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Abstract
In this paper, we consider differential-rotational cryptanalysis, or RX-analysis, and its application to
certain classes of ARX-cryptosystems. We provide exact analytical expressions for the RX-differential
probabilities with arbitrary rotation values for modular addition. These expressions are described in
terms of differential probabilities, which allows comparison of ordinary and RX-differential behaviour.
Furthermore, we consider two operations that approximate modular addition, one of which comes
from the NORX cipher. For these operations, we also provide exact analytical expressions for the
RX-differential probabilities.
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Introduction

ARX-cryptosystems (from “Add-Rotation-
XOR”) use only elementary operations within
their structure, namely additions modulo 2𝑛, bit-
wise additions (XOR) and rotations. This ap-
proach enables the construction of highly effi-
cient lightweight algorithms that are well-suited
to low-resource devices.

In some cases, modular addition is replaced
with some purely logical, non-linear mappings
in order to achieve even greater efficiency.
Such systems are informally designated as LRX-
cryptosystems, where “L” stands for “Logic”.
Among the most famous LRX-cryptosystems are
ciphers Simon [1], NORX [2] and Ascon [3].

Rotational cryptanalysis, first proposed by
D. Khovratovich and I. Nikolić [4, 5], is a spe-
cific type of cryptanalysis that is exclusively
applicable to ARX-cryptosystems. In this ap-
proach, an analyst considers so-called “rotation
pairs” (pairs of messages, where the second mes-
sage is a rotation of the first) and studies their
transformations during the encryption process. It
was found that the addition with constants (ei-
ther modular or bitwise) effectively counters ro-
tational cryptanalysis.

In [6], T. Ashur and Y. Liu proposed a com-
bined approach, known as differential-rotational
cryptanalysis (or RX-analysis), which integrates
the ideas of both differential and rotational crypt-
analysis. In this approach, rotation pairs are
combined with ordinary differentials in what are
known as RX-differentials. This allows to easily
skip the bitwise addition with arbitrary constants
in cryptanalysis. T. Ashur and Y. Liu provided
an explicit formula for the RX-differential proba-
bilities with rotation by one bit for modular addi-
tion, and set up a 7-round differential-rotational
distinguisher on cipher Speck32/64 [1]. Sub-
sequently, a number of successful differential-
rotational attacks were proposed on modified Si-
mon and Simeck [7], Alzette and CHAM [8],
SipHash [9] etc.

In this work, we examine the properties of
the RX-differentials with arbitrary rotation val-
ues. We present explicit expressions for the
RX-differential probabilities of modular addi-
tion, which generalize the known results. We
demonstrate the connection between correspond-
ing ordinary and RX-differentials and compare
their probabilities. Additionally, two operations
which approximate modular addition with rel-
atively short LRX-construction are considered.
One of these operations was proposed in the
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NORX cipher [2]. We present explicit expres-
sions of RX-differential probabilities for these
operations as well.

The rest of the paper is organized as follows.
Section 1 provides all essential terms and defini-
tions. Section 2 describes the notion of enhanced
differential probabilities for modular addition and
their algebraic properties. Section 3 provides ex-
plicit expressions of the RX-differential probabil-
ities for modular addition and arbitrary rotation
values, along with a complete proof of their cor-
rectness. It also compares the behaviour of ordi-
nary and RX-differential probabilities. Section 4
provides explicit expressions of RX-differential
probabilities for LRX-mappings that approximate
modular addition.

1. Notation and Definitions

In this work, we will use the following nota-
tion:

𝑉𝑛 — the set of all binary vectors of
length 𝑛: 𝑉𝑛 = {0, 1};

𝑥 ∈ 𝑉𝑛 — an arbitrary 𝑛-bit binary vector

𝑥 = (𝑥𝑛−1, 𝑥𝑛−2, . . . , 𝑥1, 𝑥0), 𝑥𝑖 ∈ {0, 1};
𝑥[𝑘] — a sub-vector of last 𝑘 bits of 𝑥:

𝑥[𝑘] = (𝑥𝑘−1, 𝑥𝑘−2, . . . , 𝑥1, 𝑥0).

⊕ — the addition modulo 2 (XOR);
+ — the addition modulo 2𝑡 when the argu-

ments are 𝑡-bit vectors, or the usual addition of
numbers;

𝑥𝑟 or 𝑥 ≪ 𝑟 — the rotation (cyclic shift) of
the vector 𝑥 by 𝑟 bits to the left:

𝑥𝑟 = (𝑥𝑛−𝑟−1, . . . , 𝑥0, 𝑥𝑛−1, . . . , 𝑥𝑛−𝑟);

𝑥−𝑟 or 𝑥 ≫ 𝑟 — the rotation of the vector
𝑥 by 𝑟 bits to the right; note that 𝑥−𝑟 ≡ 𝑥𝑛−𝑟;

𝑥 ≪ 𝑟 — the non-cyclic shift of the vector
𝑥 by 𝑟 bits to the left:

𝑥 ≪ 𝑟 = (𝑥𝑛−𝑟−1, . . . , 𝑥0, 0, . . . , 0);

𝑥 ∨ 𝑦 — the bitwise logical OR;
𝑥 ∧ 𝑦 or 𝑥𝑦 — the bitwise logical AND;
𝑥 — the inversion of all bits of 𝑥;
𝑤𝑡(𝑥) — the weight of the vector 𝑥 (the

number of ones);
𝑒𝑞(𝑥, 𝑦, 𝑧) — a function of bit equality: if

𝑒 = 𝑒𝑞(𝑥, 𝑦, 𝑧) then 𝑒𝑖 = 1 iff 𝑥𝑖 = 𝑦𝑖 = 𝑧𝑖; this
function can be calculated as

𝑒𝑞(𝑥, 𝑦, 𝑧) = (𝑥⊕ 𝑦)(𝑥⊕ 𝑧);

𝜇𝑛,𝑟 — an 𝑛-bit vector with zeros at posi-
tions 𝑖 = 0 and 𝑖 = 𝑟 and ones at all other
positions; it is computed as 𝜇𝑛,𝑟 = 2𝑛 − 2𝑟 − 2.

