented on the platform of Eulerian endomorphism are used for the delivery of Gi 

and Ai from Alice to Bob. One can use twisted Diffie Hellman protocols which security rests on the 

complexity of Conjugacy Power problem or hidden tame homomorphism protocol which security 

rests of the word decomposition problem. Instead of delivery of Gi Alice and Bob can elaborate these 

transformations via the inverse twisted Diffie-Hellman protocol implemented on the platform of tame 

Eulerian transformations of (Z*2
s
)

n
. The cost of single protocol is O(n

3
) and the cost of the 

computation of the reimage of used nonlinear map is O(n
2
). So the verification of n

t
 , t≥1 signatures 

takes time O(n
t+2

). Instead of inverse twisted Diffie-Hellman protocol correspondents can use inverse 

hidden tame homomorphism protocol which rests on the complexity of word decomposition for tame 

Eulerian transformations. We use natural bijections between Z*2
s
 and Z2

s-1
, Z*2

s
 and finite field F2

s-1
 

and  Z*2
s
 and Boolean ring Bs-1 of order 2

s-1
 to modify the family of ciphers or cryptosystems via the 

change of AGLn(Z2
s
) for the AGLn(K), where K is one of the rings Z2

s-1
, F2

s-1
 and Bs-1. New ciphers are 

defined via the multiplications of two different commutative rings Z2
s
 and K. It does not allow to treat 

them as stream ciphers of multivariate cryptography and use corresponding cryptanalytic technique. 

Adversary is not able to use known cryptanalytical methods such as linearisation attacks. We 

discuss the option of change in the mentioned above  elements of AGLn(Z2
s
) or AGLn(K) for nonlinear 

multivariate transformation F of (Z2
s
)

n
 or K

n
 with the symmetric trapdoor accelerator T, i.e. the piece 

of information such that  the knowledge of T allows to compute the value F(p)  in arbitrarily chosen p 

ϵ P in time O(n
2
) and to solve the equation of kind F(x)=c  for each c from C in time O(n

 2
). 

 

Keywords: Symmetric stream ciphers, Digital signatures, Protocol based cryptosystems, 

Noncommutative Cryptography, Eulerian transformations 
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Introduction 

Quadratic multivariate public keys of Post-

Quantum Cryptography can provide ‘’short’’ 

digital signatures  for which the procedure of the 

verification of signature has complexity  O(n
3
) 

where n is the length of hash file of the 

documents. 

There is no a certified standard algorithm 

from these class. Well known Unbalance 

Rainbow like Oil and Vinegar algorithm was one 

of the candidates for NIST standardization but 

finally was rejected due to cryptanalytic results 

(see [1], [2] and further references). The research 

on the construction of new quadratic multivariate 

public keys  and their cryptanalytic investigation 

is continued [5]- [25]. 
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This paper is dedicated to alternative 

approach to construct new instruments for digital 

signatures. We suggest several new protocol 

based cryptosystems which security rest on the 

complexity of hard problems of 

Noncommutative Cryptography (see [3] and 

further references). The complexity of used 

protocol is O(n
3
). After the  execution of O(1) 

protocols  correspondents can use obtained 

digital signatures scheme as many times as they 

want. The cost of single signature is O(n
2
) where 

n is the length of the hash file of the 

document.The complexity of the verification of 

the  signatures  of O(n
t
) documents is O(n

t+2
). 

Section 1 contains some definitions of 

Multivariate Cryptography and Algebraic 

Geometry. It contains also descriptions of the 

semigroup of Eulerian transformations of K[x1, 

x2,…, xn] where K  is a commutative ring acting 

naturally on the variety (K*)
n
. Some bijective 

transformations of (K*)
n
 induced by Eulerian 

maps are also presented. Some  basic protocols 

of Noncommutative Cryptography are given 

there, These protocols can be implemented of the 

platforms of Eulerian transformations. 

Section 2 contains the description of ciphers 

and protocol based cryptosystems which used the 

compositions of kind E1AE2 where Ei , i=1,2 are 

Eulerian endomorphisms of Z2
s
[x1, x1,…, xn] and 

A is the special element of AGLn(Z2
s
) which 

preserves the variety (Z*2
s
)

n
.   

In the Section 3 we use fast computable 

natural bijection between Z*2
s
 and one of the ring 

K= Z2
s-1

, K=F2
s-1

 and K=Bs-1 which is the 

Boolean ring of order 2
s-1

 . We also discuss the 

idea of change transformation A of degree for 

nonlinear map F with the trapdoor accelerator 

which is a piece of information sufficient for the 

computation of the reimage of F in time O(n
2
). 

Last section is the conclusion. 

 

1. On the algorithms of Noncommutative 
Cryptography  implemented on the 
platforms of multivariate 
transformations 

 

1.1. Some definitions 

Classical multivariate public rule is a 

transformation of n-dimensional vector space 

over  finite field Fq which move vector (x1, x2, … 

, xn) to the tuple (g1(x1, x2, … , xn), g2(x1, x2, …, 

xn), ..., gn(x1, x2, …, xn)), where polynomials gi 

are given in their standard forms, i.e. lists of 

monomial terms in the lexicographical order. 

