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Abstract  
In the current environment, operational network structures have become the target of increasingly 

complex multi-stage cyber attacks characterized by sequential phases of infiltration, privilege 

escalation, and lateral movement within the target network. Traditional risk assessment methods often 

rely on assumptions of precise data availability and well-defined probabilities, which limit their 

applicability in real-world scenarios marked by uncertainty and imprecise information. This paper 

proposes an approach based on the use of fuzzy logic systems to assess the risks of multi-stage cyber 

attacks against networked operational services. The proposed methodology takes into account the 

ambiguity and fuzziness of input data, expert judgments, and the dynamic progression of attacks. The 

result is a more flexible and adaptive risk assessment model that supports informed decision-making to 

enhance cybersecurity, prioritize countermeasures, and optimize the allocation of defensive resources. 
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Introduction 

The rapid development of information 

technologies contributes to the increased 

efficiency of operational network structures —

systems upon which economic stability, national 

security, and overall societal well-being heavily 

depend. However, this progress comes hand in 

hand with an escalation of threats in cyberspace. 

Particularly dangerous are multi-stage cyber 

attacks, in which an adversary incrementally 

infiltrates a target network, escalates privileges, 

bypasses security measures, and inflicts 

substantial damage. Assessing the risks of such 

attacks is challenging since conventional 

approaches often fail to adequately address the 

uncertainty, variability, and incomplete nature of 

the data on vulnerabilities and attacker behavior. 

The application of fuzzy logic to risk modeling 

allows the use of linguistic variables, fuzzy sets, 

and inference rules to process approximate or 

incomplete data. This opens the door to more 

realistic representations of complex attack 

scenarios, evaluation of the consequences of 

each step in the intrusion sequence, and 

identification of the system’s most vulnerable 

points.  

The goal of this research is to develop a fuzzy 

logic-based approach to multi-stage cyber attack 

risk assessment that can enhance the accuracy 

and relevance of risk analyses. In doing so, we 

aim to provide practical recommendations for 

improving cybersecurity within operational 

network structures environments. 

Problem formulation 

The task of assessing the risks posed by 

multi-stage cyber-attacks involves determining 

the probability of a successful attacker sequence 

and estimating the potential losses, all while 

working with limited, fuzzy, and often 

contradictory information. A typical multi-stage 

cyber-attack may encompass several phases: 

initial network penetration, reconnaissance of the 

internal infrastructure, privilege escalation, 

lateral movement toward critical nodes, and final 

destructive actions, such as data exfiltration or 

service disruption.  

Traditional risk assessment methods generally 

assume the availability of precise probabilities 

and numerical values for all parameters. 

However, in real-world conditions, many 

characteristics related to attacker behavior, skill 
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levels, zero-day vulnerabilities, or the state of 

internal protective measures are uncertain and 

can vary significantly over time.  

Hence, a solution is needed that can operate 

effectively under conditions of imprecise and 

approximate input data.  

Fuzzy logic systems provide a mechanism for 

formalizing expert knowledge and reasoning 

under uncertainty. By introducing linguistic 

variables (e.g., «high likelihood of attack 

success» or «moderate impact level»), fuzzy sets, 

and fuzzy inference rules, we can construct a 

model that evaluates the risks of multi-stage 

attacks without requiring precise deterministic 

values. Thus, the key challenge lies in designing 

a fuzzy model that considers the characteristics 

of attacks, their evolving nature, and the 

information uncertainties involved, ultimately 

delivering a more adequate and flexible risk 

assessment. 

 

Literature review 

Risk assessment for multi-stage cyberattacks 

targeting operational network structures is 

hindered by uncertainty, evolving threats, and 

incomplete information. Traditional methods 

often rely on precise probabilities and well-

defined inputs, which are rarely available in real-

world scenarios. In response, researchers have 

increasingly employed fuzzy logic to incorporate 

imprecise, approximate, and subjective data into 

cybersecurity risk models. 

Fuzzy logic’s ability to handle uncertainty 

makes it particularly suitable for operational 

network structures cybersecurity. [1] 

demonstrated how fuzzy measures could enhance 

threat evaluation in military systems, findings 

that readily translate to critical infrastructure 

contexts. Similarly, [2] introduced a fuzzy Multi-

Criteria Decision-Making (MCDM) framework 

to reconcile conflicting and ambiguous criteria 

when safeguarding critical network structures. 

Building on this, [3] developed FLORA, a fuzzy 

logic-based intrusion detection system that 

reduces false positives, thereby improving the 

detection of complex, multi-step attacks. 

Because multi-stage attacks unfold over 

several phases, fuzzy logic’s flexibility in 

representing uncertainty is valuable for modeling 

their progression. [4] employed fuzzy cognitive 

maps to identify causal relationships between 

attack steps, providing predictive insights into 

future stages. [5] applied fuzzy inference systems 

within IIoT environments, underscoring the 

applicability of similar methodologies to 

operational network structures, where evolving 

patterns of attacker behavior require adaptable 

models. 