The sequence of carry bits (𝑐𝑖), 𝑐𝑖 = 𝑐𝑖(𝑥, 𝑦),
associated with the addition of two vectors
𝑥, 𝑦 ∈ 𝑉𝑛 is defined as

𝑐0 = 0, 𝑐𝑖+1 = 𝑥𝑖𝑦𝑖 ⊕ 𝑥𝑖𝑐𝑖 ⊕ 𝑦𝑖𝑐𝑖, 𝑖 ≥ 0.

We also define a vector function over carry bits

𝑐𝑎𝑟𝑟𝑦(𝑥, 𝑦) = (𝑐𝑛−1, . . . , 𝑐1, 𝑐0) =

= (𝑥+ 𝑦)⊕ 𝑥⊕ 𝑦.

Note that the highest carry bit 𝑐𝑛 is not included
in 𝑐𝑎𝑟𝑟𝑦(𝑥, 𝑦) because it is outside the vector.

Consider a mapping 𝑓 : 𝑉𝑛 × 𝑉𝑛 → 𝑉𝑛. The
differential 𝜔 = (𝛼, 𝛽 → 𝛾) of 𝑓 is an arbitrary
triplet of vectors 𝛼, 𝛽, 𝛾 ∈ 𝑉𝑛, representing the
differences between two inputs (outputs) of 𝑓
w.r.t. XOR operation ⊕. The probability of the
differential 𝜔 = (𝛼, 𝛽 → 𝛾) of 𝑓 is defined as

𝑥𝑑𝑝𝑓 (𝜔) = 𝑥𝑑𝑝𝑓 (𝛼, 𝛽 → 𝛾) =

= Pr𝑥,𝑦{𝑓(𝑥⊕ 𝛼, 𝑦 ⊕ 𝛽) = 𝑓(𝑥, 𝑦)⊕ 𝛾}.
In the case 𝑓(𝑥, 𝑦) = (𝑥+𝑦) mod 2𝑛 H. Lip-

maa and Sh. Moriai [10] found an explicit an-
alytical expression for differential probabilities.
Their main result is given in the next theorem.

Theorem 1 ([10]). For arbitrary vectors
𝛼, 𝛽, 𝛾 ∈ 𝑉𝑛, the probability of the differential
(𝛼, 𝛽 → 𝛾) of the modular addition can be evalu-
ated as follows:

1) 𝑥𝑑𝑝+(𝛼, 𝛽 → 𝛾) ̸= 0 iff

𝑒 ∧ (𝛼⊕ 𝛽 ⊕ 𝛾 ⊕ (𝛼 ≪ 1)) = 0;

2) if 𝑥𝑑𝑝+(𝛼, 𝛽 → 𝛾) ̸= 0, then

𝑥𝑑𝑝+(𝛼, 𝛽 → 𝛾) = 2−𝑤𝑡(𝑒),

where 𝑒 = 𝑒𝑞(𝛼 ≪ 1, 𝛽 ≪ 1, 𝛾 ≪ 1).

In [6] T. Ashur and Y. Liu generalized the
concept of differential to unify differential and
rotational cryptanalysis in one setting. We intro-
duce it in the following manner. RX-differential
(𝑟;𝛼, 𝛽 → 𝛾) of the mapping 𝑓 combines a pair
of rotation ((𝑥, 𝑦), (𝑥𝑟, 𝑦𝑟)) with a differential
(𝛼, 𝛽 → 𝛾). The probability of the RX-differential
(𝑟;𝛼, 𝛽 → 𝛾) for the mapping 𝑓 is defined as

𝑥𝑟𝑝𝑓 (𝑟;𝛼, 𝛽 → 𝛾) =

= Pr𝑥,𝑦{𝑓(𝑥𝑟 ⊕𝛼, 𝑦𝑟 ⊕𝛽) = (𝑓(𝑥, 𝑦))𝑟 ⊕ 𝛾}.

We use the term 𝑥𝑟𝑝𝑓 from “XOR-rotational
probability of 𝑓” similarly to the term 𝑥𝑑𝑝𝑓
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(“XOR-differential probability of 𝑓”). The or-
dinary differential (𝛼, 𝛽 → 𝛾) and the RX-
differential (𝑟;𝛼, 𝛽 → 𝛾) are referred to as the
corresponding differentials.

The probabilities 𝑥𝑑𝑝𝑓 characterize the secu-
rity against differential cryptanalysis, and 𝑥𝑟𝑝𝑓 —
against differential-rotational cryptanalysis.

2. Enhanced Differential Probabilities of
the Modular Addition

In this section, we consider some non-trivial
differential properties of modular addition. With
each differential 𝜔 = (𝛼, 𝛽 → 𝛾) ∈ (𝑉𝑛)

3 we
associate vectors

𝑒 = 𝑒(𝜔) = 𝑒𝑞(𝛼 ≪ 1, 𝛽 ≪ 1, 𝛾 ≪ 1),

𝛿 = 𝛿(𝜔) = 𝛼⊕ 𝛽 ⊕ 𝛾,

𝜏 = 𝜏(𝜔) = 𝛼⊕ 𝛽 ⊕ 𝛾 ⊕ (𝛼 ≪ 1).

Define enhanced probabilities 𝑥𝑑𝑝+𝜅,𝜎(𝜔) of
the differential 𝜔 for the modular addition:

𝑥𝑑𝑝+𝜅,𝜎(𝜔) =

= Pr𝑥,𝑦{(𝑥⊕ 𝛼) + (𝑦 ⊕ 𝛽) = (𝑥+ 𝑦 + 𝜅)⊕ 𝛾,

𝑐𝑛(𝑥⊕ 𝛼, 𝑦 ⊕ 𝛽) = 𝜎},
where 𝜅, 𝜎 ∈ {0, 1}.