The degree of this transformation is the 

maximal value of deg(gi). Traditionally public 

rule has degree 2  or 3. Degree 2 is preferable 

(RUOV algorithm claimed to provide ‘’the 

shortest digital signatures’’). Let us consider the 

following important object of Noncommutative 

Cryptography. Affine Cremona Semigroup 
n
CS(K) is defined as endomorphism group of 

polynomial ring K[x1, x2,..., xn] over the 

commutative ring K. It is an important object of 

Algebraic Geometry (see [4]  about mathematics 

of Luigi Cremona - prominent figure in 

Algebraic Geometry in XIX). Element of the 

semigroup σ can be given via its values on 

variables, i. e. as the rule  xi→fi(x1, x2, …, xn), 

i=1, 2,…, n.  This rule induces the map σ’: (a1, 

a2,.., an)→(f1(a1, a2,.., an), f2(x1, x2, …, xn),…, 

fn(x1, x2,…, xn)) on the free module K
n
. 

Automorphisms of K[x1, x2,..., xn] form affine 

Cremona Group
 n

CG(K). In the case when K is a 

finite field or arithmetic ring Zm  of residues 

modulo m  elements of affine Cremona Groups 

or Semigroups are used in algorithms of 

Multivariate Cryptography. Results about 

subsemigroups S of 
n
CS(K) (or subgroups of 

n
CG(K) such that computation of  the 

superposition of arbitrary n elements can be 

completed for polynomial time can be used as so 

called platforms of Noncommutative 

Cryptography.  One class of such objects is 

formed by stable subsemigroups of degree k, i. e. 

subsemigroup S such that the maximal degree of 

its representative is bounded by the constant k. 

We will talk about Multiple Composition 

Computability (MCC) property. In the case of 

k=1 one can take AGLn(K), stable subsemigroups 

of degree k in 
 n

CG(K) exist for  each k, k=2, 

3,.... Affine Cremona semigroup 
n
CS(K) does not 

poses MCC. If one takes n quadratic elements is 

randomly their product with the probability close 

to 1 will have degree 2
n
. So the computation is 

not feasible. 
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EXAMPLE 1. Let us consider the totality 
 n
ES(K) 

of endomorphisms of K[x1, x2,..., xn] of kind 

x1 → ϻ1x1 
a(1,1)

 x2 
a(1,2)

 … xn 
a(1,n)

 ,  

x2 → ϻ2x1 
a(2,1)

 x2 
a(2,2)

 … xn 
a(2,n)

 , (1) 

… 

xm →ϻnx1 
a(n,1)

 x2 
a(n,2)

 … xn 
a(n,n)

  

where ϻi are regular elements of finite 

commutative ring K with the unity.   

It is easy to see that the complexity of the 

composition of two elements of kind (1) is O(n
3
). 

So the subsemigroup of Eulerian 

transformations  
n
ES(K) poses MCC 

property.Semigroups with MCC property can 

serve as ‘’platforms’’ for protocols of 

Noncommutative Cryptography. 

 

1.2. Twisted Diffie-Hellman protocol 

Let S be  an abstract semigroup which has 

some invertible elements.Alice and Bob share 

element gϵS and pair of invertible  elements h, h 
-

1 
from

 
this semigroup. Alice takes positive 

integers k(A) and  r(A)  and forms h
dr(A)

g
k(A)

h
r(A)

= 

gA. Bob takes k(B) and  r(B) and forms h
-

r(B)
g

k(B)
h

r(B)
= gB.  They exchange gA and gB and 

compute collision element X as 
A
g= h

-

r(A)
gB

k(A)
h

r(A)
 (Alice) and 

B
g= h

-r(B)
gA

k(B)
h

r(B)
  (Bob) 

respectively.  

The security of the scheme rest on the 

Conjugation Power Problem, adversary has to 

solve the problem h
-x
g

y
h

x
= b where b coincides 

with gB or gA. The complexity of the problem 

depends heavily on the choice of highly 

noncommutative platform S. 

 

1.3. Inverse twisted Diffie-Hellman 
protocol 

Let S be  an abstract noncommutative 

semigroup which has some invertible elements. 

Alice and Bob share element gϵS and pair of 

invertible  elements h, h 
-1 

from
 
this semigroup. 

Alice knows g
-1

. Alice takes positive integers 

k(A) and  d=r(A)  and forms h
-r(A)

g
-k(A)

h
r(A)

= gA. 

Bob takes  k(B) and  r(B) and forms h
-

r(B)
g

k(B)
h

r(B)
= gB.  