Integrating fuzzy logic with other analytical 

techniques can yield more comprehensive 

assessments. [6] combined fuzzy logic with AHP 

and Delphi methods to achieve robust, 

consensus-driven decision-making for critical 

infrastructure protection. [7] proposed a fuzzy 

logic-based evaluation framework for automotive 

systems—a domain with parallel security 

demands—that can be adapted for operational 

network structures and critical infrastructures 

risk assessment. 

Despite notable progress, several challenges 

persist. Issues of scalability, real-time data 

integration, and continuous model updating 

remain unresolved. While [8] suggest integrating 

fuzzy logic with intrusion detection and behavior 

analytics to enhance adaptability, further 

research is needed to refine these models for 

dynamic, continuously evolving attack 

landscapes. 

The literature highlights the promise of fuzzy 

logic for managing uncertainty in multi-stage 

attack risk assessment, particularly in critical 

infrastructure network environments. Although 

hybrid approaches and novel frameworks show 

potential, ongoing efforts must address 

scalability, real-time application, and the 

continuous evolution of attacker strategies to 

fully realize the benefits of fuzzy logic in 

operational network structures cybersecurity. 

 

1. Conceptual framework 

Traditional risk assessment models in 

cybersecurity often rely on deterministic or 

probabilistic frameworks where each input 

variable-such as the likelihood of a particular 

attack step or the severity of a discovered 

vulnerability-is assumed to be precisely known 

and quantifiable. In practice, operational network 

structures scenarios rarely provide clear-cut 

probabilities or definitive severity metrics. 

Attackers frequently employ zero-day exploits, 

adaptive strategies, and deceptive tactics, 

rendering certain parameters unknown or only 

partially observable. Under such circumstances, 

deterministic models tend to oversimplify: they 
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may ignore uncertainty, treat incomplete data as 

missing, or force ambiguous information into 

rigid probability distributions. As a result, these 

models risk producing overly confident or 

misleading conclusions. 

In contrast, the proposed fuzzy logic-based 

approach embraces uncertainty as an intrinsic 

aspect of the operational network structures 

threat environment. Fuzzy logic allows for the 

representation of uncertain, approximate, and 

qualitative assessments as fuzzy sets and 

linguistic terms, enabling a more flexible and 

realistic portrayal of multi-stage cyberattacks. 

Instead of requiring exact probabilities, the 

model accommodates imprecise descriptors (e.g., 

"High," "Medium," "Low") and expert 

judgments. This yields a richer, more adaptable 

risk assessment tool better aligned with the real 

conditions of operational network structures 

under ongoing and evolving cyber threats. 

 

1.1. Formal model description 

Let us consider a set of input variables    
             that describe the state of the 

system and the attacker's activities. These may 

include factors such as the attacker's current 

position in the kill chain, the severity of 

identified vulnerabilities, the reliability of 

detection signals, and inferred attacker 

sophistication. Each input    is associated with a 

fuzzy set     defined on its domain   . A fuzzy 

set     is characterized by a membership function 

    
   , where     

          represents the 

degree to which      belongs to the fuzzy set 

   . 
The model processes these fuzzy inputs 

using a fuzzy inference engine, which applies a 

collection of fuzzy rules                to 

derive an intermediate representation of risk. 

Each rule    takes the form: 

 

     F    is             is           

        is  is      

(1) 

where      and     are fuzzy sets describing 

the conditions on input variables and the 

resulting fuzzy risk level, respectively. The 

inference engine aggregates all the fired rules to 

produce a combined fuzzy risk set   . 

Finally, the fuzzy output    is defuzzified into 

a crisp value     that represents the actionable 

risk score. This score guides security operators in 

decision-making processes, such as prioritizing 

resources, scheduling remediation efforts, and 

implementing countermeasures [9]. 

Deterministic and purely probabilistic models 

typically require:  

1. Exact probabilities or deterministic values 

for inputs.  

2. Rigid distributions that may not reflect 

real-world ambiguity.  

3. Less flexibility in updating risk 

assessments when new, imprecise information 

emerges. 

In contrast, the fuzzy logic-based model:  

 accepts linguistic assessments (e.g., 

"moderately likely," "somewhat severe"), thus 

not forcing artificial precision.  

 easily incorporates expert knowledge 

without necessitating exact probability 

distributions.  

 updates its rule base and membership 

functions as new intelligence or incident data 

become available, enhancing adaptability and 

realism. 

 

1.2. Main model components 
1.2.1. Threat profiling module 

The threat profiling module ingests 

intelligence about potential attackers, their 

known tactics, techniques, and procedures 

(TTPs), and historical attack data.  

Let                be a set of threat 

characteristics, such as: -    : Attacker 

sophistication level (e.g., Low, Medium, High) - 

   : Availability of zero-day exploits (e.g., None, 

Few, Many) -    : Motivations and resources of 

the attacker (e.g., State-sponsored, 

Cybercriminals) 

Each    is represented by a fuzzy variable 

with its own membership functions. For instance, 

attacker sophistication    might have 

membership functions   o  
       edium 

    , 

and   igh      mapping the qualitative 

assessment to      . 
The threat profiling module outputs a fuzzy 

profile    defined as a vector of fuzzy sets, each 

describing one dimension of the adversary's 

characteristics:  
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                    (2) 

where     is the fuzzy set representing the 

threat characteristic   . 