The motivation is as follows. As claimed
in [10], the probability 𝑥𝑑𝑝+(𝜔) can be ex-
pressed as

𝑥𝑑𝑝+(𝜔) = Pr𝑥,𝑦{𝑐′ ⊕ 𝑐 = 𝛼⊕ 𝛽 ⊕ 𝛾},
where the vectors 𝑐 and 𝑐′ are carry bit vectors:

𝑐′ = 𝑐𝑎𝑟𝑟𝑦(𝑥⊕ 𝛼, 𝑦 ⊕ 𝛽),

𝑐 = 𝑐𝑎𝑟𝑟𝑦(𝑥, 𝑦).

The parameter 𝜎 in enhanced probability allows
to split 𝑥𝑑𝑝+ into two subcases by the value of
the highest carry bit 𝑐′𝑛, actually 𝑐′𝑛 = 𝜎. On
the other hand, the parameter 𝜅 allows to ex-
tend the notion of 𝑥𝑑𝑝+ to the case when the
sequence of carry bits (𝑐𝑖) starts from the value
𝑐0 = 𝜅. Both parameters affect the differential-
rotational properties of modular addition, as will
be demonstrated subsequently.

From the definition we have

𝑥𝑑𝑝+(𝜔) = 𝑥𝑑𝑝+0,0(𝜔) + 𝑥𝑑𝑝+0,1(𝜔).

In particular, if 𝑥𝑑𝑝+(𝜔) is zero, then both
𝑥𝑑𝑝+0,0(𝜔) and 𝑥𝑑𝑝+0,1(𝜔) are also zero. But find-
ing the exact value of these enhanced probabili-
ties is a much more complicated problem.

Theorem 2. For each 𝜎 ∈ {0, 1} and arbitrary
differential 𝜔 = (𝛼, 𝛽 → 𝛾), the following equality
holds:

𝑥𝑑𝑝+0,𝜎(𝜔) =

⎧⎪⎨⎪⎩
1

2
𝑥𝑑𝑝+(𝜔), 𝛿 ̸= 0,

1

2
𝑥𝑑𝑝+(𝜔) +

(−1)𝜎

2𝑛+1
, 𝛿 = 0,

where 𝛿 = 𝛼⊕ 𝛽 ⊕ 𝛾.

Proof. For a given differential
𝜔 = (𝛼, 𝛽 → 𝛾) introduce three sequences
of partial differential probabilities:

𝑈𝑘 = 𝑥𝑑𝑝+(𝛼[𝑘], 𝛽[𝑘] → 𝛾[𝑘]),

𝑃𝑘 = 𝑥𝑑𝑝+0,0(𝛼[𝑘], 𝛽[𝑘] → 𝛾[𝑘]),

𝑄𝑘 = 𝑥𝑑𝑝+0,1(𝛼[𝑘], 𝛽[𝑘] → 𝛾[𝑘]),

where 𝑘 = 0, 1, . . . , 𝑛− 1.
From Theorem 1 it follows that the sequence

𝑈𝑘 satisfies a recurrence relation

𝑈𝑘 =

⎧⎪⎨⎪⎩
0, (𝑒𝑘 = 1) ∧ (𝜏𝑘 = 1);

𝑈𝑘−1, (𝑒𝑘 = 1) ∧ (𝜏𝑘 = 0);
1
2𝑈𝑘−1, (𝑒𝑘 = 0);

with an initial value of 𝑈0 = 1. Let’s find sim-
ilar recurrence relations for 𝑃𝑘 and 𝑄𝑘. Note
that 𝑐′0 = 0 by definition, so the initial values
for these sequences are 𝑃0 = 1, 𝑄0 = 0.

Consider bit by bit the event “𝑐′ ⊕ 𝑐 = 𝛿”,
where 𝑐′ = 𝑐𝑎𝑟𝑟𝑦(𝑥⊕𝛼, 𝑦⊕𝛽), 𝑐 = 𝑐𝑎𝑟𝑟𝑦(𝑥, 𝑦).
By the definition of carry bits, after some alge-
braic transformations, we have

𝑘 = 0: 0 = 𝛿0;

𝑘 > 0: 𝛼𝑘−1𝑦𝑘−1 ⊕ 𝛽𝑘−1𝑥𝑘−1 ⊕ 𝛼𝑘−1𝛽𝑘−1⊕
⊕ (𝑥𝑘−1 ⊕ 𝑦𝑘−1)∆𝑐𝑘−1⊕
⊕ (𝛼𝑘−1 ⊕ 𝛽𝑘−1)𝑐

′
𝑘−1 = 𝛿𝑘,

where ∆𝑐𝑘−1 = 𝑐′𝑘−1 ⊕ 𝑐𝑘−1 = 𝛿𝑘−1 by the con-
dition of the considered event. Therefore, the
probability that the given equation is satisfied
for 𝑘 > 0 is affected by the independent val-
ues 𝑥𝑘−1, 𝑦𝑘−1 and 𝑐′𝑘−1, and the probability
Pr{𝑐′𝑘−1 = 𝜎} is equal to 𝑃𝑘−1 or 𝑄𝑘−1, de-
pending on the 𝜎.

The Tables 1 and 2 give all variants of the
equation ∆𝑐𝑘 = 𝛿𝑘, their probabilities and the
distribution of the carry bit 𝑐′𝑘 for all possible
values of 𝛼𝑘−1, 𝛽𝑘−1, 𝛿𝑘−1 and 𝛿𝑘.

From these tables we can derive mutual re-
currences for 𝑃𝑘 and 𝑄𝑘, divided by three cases:
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Table 1
Table of equations and probabilities for the event Δ𝑐𝑘 = 𝛿𝑘 in the case 𝑐′𝑘−1 = 0.