They exchange gA and gB and Alice computes   

X= h
-r(A)

(gB)
k(A)

 h
r(A)

 . Bob computes  Y = h
-

r(B)
(gA)

k(B)
 h

r(B)
 (Alice) and 

B
g= h

-p
gA

s
h

p
 

respectively. It is clear that Y=X
-1

 

The security of the scheme rest on the 

Conjugation Power Problem, adversary has to 

solve the problem h
-x
g

y
h

x
= b.  

The complexity of the problem depends 

heavily on the choice of highly noncommutative 

platform S. Let us take platform S=
 n
ES(K). 

 

REMARK. Protocols with the security based 

on the word decomposition problem,  i. e. task to 

decompose g ϵS into the word in given 

generators g1, g2, ...., gt, t >1 were presented 

during my previous talk. 

 

1.4. On some bijective transformation 
of (K*)n 

Let π and δ be two permutations on the set 

{1,2,..., n}. Let K be a commutative ring with 

unity which has nontrivial multiplicative group 

K* of order  d =|K*|>1 and n≥1. We define 

transformation 
A
JG(π, δ) of the variety (K*)

n
, 

where A is triangular matrix with positive integer 

entries 0≤a(i,j)≤d, i≥d defined by the following 

closed formula. 

 

yπ(1)=ϻ1xδ(1)
a(1,1)

 

yπ(2)= ϻ2xδ(1)
a(2,1)

 xδ(2)
a(2,2)

  

… 

yπ(n)= ϻnxδ(1)
a(n,1)

 xδ(2)
a(n,2)

 …xδ(n)
a(n,n)

   

where (a(1,1),d)=1, 

(a(2,2),d)=1,…,(a(n,n),d)=1. 

 

We refer to 
 A

JG(π, δ) as Jordan 

transformations Gauss multiplicative 

transformation or simply JG element. It is an 

invertible element of 
 n

ES(K) with the inverse of 

kind 
 B

JG(δ, π) such that a(i,i)b(i,i)=1 (mod d). 

Notice that in the case K= Zm  straightforward 

process of computation the inverse of JG 

element is connected with the factorization 

problem of integer m. If n=1 and m is a product 

of two large primes p and q the complexity of the 

problem is used in RSA public key algorithm. 

The idea to use composition of JG elements or 

their generalisations with injective maps of  K
n
 

into K
n
 was used in [27] (K=Zm) and [26] (K= 

Fq.). 
We say that  is tame Eulerian element over 

the commutative ring K.  if it is a composition of 

several Jordan Gauss multiplicative maps over 

commutative ring or field respectively.  It is clear 

that sends variable xi to a certain monomial 




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term. The decomposition of into product of 

Jordan Gauss  transformation allows us to find 

the solution of equations for x from 

 or (F*q) 
m
. So tame Eulerian 

transformations over Zm  or  Fq.  are special 

elements of 
n
EG(Zm) or  

n
EG(Fq) respectively. 

We refer to elements of 
n
ES(K) as 

multiplicative  Cremona element. Assume that 

the order of K is constant. As it follows from 

definition the computation of the value of 

element from 
n
ES(K) on the given element  of  K

n
   

is estimated by O(n
2
). The product of two 

multiplicative Cremona elements can be 

computed in time O(n
3
). 

We are not discussing here the complexity of 

computing the inverse for general element gϵ 

nEG(K) on Turing machine or Quantum 

computer  and problem finding the inverse for 

tame Eulerian elements. 

2. Some ciphers and cryptosystems   
based on Eulerian transformations over 
the Z2s 

The main idea of constructions of this section 

is based on the fact that the composition of the 

general element A of AGLn(K) and the general 

element G of 
n
EG(K) has nonpolynomial density.  

We can change element A for the general 

element F of  CGn(K).  In the case of K=Z2
s
, s>1 

we can slightly modify F  of kind  

xi →fi(x1, x2,..., xn) and get the bijective 

transformation *F   of  the variety (Z*2
s
)

n
 via the 

following procedure. 

We set the vector b=(b1, b2,...., bn) where 

bi=1 if fi(1, 1, ..., 1) mod 2=0 and bi=0 if  fi(1, 1, 

..., 1) mod 2=1 and form *F as transformation of 

(Z*2
s
)

n 
of kind x→F(x)+b.  It is easy to see that 

*F is a bijection.  

 

Scheme 1. 

If F has a polynomial density or F has a 

symmetric trapdoor accelerator T then 

computation of F(1, 1,...,1) can be completed in 

polynomial time. 

Assume that G from CGn(K) is formed as the 

composition of k=O(1) Jordan-Gauss 

transformations J1, J2,..., Jk   Alice and Bob share 

the information on T and the decomposition of G 

into Ji, i=1,2,..., k. 

They work with the space of plaintext (Z*2
s
)

n 

and use encryption procedure x → F*(x)=v, 

v→G(v)=y. 

The cost of the encryption/decryption 

procedure is O(n
 2
 ). 

Attacks of adversary with interception of 

multiple pairs of kind plaintext/corresponding 

ciphertext are unfeasible because of the 

nonpolynomial density of G(*F) 

We can obfuscate these scheme without  

theoretical change of encryption procedure via 

the use of  two Eulerian transformations.  