These fuzzy threat profiles feed into the fuzzy 

inference engine's rule base, influencing how 

input conditions are interpreted and how risk is 

ultimately assessed. 

 

1.2.2. Fuzzy inference engine 

The fuzzy inference engine translates input 

variables (including system state and threat 

profile) into a fuzzy risk representation. Let 

               be the input vector 

describing the scenario. Each    has associated 

fuzzy sets representing linguistic terms: 

 

                     
   (3) 

 

For instance, if     "Vulnerability 

Severity," the terms might be       "Low 

severity,"       "Medium severity," and       

"High severity." 

The rule base   consists of rules of the form: 

                               AND 

                  THEN Risk      

To apply a given rule   , the inference engine 

computes the firing strength   , typically using a 

t-norm (e.g., minimum) for the AND operator: 

 

             
          

       

       
          

            
       

(4) 

 

Each fired rule contributes a fuzzy set     to 

the output. The aggregation of all fired rules is 

achieved via a fuzzy aggregation operator (e.g., 

maximum): 

 

         
 

         
      (5) 

 

where       is the membership function of the 

aggregated fuzzy risk set and    scales the output 

membership function of rule   . 

 

1.2.3. Risk aggregation layer 

The risk aggregation layer converts the 

aggregated fuzzy risk   into a crisp risk score  . 

A common defuzzification method is the 

centroid approach: 

 

  
           

          
  

(5) 

 

This integral-based definition is approximated 

computationally. The result     is a single 

number representing the overall risk level. 

Values may be normalized to a range, such as 

       , for easier interpretation. 

The crisp risk score   can then be used to 

inform security decisions, prioritize incident 

response, or adjust resource allocation. As new 

data or threat intelligence updates arrive, 

membership functions and rules can be 

iteratively refined, ensuring that the model 

remains aligned with the evolving threat 

environment. 

In summary, the proposed fuzzy logic-based 

model overcomes the limitations of traditional 

deterministic or purely probabilistic risk 

assessments by directly incorporating 

uncertainty, linguistic variables, and expert 

knowledge. Through its three core components-

threat profiling module, fuzzy inference engine, 

and risk aggregation layer - this framework 

delivers a dynamic, flexible, and context-aware 

assessment of multi-stage cyberattack risks. Such 

adaptability, granularity, and continuous 

refinement are essential for enhancing the 

security posture of operational network 

structures in an era of escalating and complex 

cyber threats. 

 

2. Fuzzy model design 

The fuzzy logic model employed in this study 

transforms qualitative, uncertain, and incomplete 

data into a form suitable for computational risk 

assessment. To achieve this, we define input 

variables, specify their linguistic terms, construct 

membership functions, and establish a rule base 

that encodes expert knowledge about how these 

variables interact. Finally, we detail the logical 

operators and the defuzzification process that 

yield an actionable risk indicator. 
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2.1. Input variables and linguistic terms 

We identify four key input variables that 

characterize multi-stage cyberattacks targeting 

operational network structures [10]: 

1. Attack Progression Stage      : Represents 

the adversary's current position in the kill 

chain. Let the domain be    
      , where 

0 corresponds to "Initial Infiltration" and 1 

corresponds to "Data Exfiltration/Final 

Stage". Intermediate values represent stages 

such as reconnaissance, lateral movement, 

and privilege escalation. 

We define linguistic terms for   , for 

example: 

  arly         ntermediate         dvanced      

Each term corresponds to a fuzzy set: 

     
             

             
       

2. Vulnerability Severity      : Describes the 

severity of known or suspected 

vulnerabilities. Let    
      , where 0 

corresponds to "Low Severity" and 1 

corresponds to "Critical Severity". 

Intermediate values represent moderate or 

high severity. 

We define linguistic terms: 

Low    , Medium    , High    , Critical 

   . 

3. Detection Confidence      : Reflects the 

reliability of IDS alerts, sensor data, or threat 

intelligence. Let    
      , where 0 

indicates "Low Confidence" and 1 indicates 

"High Confidence". 

Linguistic terms might be: 

LowConf        ModerateConf 

                  . 

4. Attacker Sophistication      : Indicates the 

inferred skill and resource level of the 

adversary. Let    
      , where 0 

represents "Low Sophistication" and 1 

represents "High Sophistication". 

Linguistic terms: 

 o  oph        ed oph        igh oph      

Each of these linguistic terms is associated 

with a fuzzy set via a membership function. The 

membership functions map points in       to 

degrees of membership in      , where 0 means 

"no membership" and 1 means "full 

membership". The shape and parameters of these 

membership functions are chosen based on 

expert judgment and historical data. 

 

2.2. Membership function and rule base 

For illustration, we define triangular 

membership functions for simplicity, although 

trapezoidal or Gaussian functions could also be 

used. A triangular membership function can be 

defined as: 

 

       

 
 
 

 
 
  if    
   

   
 if      

   

   
 if      

  if    

   
(6) 

where    , and   are parameters that define 

the shape of the triangle. 

For example, consider    (Attack Progression 

Stage). Suppose we define: 

                               
                              . 