𝛼𝑘−1 𝛽𝑘−1 𝛿𝑘−1 equation Pr{Δ𝑐𝑘=𝛿𝑘},
𝛿𝑘=0

Pr{𝑐′𝑘=0},
𝛿𝑘=0

Pr{Δ𝑐𝑘=𝛿𝑘},
𝛿𝑘=1

Pr{𝑐′𝑘=0},
𝛿𝑘=1

0 0 0 0 = 𝛿𝑘 1 3
4 0 0

0 0 1 𝑥𝑘 ⊕ 𝑦𝑘 = 𝛿𝑘
1
2

1
2

1
2 1

0 1 0 𝑥𝑘 = 𝛿𝑘
1
2 1 1

2
1
2

0 1 1 𝑦𝑘 = 𝛿𝑘
1
2

1
2

1
2 1

1 0 0 𝑦𝑘 = 𝛿𝑘
1
2 1 1

2
1
2

1 0 1 𝑥𝑘 = 𝛿𝑘
1
2

1
2

1
2 1

1 1 0 𝑥𝑘 ⊕ 𝑦𝑘 ⊕ 1 = 𝛿𝑘
1
2 1 1

2
1
2

1 1 1 1 = 𝛿𝑘 0 0 1 3
4

Table 2
Table of equations and probabilities for the event Δ𝑐𝑘 = 𝛿𝑘 in the case 𝑐′𝑘−1 = 1.

𝛼𝑘−1 𝛽𝑘−1 𝛿𝑘−1 equation Pr{Δ𝑐𝑘=𝛿𝑘},
𝛿𝑘=0

Pr{𝑐′𝑘=0},
𝛿𝑘=0

Pr{Δ𝑐𝑘=𝛿𝑘},
𝛿𝑘=1

Pr{𝑐′𝑘=0},
𝛿𝑘=1

0 0 0 0 = 𝛿𝑘 1 1
4 0 0

0 0 1 𝑥𝑘 ⊕ 𝑦𝑘 = 𝛿𝑘
1
2

1
2

1
2 0

0 1 0 𝑥𝑘 = 𝛿𝑘
1
2 0 1

2
1
2

0 1 1 𝑦𝑘 = 𝛿𝑘
1
2

1
2

1
2 0

1 0 0 𝑦𝑘 = 𝛿𝑘
1
2 0 1

2
1
2

1 0 1 𝑥𝑘 = 𝛿𝑘
1
2

1
2

1
2 0

1 1 0 𝑥𝑘 ⊕ 𝑦𝑘 ⊕ 1 = 𝛿𝑘
1
2 0 1

2
1
2

1 1 1 1 = 𝛿𝑘 0 0 1 1
4

(1) if (𝑒𝑘 = 1) ∧ (𝜏𝑘 = 1), then

𝑃𝑘 = 0, 𝑄𝑘 = 0.

(2) if (𝑒𝑘 = 1) ∧ (𝜏𝑘 = 0), then

𝑃𝑘 =
3

4
𝑃𝑘−1 +

1

4
𝑄𝑘−1,

𝑄𝑘 =
1

4
𝑃𝑘−1 +

3

4
𝑄𝑘−1;

(3) if (𝑒𝑘 = 0), then

𝑃𝑘 =
𝑞𝑘
2
𝑃𝑘−1 +

(1− 𝑞𝑘)

2
𝑄𝑘−1,

𝑄𝑘 =
(1− 𝑞𝑘)

2
𝑃𝑘−1 +

𝑞𝑘
2
𝑄𝑘−1,

where 𝑞𝑘 = 2−(𝛿𝑘⊕𝛿𝑘−1). From these recurrences
we can obtain the statement of the theorem by
induction.

It should first be noted that 𝑥𝑑𝑝+(𝜔) cannot
be zero if 𝛿 = 0 (or, equivalently, 𝛾 = 𝛼⊕ 𝛽):
from Theorem 1 it’s easy to see that the proba-
bility 𝑥𝑝𝑑+(𝛼, 𝛽 → 𝛼⊕𝛽) is non-zero for every

𝛼 and 𝛽. Thus, if 𝑥𝑑𝑝+(𝜔) = 0, then 𝛿 ̸= 0
and 𝑥𝑑𝑝+0,𝜎(𝜔) = 0 = 1

2𝑥𝑑𝑝
+(𝜔), which is the

statement of the theorem. For the remainder
of this proof, we will consider only the case
𝑥𝑑𝑝+(𝜔) ̸= 0.

Since 𝑒0 = 1 in every case, if 𝑥𝑑𝑝+(𝜔) ̸= 0
then 𝛿0 = 0, so the initial values must corre-
spond to the second case of the theorem’s state-
ment. Indeed,

𝑃0 = 1 =
1

2
𝑈0 +

1

2
,

𝑄0 = 0 =
1

2
𝑈0 −

1

2
.

This forms the basis of induction.
Consider the case 𝛿[𝑘] = 0. By the assump-

tion of induction we have

𝑃𝑘−1 =
1

2
𝑈𝑘−1 +

1

2𝑘
,

𝑄𝑘−1 =
1

2
𝑈𝑘−1 −

1

2𝑘
.
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Then in the case (2) we have 𝑈𝑘 = 𝑈𝑘−1 and

𝑃𝑘 =
3

4
𝑃𝑘−1 +

1

4
𝑄𝑘−1 =

=
3

4

(︂
1

2
𝑈𝑘−1 +

1

2𝑘

)︂
+

1

4

(︂
1

2
𝑈𝑘−1 −

1

2𝑘

)︂
=

=
1

2
𝑈𝑘 +

1

2𝑘+1
,

From the other hand, in the case (3) we have
𝑞𝑘 = 1, 𝑈𝑘 = 1

2𝑈𝑘−1 and

𝑃𝑘 =
1

2
𝑃𝑘−1 =

1

2

(︂
1

2
𝑈𝑘−1 +

1

2𝑘

)︂
=

=
1

2
𝑈𝑘 +

1

2𝑘+1
,

Thereby, in both cases

𝑄𝑘 = 𝑈𝑘 − 𝑃𝑘 =
1

2
𝑈𝑘 −

1

2𝑘+1
.