 

Symmetric cipher. Alice and Bob share two 

tame Eulerian transformations G1 and G2 given 

with their decompositions via Jordan-Gauss 

generators.  They also have invertible affine 

transformation  L from AGLn(Z2
s
). Alice and Bob 

use (F, T) , they can compute the value of *F in 

time O(n
 2
). 

They compute inverses (G1)
 -1

 and  (G2)
 -1

 of 

the Eulerian transformations and the matrix L
-1

. 

They work with the space of plaintexts (Z*2
s
)

 n
. 

Encryption procedure has the followings 

steps. 

S1. The transformation of the plaintext  (p1, 

p2,…., pn)=p to the 
1
p=G1(p)=(

 1
p1, 

1
p2,…., 

1
pn).

 

 
S2. The computation of *F(

1
p)=

 2
p. 

S3. The  computation of  
3
p = G2(

2
p). 

S4. The computation of  the ciphertext c as 

*L(
3
p).  

Decryption is a consecutive application of 

operators    *L
-1

 (c)=(
3
p), 

 
(G2)

 -1
(

3
p )=

2
p,   *F

-

1
(

2
p)=

1
p   and  the plaintext p=(

1
G)

 – 1 
(

1
p). 

Each procedure Si, i=1,2, 3,4  and its inverse 

have the complexity O(n
2
). So we have a 

symmetric cipher with the complexity O(n
2
). We 

refer to it in the simplest case of *FϵAGLn(Z2
s
) as 

Double Eulerian Cipher (DEC). 

 

REMARK 1. The encryption map is induced 

by multivariate transformation E of  (Z2
s
)

 n
. It has 

a linear degree of kind an, a>0 and 

nonpolynomial density which is the total number 

of monomial terms in all F(xi).  So linearization 

attacks on this cipher are unfeasible. 

Let us convert the Double Eulerian  Cipher to 

the protocol  based cryptosystems. 

The following definition can be useful. 

Let E be a function from the set P onto the set 

C. We say that the piece of information T is a 

symmetric trapdoor accelerator if the knowledge 

of T allows to compute the value F(p)  in 

arbitrarily chosen p ϵ P in time O(n
2
) and to 

solve the equation of kind F(x)=c  for each c 

from C in time O(n
 2
).  

For the encryption map E of the defined 

above cipher the decomposition of E into he 



bx )(
n

mZ )( *
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composition of G
 
1, *F ,   G2  L and together with 

the decomposition of each Gi into  the product of 

O(1) Jordan-Gauss transformation. 

 

CRYPTOSYSTEM DEC1.  Let us assume 

that Alice and Bob execute the twisted Diffie-

Hellman protocol  based on the platform 
n
ES( 

Z2
s
) two times. They elaborate elements Hi, i=1,2 

from this  semigroup.  

Additionally they conduct two sessions  the 

twisted Diffie Hellman protocol based on 

platform 
n+1

ES( Z2
s+1

) and elaborate the elements 
r
H, r=1.2 from this semigroup. 

Alice forms elements Gj, j=1, 2 as a products 

of O(1) Jordan-Gauss elements. She computes 

and keeps (Gj) 
–1

.  

Assume that Hi are maps of kind (1) with (ϻ1, 

ϻ2,…, ϻn )=(ϻ1(i), ϻ2(i),…, ϻn(i))  and a(j,k)=ai 

(j, k) and maps Gi are elements of kind (1) with 

(ϻ1, ϻ2,…, ϻn)=(α1(i),  α2(i), …, αn(i))  and 

a(j,k)=bi (j, k) mod 2
s-1

. 

Assume that 
r
H, r=1, 2 is element of kind (1) 

with (ϻ1, ϻ2,…, ϻn )=(
r
α1,  

r
α2, …, 

r
αn)  and a(i, 

k)=
r
b(j, k) mod 2

s
. Let 

r
B=(

r
b(i,j)). 

Alice sends parameters  ϻj(i)αj(i), j=1, 2, …, 

n, i=1,2  and ai(j, k) +ibi (j, k) mod 2
s-1

 , 

j=1,2,…,n, k=1,2,…,n, i=1,2. 

So Bob restores G1 and G2.  

Alice creates invertible matrices  M and N  

with entries from Z2
s
  . She sends M+

1
B and 

N+
2
B to Bob. So he restores the matrices M and 

N. 

Finally Alice selects the tuples (d1, d2,…, dn)   

and (t1, t2,…, tn)    from (Z2
s
 )

n
. She takes (

r
α1, 

r
α2,…, 

r
αn) of elements from  Z*2

s+1
. 