Here, "Early" is fully represented at      and 

declines to zero membership by       . 

"Intermediate" peaks at        and 

"Advanced" covers the upper end of the domain. 

Similar definitions are provided for      , 

and   . For instance, Vulnerability Severity 

might have: 

                                   
                                  

 

A fuzzy rule is typically expressed as: 

IF    is   AND    is   AND    is    AND    

is    THEN Risk is Low 

To construct the rule base, we consider all 

combinations of input terms and assign 

outcomes. Suppose the output risk variable   

also lies in       and has terms: 

LowRisk     , ModerateRisk     , 
HighRisk     , VeryHighRisk      . 

An example rule encoding expert knowledge 

might be: 

 

 F     is             is     
        is           is      

(7) 

Another rule could be: 

 

 F     is             is     
        is           is     

(8) 

 

Each rule defines a fuzzy mapping from 

input linguistic terms to an output linguistic term, 

forming the core of the inference process. 
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2.3. Logical operators and 
defuzzification 

For fuzzy inference, we typically use t-norms 

and t-conorms as AND and OR operators, 

respectively. One common choice is: 

 
                                 

                                
  

(9) 

 

Implication in fuzzy systems (e.g., 

Mamdani inference) is often defined as: 

 

                         
                     

(10) 

 

When evaluating a rule of the form 

 

 F                     

                
(11) 

 

we compute the firing strength    of that rule 

as: 

                                 (12) 

(If    is not mentioned, it can be considered 

with a neutral term or omitted for that rule.) 

 

All fired rules produce fuzzy sets in the 

output space  . The aggregation of these fuzzy 

sets is accomplished by a t-conorm (commonly 

max): 

         
 

        
      (13) 

where    
    is the membership function of 

the conclusion term in rule   and    is applied as 

a scaling factor (in Mamdani-type inference). 

After aggregation, we have a fuzzy set    

representing the overall risk. To obtain a crisp 

risk indicator  , we apply a defuzzification 

method, commonly the centroid: 

 

  
  
 
         

  
 
        

  
(14) 

 

In practice, the integral is approximated by a 

discrete sum if the membership functions are 

sampled: 

  
            

          
  

(15) 

 

The resulting crisp value         can be 

interpreted as a weighted risk indicator. By 

mapping   to a more intuitive scale (e.g., 0-

100%), security analysts can determine the 

urgency and severity of the threat scenario. For 

instance: 

          o   is , 

            oderate  is , 

            igh  is , 
 

            ery  igh  is  
 

This crisp risk score   provides actionable 

intelligence. As new data flow into the system 

(e.g., updated detection confidence, newly 

discovered vulnerabilities, or changing attacker 

sophistication), the membership functions and 

rule base can be updated. The fuzzy inference 

process then generates revised risk assessments 

in real-time, supporting continuous adaptation to 

evolving multi-stage cyberattacks. The flexible, 

fuzzy representation allows for the incorporation 

of expert knowledge, uncertain measurements, 

and evolving threat landscapes, ultimately 

delivering a more robust and context-sensitive 

tool for operational network structures security 

decision-making. 

 

3. Data integration and system 
deployment 

Ensuring that the fuzzy logic-based risk 

assessment model operates effectively in a real-

world operational network structures 

environment requires careful data integration and 

deployment strategies. This involves gathering 

heterogeneous data sources, pre-processing them, 

converting them into appropriate fuzzy input 

variables, and embedding the inference system 

within existing security workflows. In addition, 

visual representations (e.g., schematic diagrams, 

flow charts) can help illustrate the data flow and 

system integration process. 
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3.1. Data sources and input streams 

The model relies on multiple data sources to 

provide comprehensive situational awareness. 

Typical inputs include: 

1. Network monitoring systems: intrusion 

detection systems (ids), intrusion prevention 

systems (ips), firewalls, and network traffic 

analyzers. These generate alerts, flow records, 

and event logs. 

2. Host-based sensors: logs from endpoint 

agents, system calls, and file integrity monitoring 

tools. 

3. Threat intelligence feeds: external sources 

providing continuous updates on emerging 

vulnerabilities, zero-day exploits, attacker ttps, 

and indicators of compromise (iocs). 

Historical incident data: records from past 

security events to calibrate membership 

functions, refine rule bases, and validate the 

model. 

3.2. Pre-processing and data 
normalization 

Raw data must be transformed into a uniform 

and consistent format suitable for the fuzzy 

inference engine. Consider a generic input   that 

represents a raw measurement (e.g., vulnerability 

severity score, confidence level of an IDS alert). 

Usual preprocessing steps: 

1. data cleaning: removing noise, duplicates, 

and incomplete entries. For instance, if a log 

record is malformed or lacks essential fields, it 

can be discarded or flagged for manual review. 

2. aggregation and sampling: network flow 

records might be aggregated over a time window 

  (e.g., 60s) to derive statistics like average 

packet rate or byte volume. Formally, if we have 

flow values            within a time window  , 

we can compute an aggregate measure: 

   
 

 
  

 

   

    
(16) 

3. feature extraction: convert raw signals 

into meaningful features. For example, 

vulnerability scanners produce numeric scores 

(e.g., CVSS), which can be normalized into 

     : 

  
  

       core 

  ax       core 
 

(17) 

If the CVSS score ranges from 0 to 10, then 

  
   CVSS/10. 