So, if 𝛿 = 0, it follows by induction that

𝑥𝑑𝑝+0,𝜎(𝜔) =
1

2
𝑥𝑑𝑝+(𝜔) +

(−1)𝜎

2𝑛+1
.

Then consider the case 𝛿[𝑘 − 1] = 0,
𝛿𝑘 = 1. Note that in this case the condition
(𝑒𝑘 = 1) ∧ (𝜏𝑘 = 0) is unachievable: if 𝑒𝑘 = 1,
then 𝛼𝑘−1 = 𝛽𝑘−1 = 𝛾𝑘−1 and, since 𝛿𝑘−1 = 0,
all these bits are zero. But then the value
𝜏𝑘 = 𝛿𝑘 ⊕ 𝛼𝑘−1 = 1. Thus, under these con-
ditions the case (2) of recurrence has no place.
Then in the case (3) we have 𝑞𝑘 = 1

2 and

𝑃𝑘 =
1

4
𝑃𝑘−1 +

1

4
𝑄𝑘−1 =

=
1

4

(︂
1

2
𝑈𝑘−1 +

1

2𝑘

)︂
+

1

4

(︂
1

2
𝑈𝑘−1 −

1

2𝑘

)︂
=

=
1

4
𝑈𝑘−1 =

1

2
𝑈𝑘,

and, from this point,

𝑃𝑘 = 𝑄𝑘 =
1

2
𝑈𝑘.

Therefore, in the case (2) for any 𝑡 > 𝑘 we
have

𝑃𝑡 =
3

4
𝑃𝑡−1 +

1

4
𝑄𝑡−1 =

=
3

4
· 1
2
𝑈𝑡−1 +

1

4
· 1
2
𝑈𝑡−1 =

1

2
𝑈𝑡,

and in the case (3)

𝑃𝑡 =
𝑞𝑡
2
𝑃𝑡−1 +

(1− 𝑞𝑡)

2
𝑄𝑡−1 =

=
𝑞𝑡
2
· 1
2
𝑈𝑡−1 +

(1− 𝑞𝑘)

2
· 1
2
𝑈𝑡−1 =

1

2
𝑈𝑡.

So, if 𝛿 ̸= 0, it follows by induction that

𝑥𝑑𝑝+0,𝜎(𝜔) =
1

2
𝑥𝑑𝑝+(𝜔),

which concludes the proof. □

The Theorem 2 completely describes the
probabilities 𝑥𝑑𝑝+0,𝜎. Further we demonstrate
that the probabilities 𝑥𝑑𝑝+1,𝜎 are also expressed
through 𝑥𝑑𝑝+0,𝜎. The properties of 𝑥𝑑𝑝+1,𝜎 are
given in the next two lemmas.

For each differential 𝜔 = (𝛼, 𝛽 → 𝛾), we
denote the differential of the bitwise inverted
differences as 𝜔: 𝜔 = (𝛼, 𝛽 → 𝛾).

Lemma 1. For arbitrary 𝛼, 𝛽, 𝛾 ∈ 𝑉𝑛 the fol-
lowing equality holds:

Pr𝑥,𝑦{(𝑥⊕ 𝛼) + (𝑦 ⊕ 𝛽) = (𝑥+ 𝑦 + 1)⊕ 𝛾} =

= 𝑥𝑑𝑝+(𝛼, 𝛽 → 𝛾).

Moreover, for each 𝜎 ∈ {0, 1}
𝑥𝑑𝑝+1,𝜎(𝛼, 𝛽 → 𝛾) = 𝑥𝑑𝑝+0,𝜎(𝛼, 𝛽 → 𝛾).

Proof.1 It’s well known that the following
equalities hold for any 𝑢, 𝑣 ∈ 𝑉𝑛 [11]:

𝑢⊕ 𝑣 = 𝑢⊕ 𝑣,

𝑢⊕ 𝑣 = 𝑢⊕ 𝑣,

𝑢 = −𝑢− 1.

Therefore, we have

𝑥+ 𝑦 + 1 = −(𝑥+ 𝑦)− 1 = (𝑥+ 𝑦).

With these facts, we can perform equivalent
transformations:

(𝑥⊕ 𝛼) + (𝑦 ⊕ 𝛽) = (𝑥+ 𝑦 + 1)⊕ 𝛾,

(𝑥⊕ 𝛼) + (𝑦 ⊕ 𝛽) = (𝑥+ 𝑦 + 1)⊕ 𝛾,

(𝑥⊕ 𝛼) + (𝑦 ⊕ 𝛽) = (𝑥+ 𝑦)⊕ 𝛾,

(𝑥⊕ 𝛼) + (𝑦 ⊕ 𝛽) = (𝑥+ 𝑦)⊕ 𝛾,

where the probability of the last equality is,
by definition, equal to 𝑥𝑑𝑝+(𝛼, 𝛽 → 𝛾). This
proves the first statement of the lemma.

The second statement comes from the previ-
ous arguments and an equation

𝑐𝑛(𝑥⊕ 𝛼, 𝑦 ⊕ 𝛽) = 𝑐𝑛(𝑥⊕ 𝛼, 𝑦 ⊕ 𝛽),

so a substitution of the variables 𝑥, 𝑦 ↦→ 𝑥, 𝑦
transforms the internal event of 𝑥𝑑𝑝+1,𝜎(𝜔) into
the internal event of 𝑥𝑑𝑝+0,𝜎(𝜔).

1 The first statement of Lemma 1 was introduced in [6,
Lemma 2] in a different formulation and with a completely
different proof.
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Lemma 2. For any 𝜔 = (𝛼, 𝛽 → 𝛾) only one
of the differentials 𝜔 and 𝜔 can have a non-zero
𝑥𝑑𝑝+ probability.