Alice considers the map ϭs=ϭ from Z2
s
  to 

Z*2
s+1

   such that ϭ(t mod 2
 s
) is 2t+1 mod 2

s+1
. It 

is a bijection. Let ϭ
-1

  be the inverse map from 

Z*2
s+1

   to Z2
s
 . She forms 

 (ϭ
-1

(
1
α1)+d1 mod 2

 s
,  ϭ

-1
(

1
α2)+d2  mod 2

 s
 , …, 

ϭ
-1

(
1
αn)+dn mod 2

 s
 ) from (Z2

s
)

n
 and sends it to 

Bob. He restores the tuple d=(d1, d2,…, dn). 

Similarly Alice sends 

(ϭ
-1

(
2
α1)+t1 mod 2

 s
,  ϭ

-1
(

2
α2)+t2  mod 2

 s
 , …, ϭ

-

1
(

2
αn)+tn mod 2

 s
 ) for the delivery t=(t1, t2,…, tn)  

to Bob. 

Alice and Bob share the transformations F: 

x→xM+d and L:x →xN+t . 

Thus Alice has  the symmetric trapdoor 

accelerator T of the described above symmetric 

cipher for herself. She delivers the partial 

information on T in the form of the tuple (G1, *F, 

G2, L). 

So Bob encrypts the plaintext from (Z*2
s
)

n
 via 

the consecutive use of G1, *F , G2 and *L. 

Alice has complete information on the 

trapdoor T. She converts the ciphertext to the 

plaintext via the consecutive use of *L
-1

  , (G2)
 -1

 , 

*F
-1

 and (G1)
 -1

. 

 

REMARK 1. The complexity of the protocol 

is O(n
3
). It is the cost of operation in 

n
ES(Z2

s
) or 

n
ES(Z2

s+1
). The encryption and decryption  

procedures cost O(n
2
). 

So encryption of O(n
 t
), t ≥1 documents costs 

O(n
t+2

). 

 

REMARK 2. The security of the 

cryptosystem rests on the security of the 

protocol. 

Highly nonlinear nature of the encryption and 

decryption maps which have linear degrees and 

nonpolynomial density makes unfeasible attacks 

of adversary with the interception of pairs of 

kind plaintext/corresponding ciphertext.  

The protocol uses Conjugation Power 

Problem. Adversary has decompose gA or gB into 

the word of kind   h
y
g

x
 h

-y
. 

 

REMARK 3. The following obfuscation is 

possible. Alice and Bob can use hidden tame 

homomorphisms protocol with the collision  

element of kind (1) (see [28]). The security of 

this protocol rests on the word decomposition 

problem for element g (gA or gB) from 
m
ES(Z2

s
) 

(or 
m
ES(Z2

s+1
), m>n, m=O(n). Adversary has to 

decompose g into the word in the alphabet of 

known generators g1, g2,...., gl, l>1. 

 

REMARK 4. Alice can  use this 

cryptosystem as instrument for digital signatures. 

 

CRYPTOSYSTEM DEC2.   

Let us assume that Alice selects invertible 

elements gi and hi, i=1, 2 for two inverse twisted 

Diffie-Hellman protocols. So correspondents use 

two sessions of this protocol with different 

generators from the platform 
 n
ES(Z2

s
). 

Alice gets two output elements X1 and X2 

while Bob gets their inverses Y1 and Y2. 

Alice and Bob also conduct two twisted 

Diffie-Hellman protocols with the generators 

from the  platform 
n
ES(Z2

s+1
) and elaborate the 

element 
r
H , r=1,2 from this semigroup given by 

the tuples (
r
 α1, 

r
 α2, …,

 r
 αn)ϵ(Z*2

s+1
)

 n
  and 

matrices 
r
 B with entries 

r
 b(i,j) from  Z2

s
.  

As in the previous cryptosystem Alice forms 

affine transformations F and L. She delivers 

them to Bob similarly to the case of 

cryptosystem 1.  

20

__________________________________________________________________________________On the cryptosystems based on two Eulerian transformations defined over the commutative ...



Bob writes his plaintext p and computes 
1
p=Y1(p),

2
p=*F(

1
p),  

3
p =Y2(

2
p). and c =*L(

3
p). 

He sends the ciphertext c to Alice. She computes 
3
p as  *L

-1
(c),  

2
p= X2(

3
p), 

 
1
p=*F

-1
(

2
p) and gets p as X1(

1
p). 

 

REMARK 5. The inverse Diffie-Hellman 

protocol with the security based on the 

complexity of Conjugacy Power problem can be 

changed for the inverse hidden tame 

homomorphisms protocol with the collision  

element of kind (1)  from the group 
n
EG(Z2

s
) (see 

[28]). 

It will be used for elaboration of X1, X2, Y1, 

Y2. For the delivery of F and L correspondents 

will use hidden tame homomorphism protocol 

mentioned in the Remark 2.  

The security of new cryptosystem rests on the 

word decomposition problem for element g from 
m
ES(Z2

s
) (or 

m
ES(Z2

s+1
), m>n, m=O(n)). 

 

 

3. Algebraic system with the binary 
operations defined in terms of  
different  commutative rings and its 
applications 

We consider some computational relations 

between Z2
s-1

  , Z*2
s
  and F2

s-1
. 