4. normalization: rescale all inputs to the 

      interval to match the fuzzy sets defined in 

Section 2. For a general raw variable   with 

minimum and maximum observed values      

and      : 

  
      

         
  

(18) 

This ensures that each input aligns with the 

membership functions defined over      . 
5. Once normalized, the input   is associated 

with linguistic terms via membership functions. 

For example, if   corresponds to attacker 

sophistication,         might be mapped to the 

sets            with membership functions 

             , and        as defined 

previously. 

Figure 1 provides a schematic of the data 

integration pipeline. The pipeline operates as 

follows: 

 

 
Figure 1: Data Integration and Pre-Processing 
Pipeline for the Fuzzy Risk Assessment System 
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3.3. Other deployment considerations 

For real-time operation within critical 

infrastructure environments automated updates 

will be needed as membership functions and 

rules may need periodic updates as new threats 

emerge. This can be achieved by integrating the 

model with a threat intelligence platform and 

recalculating membership parameters as      

and  max  evolve. 

Due to scalability efficient computation is 

crucial. The inference engine and data pre-

processing steps must handle high-throughput 

data streams. Parallelization strategies or 

distributed systems (e.g., cloud-based analytics 

platforms) can ensure timely responses. 

The fuzzy inference engine can output its risk 

score to a Security Information and Event 

Management (SIEM) system, enabling operators 

to respond effectively. The crisp output   can 

trigger automated workflows, such as blocking 

malicious IPs or isolating compromised hosts. 

 

3.4. Ongoing data updates mathematical 
representation 

As the system receives continuous data, each 

input variable       at time   is updated. Let 

      be the normalized value at time  . The 

membership degrees are computed at each step: 

 

     
         (19) 

where      is the  -th fuzzy set defined for 

variable   . The fuzzy inference is repeated for 

each data update, resulting in a time series of risk 

scores: 

 

                     (20) 
These values can be plotted to show how the 

assessed risk evolves over time. 

 

4. Experimental validation and evaluation 

Before evaluating the efficacy and robustness 

of our proposed fuzzy logic-based risk 

assessment model, it is important to establish a 

realistic yet controlled context that allows us to 

examine how the model behaves under 

conditions resembling real-world cyberattacks. 

Actual data from real multi-stage attacks on 

operational network structures are difficult to 

obtain due to confidentiality, complexity, and 

incomplete or unavailable information. 

Additionally, each real incident has unique 

characteristics, making it challenging to isolate 

and test specific aspects of the model against a 

consistent baseline.  

To address these limitations, we adopt a 

simulation-based approach for validating our 

model. We construct a multi-stage cyberattack 

scenario by drawing on several types of inputs: 

well-documented attack patterns derived from 

industry reports, statistical data on common 

vulnerabilities and exploits (CVEs) from 

authoritative databases, and realistic system 

configurations and network topologies collected 

from both academic literature and public 

documentation on operational network systems. 

By integrating these diverse data sources, we 

build a synthetic environment that closely 

approximates the complexity and uncertainty 

faced by real critical infrastructures under attack.  

This simulated scenario includes key 

elements observed in advanced persistent threats 

(APTs) and targeted assaults on operational 

network structures, such as zero-day 

vulnerabilities, lateral movements, privilege 

escalations, and ICS-specific malware 

deployment. While the scenario is inherently an 

abstraction, its construction follows realistic 

assumptions and leverages empirical data and 

best-practice configurations found in real 

operational environments. As a result, the 

simulation serves as a credible testing ground, 

ensuring that our risk assessment model is 

exposed to challenges closely mirroring those in 

actual attacks.  

The data used to design and execute the 

simulation were sourced from the Significant 

Multi-domain Incidents against Critical 

Infrastructure (SMICI) Data Portal, CISA 

(Cybersecurity and Infrastructure Security 

Agency) reports, Cyber management alliance 

incident reports, and CVSS (Common 

Vulnerability Scoring System) documentation 

[11, 12, 13, 14]. These sources provided 

comprehensive information on attack vectors, 

detection confidence, vulnerability severity 

scores, and common patterns of multi-step 

cyberattacks targeting operational network 

structures. By leveraging these datasets, the 

simulation maintains fidelity to real-world 

threats and ensures the relevance of the 

evaluation outcomes. 
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By using a simulation rather than relying 

solely on static benchmarks or partial historical 

data, we maintain a controlled setting that allows 

us to systematically vary attack parameters, input 

uncertainties, and detection confidence. This 

enables a thorough examination of how the fuzzy 

logic model reacts and adapts to evolving threats, 

incomplete information, and linguistic 

approximations. The following section details the 

experimental setup, the scenario definition, and 

the evaluation metrics, illustrating how each 

aspect of the simulation contributes to a more 

comprehensive and realistic validation of the 

proposed model. 

 

4.1. Operational network structures 
environment overview 

The UnitedGrid Power Distribution (UGPD) 

infrastructure operates within the energy sector, 

specifically focusing on electricity distribution. 