Proof. From Theorem 1 we know that
𝑥𝑑𝑝+(𝜔) ̸= 0 iff 𝑒(𝜔) ∧ 𝜏(𝜔) = 0. But if 𝛼𝑖 =
𝛽𝑖 = 𝛾𝑖, then 𝛼𝑖 = 𝛽𝑖 = 𝛾𝑖, so 𝑒(𝜔)𝑖 = 𝑒(𝜔)𝑖
for all 𝑖. Similarly, 𝜏(𝜔)𝑖 = 𝜏(𝜔)𝑖 for all 𝑖 > 0.
For 𝑖 = 0 we have

𝜏(𝜔)0 = 𝛼0 ⊕ 𝛽0 ⊕ 𝛾0,

𝜏(𝜔)0 = 𝛼0 ⊕ 𝛽0 ⊕ 𝛾0 =

= 𝛼0 ⊕ 𝛽0 ⊕ 𝛾0 ⊕ 1 = 𝜏(𝜔)0 ⊕ 1.

Since 𝑒(𝜔)0 = 𝑒(𝜔)0 = 1, we can conclude
that the vectors 𝑒(𝜔) ∧ 𝜏(𝜔) and 𝑒(𝜔) ∧ 𝜏(𝜔)
differ only at position 𝑖 = 0, where they equal
to 𝛼0⊕𝛽0⊕𝛾0 and 𝛼0 ⊕ 𝛽0 ⊕ 𝛾0 ⊕ 1 respectively.
So we have the following cases:

𝛼0 ⊕ 𝛽0 = 𝛾0 ⇒ 𝑥𝑑𝑝+(𝜔) = 0,

𝛼0 ⊕ 𝛽0 ̸= 𝛾0 ⇒ 𝑥𝑑𝑝+(𝜔) = 0.

This concludes the proof.

Corollary 1. For any differential
𝜔 = (𝛼, 𝛽 → 𝛾) and 𝜎 ∈ {0, 1} only one
of the probabilities 𝑥𝑑𝑝+0,𝜎(𝜔) and 𝑥𝑑𝑝+1,𝜎(𝜔)
can be non-zero. In particular, 𝑥𝑑𝑝+𝜅,𝜎(𝜔) = 0 if
𝛿0 = 𝜅⊕ 1.

Proof. This follows directly from Lemma 2
and the equality 𝑥𝑑𝑝+1,𝜎(𝜔) = 𝑥𝑑𝑝+0,𝜎(𝜔) (from
Lemma 1).

In summary, we can transform the enhanced
probability 𝑥𝑑𝑝+1,𝜎 into the probability 𝑥𝑑𝑝+0,𝜎 of
the bitwise inverse differential, and we can effi-
ciently compute all probabilities 𝑥𝑑𝑝+0,𝜎 with the
Theorems 2 and 1.

3. The Probabilities of RX-differentials
for the Modular Addition

T. Ashur and Y. Liu in [6] provided the ex-
plicit formula of RX-differential probabilities for
modular addition in the case 𝑟 = 1, which
this margin is too narrow to contain. In [8]
M. Huang et al. gave the ponderous expression
for these probabilities with an arbitrary rotation
value of 𝑟, which combines at least four parts
with four probabilities of sub-events in each. In
this section we present a much simpler evalua-
tion expression for RX-differential probabilities

for any value of 𝑟 in terms of enhanced differ-
ential probabilities of modular addition.

We use the following notation throughout this
section: each vector 𝑥 ∈ 𝑉𝑛 is represented as a
concatenation 𝑥 = 𝑥*‖𝑥′, where

𝑥* = (𝑥𝑛−1, 𝑥𝑛−2, . . . , 𝑥𝑟),

𝑥′ = (𝑥𝑟−1, 𝑥𝑟−2, . . . , 𝑥0) = 𝑥[𝑟],

so |𝑥*| = 𝑛 − 𝑟 and |𝑥′| = 𝑟. In parallel, 𝑥 is
represented as 𝑥 = 𝑥′′‖𝑥**, where

𝑥′′ = (𝑥𝑛−1, 𝑥𝑛−2, . . . , 𝑥𝑛−𝑟),

𝑥** = (𝑥𝑛−𝑟−1, 𝑥𝑛−𝑟−2, . . . , 𝑥0) = 𝑥[𝑛− 𝑟],

and |𝑥′′| = 𝑟, |𝑥**| = 𝑛 − 𝑟. Note that 𝑥𝑟 is
expressed as 𝑥𝑟 = 𝑥**‖𝑥′′.

The main result of this section is formulated
in the following theorem.

Theorem 3. For any fixed rotation value 𝑟,
1 ≤ 𝑟 ≤ 𝑛− 1, and arbitrary vectors 𝛼, 𝛽, 𝛾 ∈ 𝑉𝑛,
the probability of the RX-differential (𝑟;𝛼, 𝛽 → 𝛾)
of the modular addition is evaluated as follows:

𝑥𝑟𝑝+(𝑟;𝛼, 𝛽 → 𝛾) = 𝑥𝑑𝑝+𝛿𝑟,𝛿0(𝜔
*)𝑥𝑑𝑝+𝛿0,𝛿𝑟(𝜔

′),

where 𝜔* = (𝛼*, 𝛽* → 𝛾*), 𝜔′ = (𝛼′, 𝛽′ → 𝛾′),
and 𝛿 = 𝛼⊕ 𝛽 ⊕ 𝛾.

Proof. Consider the equation

(𝑥𝑟 ⊕ 𝛼) + (𝑦𝑟 ⊕ 𝛽) = (𝑥+ 𝑦)𝑟 ⊕ 𝛾.