Recall that Z*2
s
  is the totality of odd residues 

modulo 2
 s

 . 

We already consider the map ϭs-1=ϭ from Z2
s-1

  

to Z*2
s
   such that ϭ(t mod 2

 s-1
) is 2t+1 mod 2

s
. It 

is a bijection. Let ϭ
-1

  be the inverse map from 

Z*2
s
   to Z2

s-1
 . 

Notice that elements from Z2
s-1

can be written 

as b=e0+e12+e2 2
 2

 +…+es-22
 s-2

 mod 2
 s-1

, where 

eiϵ{0,1}. Element of the finite field Fq, q=2
 s-1

 can 

be written as  g(x)=e0+e1x+e2x
2
+…+es-2x

s-2
 mod 

p(x) where p(x) is the irreducible  polynomial of 

degree s-1. Let π be the map such that π(b)=g(x) 

and π
 -1

 is the inverse map from Fq, q=2
 s-1

 onto 

Z2
s-1

. 

We consider the map ∆ from Fq onto (F2)
s-1

 

sending g(x) to Boolean vector (e0, e1,…, es-2) 

which we identify with the element of Boolean 

ring Bs-1 of size 2
s-1

. 

These bijective maps allow us to identify the 

set  Z2
s-1

  with Z*2
s
 and with F2

s-1
  and with Bs-1. 

So we can consider the following binary 

operation defined on the same set Z2
s-1

. The list 

contains the  multiplication and addition of 

residues modulo  2
 s-1

 , multiplication and 

addition of finite field F2
s-1

, multiplication of 

elements of Boolean ring Bs-1 and multiplication 

of odd residues modulo Z2
s
. 

Let us consider the map S of  (Z*2
s
 )

n
 onto 

(Z2
s-1

 )
n
 which sends (x1, x2,…, xn) to (ϭ

-1
(x1), ϭ

-

1
(x2)) ,…., ϭ

-1
(xn)).   We define the map P of  

(Z*2
s
)

n
 onto  (F2

s-1
 )

n
 which sends (x1, x2,…,xn) to 

(π(ϭ
-1

(x1)), π(ϭ
-1

(x2)) ,…., π(ϭ
-1

(xn)).   Let D be the 

map of (Z*2
s
 )

n
 onto (Bs-1 )

n
.   

Sending (x1, x2,…, xn) to (∆(π(ϭ
-1

(x1))),       

∆(π(ϭ
-1

(x2))) ,…., ∆(π(ϭ
-1

(xn)))). We assume that 

S
-1

, P
-1

 and D
-1

 are inverses of bijective maps S, 

P and D. 
Let us consider several modifications of the 

Double Eulerian Cipher. 

 

M1. Let K= Z2
s-1

  and 
n
F be the family of 

polynomial maps of K
n
 onto K

n
, i. e  

n
F(xi) is an 

element of K[x1, x2,…, xn]. Assume that 
n
F has a  

symmetric trapdoor accelerator T. 

Alice and Bob share (
n
F, T) together with the 

element L from AGLn(K) and Eulerian 

transformations  Gi, i=1,2 defined on (Z2
s
)

n
  with 

their Eulerian inverses  (Gi)
 -1

 for which Gi(Gi)
 -

1
(x)=x for x ϵ (Z*2

s
)

n
 . 

Then they can work with the family of 

ciphers with the space of plaintexts   (Z*2
s
)

n
  and 

use the encryption function G= G1S
 n

F (S
-1

)G2 S 

L S
-1

. The knowledge of T and the decomposition 

of G and G
-1

 into Gi,  
n
F,L,  S and their inverses  

allows to encrypt and decrypt in time O(n
 2
). 

 

M2. Let K=F2
s-1

  and 
n
F be the family of 

polynomial maps of K
n
 onto K

n
, i. e  

n
F(xi) is an 

element of K[x1, x2,…, xn]. Assume that 
n
F has a 

symmetric trapdoor accelerator T. 

Alice and Bob share (
n
F, T) together with 

LϵAGLn(K)  and Eulerian transformations  Gi, 

i=1,2 defined on (Z2
s
)

n
  with their Eulerian 

inverses  (Gi)
 -1

 for which Gi(Gi)
 -1

(x)=x for x ϵ 

(Z*2
s
)

n
 . 

Then they can work with the family of 

ciphers with the space of plaintexts   (Z*2
s
)

n
  and 

use the encryption function G= G1P 
n
F (P

-1
) G2 

P L(P
-1

). The knowledge of T and the 

decomposition of G and G
-1

 into Gi,  
n
F, L, P and 

their inverses  allows to encrypt and decrypt in 

time O(n
 2
). 