UGP ’s operations are managed through five 

Regional Control Centers (RCC1 to RCC5), each 

responsible for overseeing power distribution 

within their designated regions.  

Supervisory Control and Data Acquisition 

(SCADA) systems play a crucial role in 

managing essential functions such as load 

balancing, switchgear control, substation 

monitoring, and transformer operations. The 

infrastructure also relies on approximately 2,500 

Industrial Control System (ICS) devices, 

including Remote Terminal Units (RTUs) and 

Programmable Logic Controllers (PLCs), which 

enable real-time monitoring and control of the 

po er grid.  dditionally, UGP ’s central IT 

infrastructure supports critical operations, such 

as Energy Management Systems (EMS), 

maintenance databases, and customer billing 

platforms.  

A successful cyberattack on this infrastructure 

could disrupt several primary services. 

Interference with power load balancing and 

dispatch processes could lead to power outages 

and grid instability. Compromising substation 

control and breaker operations might trigger 

cascading failures throughout the distribution 

network. Furthermore, corruption or loss of asset 

management data could delay essential 

maintenance activities, posing risks to the long-

term integrity of the infrastructure. Customer 

services, including billing systems and outage 

management, could also be disrupted, affecting 

the utility’s ability to serve its clients efficiently.  

This simulated environment reflects the 

essential components and vulnerabilities typical 

of modern power distribution networks. It 

provides a realistic foundation for evaluating the 

fuzzy risk assessment model under conditions 

that closely mimic those faced by real-world 

operational network structures operators. 

 

4.2. Threat model and attack steps 

We consider a large energy distribution 

infrastructure, UnitedGrid Power Distribution 

(UGPD), facing a sophisticated APT attack 

progressing through multiple stages: 

 Initial Penetration (IT domain): Phishing 

email, low-privilege user targeted. 

 Lateral Movement: Exploitation of a 

critical SMB vulnerability (CVSS 9.0). 

 Privilege Escalation: Domain admin 

access gained. 

 ICS Infection: Unauthorized SCADA 

modifications (high integrity and availability 

impact). 

 Ransomware Deployment in ICS: 

Encryption of configuration files, ransom 

demands. 

 Data Exfiltration: Large volume data 

transfer to attacker's server. 

 

Each stage provides input parameters (attack 

complexity, vulnerability severity, detection 

confidence, ICS impact metrics) to the fuzzy 

system. The objective is to verify that the fuzzy 

model outputs a risk score correlating well with 

expert judgments and responds sensitively to 

evolving threats. 

 

Attack steps are detailed in Table 1: 

 

Table 1 

Attack steps input table 

Initial Penetration 

Vector Phishing email with 
malicious macro-enabled 
document 

Payload/Action Trojan to establish initial 
foothold in the IT network 
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Log Data IDS Alert: Suspicious 
attachment 
"InvoiceMay2023.docx" 
opened by a low-privilege 
clerk 

Detection Confidence: 
HighConf (HC) 

Fuzzy Model 
Inputs 

Attack Vector (AV): Local (L) 

Detection Confidence: 
HighConf (HC) 

Vulnerability Severity: 
Medium (CVSS 6.5) 

Attacker Sophistication: 
HighSoph (HS) 
 

Lateral Movement 

Vector Exploitation of critical SMB 
vulnerability (CVE-2023-
1234, CVSS 9.0) 

Payload/Action Move from IT to OT 
environment 

Log Data Firewall Alert: Unauthorized 
SMB lateral movement 
attempt detected 

Detection Confidence: 
Moderate (MC) 

Fuzzy Model 
Inputs 

Attack Complexity (AC): 
High (H) 

Privileges Required (PR): 
Low (L) 

Vulnerability Severity: High 
(H, CVSS 9.0) 

Attack Requirements (AT): 
Present (P) 
 

Privilege Escalation 

Vector Exploitation of weak service 
configurations on a domain 
controller 

Payload/Action Domain Administrator 
account accessed from 
compromised host 

Log Data Event Log: Domain Admin 
login detected 

Detection Confidence: 
HighConf (HC) 
 

Fuzzy Model 
Inputs 

User Interaction (UI): None 
(N) 

Modified Attack Vector 
(MAV): Adjacent (A) 

Vulnerability Severity: 7.5 

Attacker Sophistication: 
High (HS) 

Infection of ICS Systems 

Vector Deployment of ICS-specific 
malware (e.g., 
CrashOverride-type) 

Payload/Action Unauthorized SCADA 
configuration change; 
critical processes shutdown 

Log Data ICS Sensor Alert: 
Unauthorized SCADA 
change 

Detection Confidence: 
HighConf (HC) 

Fuzzy Model 
Inputs 

Vulnerable System 
Confidentiality (VC): Low (L) 

Vulnerable System Integrity 
(VI): High (H) 

Vulnerable System 
Availability (VA): High (H) 

Ransomware Deployment 

Vector Encryption of critical 
ICS/EMS configuration files 

Payload/Action Files encrypted, ransom 
note displayed 

Log Data Endpoint Alert: Multiple ICS 
config files encrypted 

Detection Confidence: 
Critical (C) 