Denote its left part by 𝑤 = 𝑤(𝑥, 𝑦) and its right
part by 𝑢 = 𝑢(𝑥, 𝑦). Then we can say that

𝑢* = (𝑥** + 𝑦**)⊕ 𝛾*,

𝑢′ = (𝑥′′ + 𝑦′′ + 𝐶𝑛−𝑟)⊕ 𝛾′,

𝑤* = (𝑥** ⊕ 𝛼*) + (𝑦** ⊕ 𝛽*) + 𝐶𝑟,

𝑤′ = (𝑥′′ ⊕ 𝛼′) + (𝑦′′ ⊕ 𝛽′),

where 𝐶𝑟 and 𝐶𝑛−𝑟 are the highest carry bits:

𝐶𝑟 = 𝑐𝑟(𝑥
′′ ⊕ 𝛼′, 𝑦′′ ⊕ 𝛽′),

𝐶𝑛−𝑟 = 𝑐𝑛−𝑟(𝑥
**, 𝑦**).

The variables 𝐶𝑟 and 𝐶𝑛−𝑟 are independent
because they are determined by independent
parts of the vectors 𝑥 and 𝑦.

From the equations 𝑢* = 𝑤* and 𝑢′ = 𝑤′ we
get the system of equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(𝑥′′ ⊕ 𝛼′) + (𝑦′′ ⊕ 𝛽′) =

= (𝑥′′ + 𝑦′′ + 𝐶𝑛−𝑟)⊕ 𝛾′,

(𝑥** ⊕ 𝛼*) + (𝑦** ⊕ 𝛽*) + 𝐶𝑟 =

= (𝑥** + 𝑦**)⊕ 𝛾*.
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Let 𝑥*** = 𝑥** ⊕ 𝛼*, 𝑦*** = 𝑦** ⊕ 𝛽*; then
the obtained system can be written as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(𝑥′′ ⊕ 𝛼′) + (𝑦′′ ⊕ 𝛽′) =

= (𝑥′′ + 𝑦′′ + 𝐶𝑛−𝑟)⊕ 𝛾′,

(𝑥*** ⊕ 𝛼*) + (𝑦*** ⊕ 𝛽*) =

= (𝑥*** + 𝑦*** + 𝐶𝑟)⊕ 𝛾*.

These equations describe dependent events,
since 𝐶𝑛−𝑟 is a function of 𝑥***, 𝑦***, and
𝐶𝑟 is a function of 𝑥′′, 𝑦′′. From this we
have that the probability of the first equation is
𝑥𝑑𝑝+𝐶𝑛−𝑟,𝐶𝑟

(𝜔′), and the probability of the sec-
ond equation is 𝑥𝑑𝑝+𝐶𝑟,𝐶𝑛−𝑟

(𝜔*) for all possible
values of 𝐶𝑛−𝑟, 𝐶𝑟. Therefore,

𝑥𝑟𝑝+(𝑟;𝛼, 𝛽 → 𝛾) = 𝑥𝑑𝑝+0,0(𝜔
*) · 𝑥𝑑𝑝+0,0(𝜔

′)+

+ 𝑥𝑑𝑝+0,1(𝜔
*) · 𝑥𝑑𝑝+1,0(𝜔

′)+

+ 𝑥𝑑𝑝+1,0(𝜔
*) · 𝑥𝑑𝑝+0,1(𝜔

′)+

+ 𝑥𝑑𝑝+1,1(𝜔
*) · 𝑥𝑑𝑝+1,1(𝜔

′).

But from Lemma 2 it follows that we can
specify all guaranteed zero terms in the 𝑥𝑟𝑝+

expression with the values of the bits 𝛿𝑟 and 𝛿0
(computed from the last bits of the differentials
𝜔* and 𝜔′):

𝛿0 = 0: 𝑥𝑑𝑝+1,𝜎(𝜔
′) = 0;

𝛿𝑟 = 0: 𝑥𝑑𝑝+1,𝜎(𝜔
*) = 0;

𝛿𝑟 = 1: 𝑥𝑑𝑝+0,𝜎(𝜔
*) = 0;

𝛿0 = 1: 𝑥𝑑𝑝+0,𝜎(𝜔
′) = 0.

Thus, for any value of (𝛿0, 𝛿𝑟), only one
listed term in the 𝑥𝑟𝑝+ expression can possi-
bly be non-zero. This concludes the proof of the
theorem.

Theorem 3 can also be expressed in Lipmaa-
Moriai style, which allows to compare ordinary
and RX-differentials. This expressions follow di-
rectly from the statement of the Theorems 3 and
the Theorems 2 and 1.

Corollary 2. For any fixed rotation value 𝑟
and vectors 𝛼, 𝛽, 𝛾 ∈ 𝑉𝑛, the probability of the
RX-differential (𝑟;𝛼, 𝛽 → 𝛾) of the modular
addition can be evaluated as follows:

1) 𝑥𝑟𝑝+(𝑟;𝛼, 𝛽 → 𝛾) ̸= 0 iff

𝑒 ∧ (𝛼⊕ 𝛽 ⊕ 𝛾 ⊕ (𝛼 ≪ 1)) ∧ 𝜇𝑛,𝑟 = 0;

2) if 𝑥𝑟𝑝+(𝑟;𝛼, 𝛽 → 𝛾) ̸= 0, then

𝑥𝑟𝑝+(𝑟;𝛼, 𝛽 → 𝛾) =

=
1

4

(︃
2−𝑤𝑡(𝑒*)−𝑤𝑡(𝑒′)+

+ [𝛿′ = 0]
(−1)𝛿𝑟 · 2−𝑤𝑡(𝑒*)

2𝑟
+

+ [𝛿* = 0]
(−1)𝛿0 · 2−𝑤𝑡(𝑒′)

2𝑛−𝑟
+

+ [𝛿* = 0][𝛿′ = 0]
(−1)𝛿𝑟⊕𝛿0

2𝑛

)︃
,

where 𝛿 = 𝛼⊕ 𝛽 ⊕ 𝛾, [. . . ] denotes an indicator
function (Iverson brackets), and

𝑒 = 𝑒𝑞(𝛼 ≪ 1, 𝛽 ≪ 1, 𝛾 ≪ 1),

𝑒* = 𝑒𝑞(𝛼* ≪ 1, 𝛽* ≪ 1, 𝛾* ≪ 1),

𝑒′ = 𝑒𝑞(𝛼′ ≪ 1, 𝛽′ ≪ 1, 𝛾′ ≪ 1).