 

M3. Let K=Bs-1 and 
n
F be the family of 

polynomial maps of K
n
 onto K

n
, i. e  

n
F(xi) is an 

element of K[x1, x2,…, xn]. Assume that 
n
F has a 

symmetric  trapdoor accelerator T, Alice and Bob 

share (
n
F, T), LϵAGLn(K)   and Eulerian 

transformations  Gi, i=1,2 defined on (Z2
s
)

n
  with 
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their Eulerian inverses  (Gi)
-1

 for which Gi(Gi)
-

1
(x)=x for x ϵ (Z*2

s
)

n
 . 

Then they can work with the family of 

ciphers with the space of plaintexts   (Z*2
s
)

n
  and 

use the encryption function G= G1D
n
F (D

-1
) G2 

D L(D
-1

).  The knowledge of T and the 

decomposition of G and G
-1

 into ψi,  
n
F, P, L and 

their inverses  allows to encrypt and decrypt in 

time O(n
 2
). 

Some examples of systems of kind  Mi, i=1,2 

with the nonlinear symmetric trapdoor 

accelerators are given in the paper [35]. In some 

cases the conversion of these ciphers into 

protocol bases cryptosystem is also presented 

there. 

Below we consider  the case of scheme Mi 

when  F is simply an element of AGLn(K)  where 

K=Z2
s-1

, K=Z2
s-1

 or K=Bs-1. Its representation in a 

standard form is a symmetric trapdoor 

accelerator . In this case we refer to the cipher as 

Affine Double Eulerian cipher over K 

(ADEC(K)). 

In each case of  Mi we can convert the affine 

Double Eulerian cipher over the commutative 

ring K into two distinct  cryptosystems 

ADEC1(K) and ADEC2(K). 

If Alice and Bob use ADEC1(K) they use 

twisted Diffie-Hellman protocol based on the 

platform EG(Z2
s
). Two sessions of the protocol 

Alice uses for the delivery of G1 and G2 to Bob. 

Alice and Bob use other two session of this 

protocol with the same platform EG(Z2
s
) for the 

delivery of created by Alice two   affine 

transformations   of kind x→xM+d from 

AGLn(K). 

Assume that the collision element is given by 

the tuple (α1, α2,…, αn) with the  coordinates 

from Z*2
s
 and matrix B=(b(i, j)) with the entries 

from Z2
s-1

 .  

In the case of M1 Alice simply sends M+B 

and the tuple (d1, d2, ...., dn)+( ϭ
-1

 (α1), ϭ
-1

 (α2),…, 

ϭ
-1

(αn)) to Bob. He restores the affine 

transformation A. 

In the case of M2 Alice sends the matrix 

M+(π(b(i,j)) and the  tuple (d1, d2, ...., dn)+(π(ϭ
-1

 

(α1), π(ϭ
-1

 (α2), …, π(ϭ
-1

 (αn)) to Bob. He restore 

M and the tuple d.  

In the case of M3 Alice  sends the matrix 

M+(∆(π(b(i,j))) and the tuple(d1, d2, ...., 

dn)+(∆(π(ϭ
-1

 (α1)), ∆(π(ϭ
-1

(α2)), …, ∆(π(ϭ
-1

(αn)). 

Bob restores the transformation A from AGLn-

1(Bs-1). 

In ADEC2 Alice and Bob conduct the inverse 

twisted Diffie-Hellman protocol within the 

platform 
n
EG(Z2

s
) twice and elaborate mutually 

inverse maps Xi, Yi, i=1, 2 such that XiYi (x)=x 

for each x in (Z*2
s
)

 n
. They used twisted Diffie-

Hellman algorithm for the delivery of affine 

transformation A from AGLn(K) similarly to the 

case of ADEC1. 

So in the case of M1 Bob uses EB = Y1S
 
F(S

-

1
)Y2 S L S

-1
 together with the  decomposition into 

Yi, F, L and S for the encryption of plaintext p 

from  (Z*2
s-1

)
 n

. 

Alice decrypts it with her transformation  S L
-

1
 S

-1
 X2SA

-1
S

-1
X1=EA.  

Symmetrically Alice encrypts with her 

transformation EA and Bob decrypts with his EB. 

In the cases of M2  and M3 correspondents has 

to change the map S for P and D respectively. 

 

REMARK 6. 

In the algorithm ADEC1(K) there is an option 

to change twisted  Diffie-Hellman protocols for 

the hidden Tahoma protocols  with outputs from 
n
ES(Z2

s
) ( see [28]). 

In the case of ADEC2(K) one can change each 

inverse twisted Diffie-Hellman protocol for the 

two inverse hidden tame homomorphism 

protocols with the outputs in 
 n

EG(Z2
s
). It will be 

used for elaboration of X1, X2, Y1, Y2. The third  

protocol with the security based on the 

complexity of Conjugacy Power problem can be 

changed for the hidden tame homomorphisms 

protocol with the collision  element of kind (1)  

from the semigroup 
n
ES(Z2

s
) (see [28]). It will be 

used for the delivery of affine transformations F 

and L. 

After these changes we get cryptosystems 

which security rests on the word decomposition 

problem for elements of 
n
ES(Z2

s
). 