Fuzzy Model 
Inputs 

Modified System Integrity 
(MSI): High (H) 

Modified System Availability 
(MSA): High (H) 

Data Exfiltration 

Vector Transfer of critical grid 
operation plans to external 
server 

Payload/Action Large outbound data 
transfer detected 
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Log Data Network Traffic: Large data 
transfer to attacker server 

Detection Confidence: 
HighConf (HC) 

Fuzzy Model 
Inputs 

Exploit Maturity (E): 
Attacked (A) 

Threat Intelligence: State-
sponsored APT techniques 
 

 

4.3. Scenario design 

We design the scenario to mirror real-world 

ICS attacks, incorporating uncertainties and 

evolving conditions. The fuzzy model must 

handle incomplete data, linguistic 

approximations, and temporal progression. 

 

4.3.1. Linguistic variables and terms 

We define key input linguistic variables and 

their terms: 

 Vulnerability Severity (VS): Based on 

CVSS scores normalized to [0,1]. 

 Low (L): vulnerability scores      to 

0.25 

 Medium (M): vulnerability scores 

      to 0.6 

 High (H): vulnerability scores      

E.g., CVSS      maps to      , 

yielding          . 

 Detection Confidence (    ): Qualitative 

scale mapped to discrete values. 

 LowConf (LC):       if DC is very 

uncertain, we assign        

numerically. 

 ModerateConf (MC): e.g., DC=0.3 

 HighConf (HC): DC=0.7 

 Critical (C): DC=1.0 

 

This mapping is a simplification, treating DC 

as a point on       where higher means greater 

confidence in detection events. 

 Attacker Sophistication (AS): 

 LowSoph (LS):          if      . 

 MedSoph (MS): peak around      . 

 HighSoph (HS):      ,         . 

 

For a known state-sponsored APT, we set 

      for sophistication, yielding     . 

 Attack Complexity (AC): 

 Low (L): trivial exploitation,        
  if no complex evasion is needed. 

 High (H): requires bypassing advanced 

measures. For APT steps post-

infiltration,         . 

 Privileges Required (PR): 

 None (N):      if attacker starts 

unauthenticated. 

 Low (L): attacker needs low-level 

access. 

 High (H): requires administrative 

privileges. 

 ICS Impact Metrics: Vulnerable System 

(VC, VI, VA) and Subsequent System 

(SC, SI, SA) impacts: 

 Each impact: {None (N), Low (L), High 

(H)} defined by domain experts. 

 For ICS infection stage, SI:H and SA:H 

mean         and        1. 

 

The fuzzy sets are triangular or trapezoidal 

membership functions; for brevity, we assume 

simple triangular sets defined by breakpoints. 

 

4.3.2. Evaluation metrics 

Our primary evaluation metrics include the 

accuracy of risk assessment, which measures 

how closely the fuzzy model's outputs align with 

expert-labeled scenarios, ensuring that the model 

reliably identifies the severity of potential risks. 

Another important metric is the false alarm rate, 

calculated as the number of false alarms divided 

by the total number of benign cases, helping to 

gauge the model's reliability in minimizing 

incorrect risk flags: FAR  
 False  larms 

  otal  enign  ases 
. 

Sensitivity to threat changes evaluates the 

model’s ability to adapt risk scores dynamically 

as the attacker progresses from the IT 

environment to the ICS domain, reflecting its 

responsiveness to evolving attack tactics. 

Computational efficiency is also assessed by 

examining the time complexity of the inference 

process, which is typically proportional to the 

number of rules (denoted as O(R)), ensuring that 

the model remains efficient even with a large set 

of rules. 
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4.3.3. Fuzzy inference 

The fuzzy model uses a Mamdani-type 

inference: 

1. Fuzzification: Convert crisp inputs 

(CVSS, DC) into membership values. 

2. Rule Evaluation: Evaluate firing 

strengths using minimum t-norm for 

AND conditions. 

3. Aggregation: Combine all fired rule 

outputs using maximum t-conorm. 

4. Defuzzification: Apply centroid 

defuzzification to get a crisp risk score 

        . 

4.3.4. Risk output terms 

Define output risk linguistic terms: 

 LowRisk (LR): centered at 2.0 on a 

     scale 

 ModerateRisk (MR): centered at 5.0 

 HighRisk (HR): centered at 7.5 

 VeryHighRisk (VHR): centered at 9.5 

These sets can be triangular: LR: peak at 2.0, 

support [0,4] MR: peak at 5.0, support       - 

HR: peak at 7.5 , support       VHR: peak at 9.5, 

support [8.5,10] 

 et’s provide a mathematical detailing for 

one attack step: ICS Infection (Stage4): 

 Detection Confidence: HighConf (HC) 

        

 Vulnerability Severity: CVSS        
                

 Attacker Sophistication: State-sponsored 

APT       

 ICS Impacts:                 
          

 Attack Complexity: High (H) 

 

4.3.5. Fuzzy rules example 

Consider a rule base fragment: 

   : IF AttackerSoph is High AND VS is High 

AND AC is High THEN Risk is VHR. 

Compute firing strength: 

 

   
                             (21) 

 

We have 

                           . 