 

REMARK 7. 

Let K be one of the commutative  rings Z2
s
 ,  

Z2
s-1 

, F2
s-1 

 and Bs-1 , assume that   
 K

ψ : K
n
→K

n
 

be one of the maps I (identity map), S, P, D 

correspondingly. 

Assume that K and Q are distinct elements of 

the set { Z2
s
 ,  Z2

s-1 
, F2

s-1
, Bs-1}   we can consider 

the cipher DEC(K, Q) with the space of 

plaintexts  (Z*2
s
 )

n
 with the encryption procedure 

defined as the consecutive application of G1,
 K

ψ , 
 

FK,  
 K

ψ 
 -1

 G2 , 
Q
ψ

 
, LQ,,

 Q
ψ

-1
 

where FK  and LK are elements of AGLn(K) for  

K of cardinality 2
s-1

 and  FK=F*, LK=L* for F,L 

ϵAGLn(K) if K= Z2
s
 . 

The cipher DEC(K, Q) can be converted to 

protocol based cryptosystems ADECi(K, Q), 

i=1,2 similarly to the considered above cases 

M1, M2 and M3. 

22

__________________________________________________________________________________On the cryptosystems based on two Eulerian transformations defined over the commutative ...



Conclusions 

Quadratic multivariate public rules can be 

used for the verification of the signature in time 

O(n
3
) where n is the size of the hash file of the 

document. The search for such public key is 

continue. 

We are working on  alternative method of the 

use of asymmetric protocol based cryptosystem 

to sign the document. We suggest some protocols 

of Noncommutative Cryptography implemented 

on the platform of  Eulerian transformations of 

Z*2
s
[x1, x2,..., xn]  acting naturally on the variety 

(Z*2
s
)

n
, s >1. 

The density of Eulerian transformation, i.e the 

number of all monomial terms in the standard 

form is n. Degree of general Eulerian 

transformation is a linear function in variable n. 

The composition of Eulerian transformation G1 

and affine transformation A from AGLn(Z2
s
) has a 

linear degree and density O(n
2
 ). The 

composition of kind F=G1AG2 where G2 is 

another Eulerian transformation is different. 

Substitution of the polynomials of density n to 

each variable of monomial terms leads to effect 

of nonpolynomial density of F. So the standard 

form of F is not computable in polynomial time. 

We can use four sessions of one of the 

protocols of Noncommutative Cryptography   for 

the safe delivery of Eulerian maps G1, G2 and A1, 

A2 from Alice to her partner Bob. Alternatively 

Gi, i=1,2 can be elaborated via the protocol of 

inverse type. 

Selected affine transformations Ai  send  x to  

the element of kind  xM+b from  (Z*2
s
 )

 n
  where 

each column of the matrix M  has an odd number 

of  odd residues modulo 2
s
  and all coordinates of 

the tuple b are even residues. 

Eulerian endomorphism Gi , i=1,2  has to act 

on  (Z*2
s
)

n
 as bijective transformations.  Bob will 

use the map F=G1A1G2A2. 

The knowledge of the  decomposition of F 

into G1, G2 and Ai, i=1,2 allows Bob to compute 

the value of F on the tuple from (Z*2
s
)

n
 in time 

O(n
2
). Additional information on the 

decomposition of each Eulerian transformation 

into O(1) Jordan -Gauss elements allows Alice to 

compute the reimage of F. 

Attacks of adversary via the interceptions of 

hash value of documents and corresponding 

reimages are unfeasible because of the 

nonpolynomial density of F. So adversary has to 

concentrate on the  attempts to break the protocol 

with the security based on the complexity of 

Conjugacy Power Problem or Word 

decomposition problems for the platforms of 

Eulerian transformations. Reader can find recent 

cryptanalytical studies of Noncommutative 

Cryptography in papers [29]-[34]. 

We note that known cryptanalytical tools are 

not applicable for the investigation of proposed 

cryptosystem. Some methods to make protocol 

based digital signatutes with Eulerian 

transformations in the case of general 

commutative ring K with unity are considered in 

[36]. Examples of the change of affine 

transformation A for the nonlinear map with the 

trapdoor accelerator are described in [35]. 

In the Section  4 we use natural bijections 

between Z*2
s
 and Z2

s-1
, Z*2

s
 and finite field F2

s-1
 

and  Z*2
s
 and Boolean ring Bs-1 of order 2

s-1
 to 

modify the family of ciphers or cryptosystems 

from the Section 3  via the change of AGLn(Z*2
s
) 

for the AGL(K), where K is one of the rings  

Z2
s-1

, F2
s-1

 and Bs-1. New ciphers are defined 

via the algebraic systems with  the operations of 

multiplications of two different commutative 

rings Z2
s
 and K and the operation of addition in 

K.  It does not allow to treat them as stream 

ciphers of multivariate cryptography over the 

single commutative ring. That is why the 

adversary is not able to use known 

cryptanalytical methods such as linearisation 

attacks. 
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