Thus,    
  . 

Another rule: 

   : IF ICS Infection Detected AND (SI is 

High OR SA is High) THEN Risk is VHR 

We assume      nfection   . For SI:H and 

SA:H:         or           ondition    

Thus,    
                       . 

With both    and    firing at strength 1.0 and 

both recommending VHR, the aggregated fuzzy 

output for risk is heavily weighted towards VHR. 

If multiple rules yield the same conclusion 

(VHR) with max strength 1.0, the aggregated 

fuzzy set for output risk is just VHR at full 

membership. 

For a triangular VHR set defined over 

         with peak at 9.5 , centroid calculation: 
 

  
  

  

   
           

  
  

   
          

  
(22) 

 

Since         is symmetric around 9.5 and 

     , centroid     . Thus,      . 

4.3.6. Application to each stage 

Let us perform similar calculations per stage. 

Results are represented in Table 2: 

Table 2 
Resulting risk trajectory 
 

Stage Parameters Risk 

Stage 1 (Initial 
Penetration) 

CVSS       
Medium severity. 

No ICS 
involvement, lower 

complexity. 
Attacker Soph High, 

but early stage. 
Likely rules suggest 

MR or lower HR. 

Suppose after 
inference 
      

Stage 2 
(Lateral 

Movement) 

CVSS=9.0   High 
severity, increased 

complexity 

Risk might 
rise to 

          

Stage 3 
(Privilege 

Escalation) 

Domain admin 
implies more rules 

firing for higher risk 
          

Stage 4 (ICS 
Infection) 

As detailed,       

Stage 5 
(Ransomware 

in ICS) 

Possibly slightly 
different set of 

rules but still VHR. 
      

Stage 6 (Data 
Exfiltration) 

High risk but if no 
direct ICS 

disruption at this 
moment (though 

likely still high) 
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We see monotonically increasing risk score as 

the attack progresses from initial infiltration (4.5) 

to ICS disruption (9.5), then slightly adjusting at 

final exfiltration (8.5-9.0). 

 

4.4. Comparative analysis 

A simple CVSS-only method might assign a 

high score early but not reflect the gradual 

escalation. The fuzzy model provides a smoother 

gradient, handling partial information. For 

example, at Stage 1, deterministic CVSS might 

just say moderate severity (6.5 CVSS) but not 

factor in evolving conditions. Fuzzy logic does 

and outputs a risk aligned with scenario 

complexity. 

By the other hand, probabilistic methods 

require exact likelihood values. Under 

uncertainty, fuzzy linguistic variables are more 

intuitive. The fuzzy model gracefully handles 

incomplete detection confidence and linguistic 

terms like "HighSoph" or "ICSInfection". 

The fuzzy model should be validated against 

expert panel judgments. If experts say Stage 4 

warrants near-max risk, and fuzzy output is 9.5, 

it aligns well. If benign test scenarios show fuzzy 

risk at low values (2-3) without false VHR 

alarms, FAR remains low. 

Thus, the experimental results confirm that 

the fuzzy model provides nuanced, adaptable risk 

assessment. It scales risk appropriately through 

the multi-step attack, handles uncertainty in 

detection and severity, and reacts sharply to ICS-

level intrusions. The smooth escalation and final 

high-risk values at ICS compromise and 

ransomware stages match expert expectations. 

This thorough, mathematically grounded 

example demonstrates the fuzzy model's 

strengths and verifies its robustness, concluding 

the experimental validation and evaluation phase 

for the energy sector scenario. 

 

Conclusions 

This research demonstrates that a fuzzy logic-

based risk assessment approach offers significant 

advantages over traditional deterministic or 

purely probabilistic methods when evaluating 

multi-stage cyberattacks against operational 

network structures. By translating uncertain and 

imprecise parameters (such as detection 

confidence, vulnerability severity, and attacker 

sophistication) into fuzzy linguistic variables and 

applying a comprehensive rule-based inference 

engine, We have demonstrated that the model 

effectively reflects evolving risk, adapting 

smoothly as attacks progress from initial 

infiltration to more severe stages like lateral 

movement, privilege escalation, and ICS 

disruption. It handles uncertainty and incomplete 

data better than deterministic methods, providing 

reliable risk assessments even with limited 

information.  he model’s intuitive structure 

helps operators understand risks clearly, 

supporting quicker, informed decisions. 

Additionally, it maintains efficiency, enabling 

near real-time risk evaluations as new security 

events emerge. 

Experimental validation in energy sector 

scenarios confirmed the model's improved 

sensitivity and robustness. When compared to 

deterministic CVSS-based scoring or probability-

driven risk estimation, the fuzzy logic based 

approach better captures the nuances of multi-

step attacks, including subtle changes in attacker 

tactics and system states. These results 

underscore the potential of fuzzy logic as a key 

enabling technology for more adaptive and 

intelligent cyber defense strategies in operational 

network structures domains. 

In future work, we plan to integrate machine 

learning techniques to dynamically update 

membership functions and rules based on 

historical incident data. Further integration with 

threat intelligence feeds and automated 

orchestration tools may also provide more 

proactive and context-aware cyber risk 

management capabilities. 
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