Corollary 2 allows us to compare the be-
haviour of the 𝑥𝑑𝑝+ and 𝑥𝑟𝑝+ probabilities of
the corresponding differentials. In fact, 𝑥𝑟𝑝+ has
softer requirements for RX-differentials to have
non-zero probability than 𝑥𝑑𝑝+ for the corre-
sponding ordinary differential: the conditions are
identical to 𝑥𝑑𝑝+ except for bit positions 0 and
𝑟, which are excluded from consideration. There-
fore, there are approximately four times more
RX-differentials with non-zero probability than
ordinary ones.

It’s easy to describe a set of RX-differentials
with non-zero probability in terms of 𝑥𝑑𝑝+:
𝑥𝑟𝑝+(𝑟;𝛼, 𝛽 → 𝛾) ̸= 0 if

𝑥𝑑𝑝+(𝛼 ∧ 𝜇𝑛,𝑟, 𝛽 ∧ 𝜇𝑛,𝑟 → 𝛾 ∧ 𝜇𝑛,𝑟) ̸= 0,

even if 𝑥𝑑𝑝+(𝛼, 𝛽 → 𝛾) is zero.
Consider the case where both 𝑥𝑑𝑝+ and 𝑥𝑟𝑝+

probabilities are non-zero. Then the 𝑥𝑟𝑝+ proba-
bilities are generally expected to be smaller than
the corresponding 𝑥𝑑𝑝+ probabilities, but there
are differentials with the opposite relationship.
Consider the next example: 𝑛 = 4 and differen-
tial

𝛼 = 0001, 𝛽 = 1111, 𝛾 = 1110.

Direct calculations show that

𝑥𝑑𝑝+(𝛼, 𝛽 → 𝛾) =
1

8
,

𝑥𝑟𝑝ℎ(𝑟;𝛼, 𝛽 → 𝛾) =
9

64
>

1

8
, 𝑟 = 1, 2, 3.
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4. Probabilities of RX-differentials for Op-
erations that Approximate Addition

In [2], the developers of the NORX cipher
introduced the operation2

ℎ(𝑥, 𝑦) = 𝑥⊕ 𝑦 ⊕ ((𝑥 ∧ 𝑦) ≪ 1),

which approximates addition modulo 2𝑛. In [12],
another approximation operation for modular ad-
dition was introduced:

𝑣(𝑥, 𝑦) = 𝑥⊕ 𝑦 ⊕ ((𝑥 ∨ 𝑦) ≪ 1)⊕ 1.

Both approximations are based on well-known
equations for modular addition and logical oper-
ations [11]:

𝑥+ 𝑦 = (𝑥⊕ 𝑦) + ((𝑥 ∧ 𝑦) ≪ 1),

𝑥+ 𝑦 = ((𝑥 ∨ 𝑦) ≪ 1)− (𝑥⊕ 𝑦),

where the addition (subtraction) on the right has
been replaced by XOR.

The cryptographic properties of these op-
erations, including the values of the XOR-
differential probabilities, have been researched
in [13, 12]. These results are given in the next
two theorems.

Theorem 4 ([13]). For arbitrary vectors
𝛼, 𝛽, 𝛾 ∈ 𝑉𝑛, the probability of the differential
(𝛼, 𝛽 → 𝛾) for the function ℎ(𝑥, 𝑦) can be evalu-
ated as follows:

1) 𝑥𝑑𝑝ℎ(𝛼, 𝛽 → 𝛾) ̸= 0 iff

((𝛼 ∨ 𝛽) ≪ 1) ∧ 𝛿 = 0;

2) if 𝑥𝑑𝑝ℎ(𝛼, 𝛽 → 𝛾) ̸= 0, then

𝑥𝑑𝑝ℎ(𝛼, 𝛽 → 𝛾) = 2−𝑤𝑡((𝛼∨𝛽)≪1);

where 𝛿 = 𝛼⊕ 𝛽 ⊕ 𝛾.

Theorem 5 ([12]). For arbitrary vectors
𝛼, 𝛽, 𝛾 ∈ 𝑉𝑛, the probability of the differential
(𝛼, 𝛽 → 𝛾) for the function 𝑣(𝑥, 𝑦) can be evalu-
ated as follows:

1) 𝑥𝑑𝑝𝑣(𝛼, 𝛽 → 𝛾) ̸= 0 iff

((𝛼 ∨ 𝛽) ≪ 1) ∧ 𝛿 = 0;

2) if 𝑥𝑑𝑝𝑣(𝛼, 𝛽 → 𝛾) ̸= 0, then

𝑥𝑑𝑝𝑣(𝛼, 𝛽 → 𝛾) = 2−𝑤𝑡((𝛼∨𝛽)≪1);

where 𝛿 = 𝛼⊕ 𝛽 ⊕ 𝛾.
2 This operation was denoted as 𝑥H𝑦 and H(𝑥, 𝑦) in [2]

since the symbol H resembles + in some way. We use the
more functional notation ℎ(𝑥, 𝑦).

It is worth noting that the statements of the
Theorems 4 and 5 are identical, so for any differ-
ential 𝜔 the equality 𝑥𝑑𝑝ℎ(𝜔) = 𝑥𝑑𝑝𝑣(𝜔) holds.

The next two theorems provide analytic ex-
pressions for the RX-differential probabilities of
given operations ℎ(𝑥, 𝑦) and 𝑣(𝑥, 𝑦).

Theorem 6. For any fixed rotation value 𝑟,
1 ≤ 𝑟 ≤ 𝑛− 1, and arbitrary vectors 𝛼, 𝛽, 𝛾 ∈ 𝑉𝑛,
the probability of the RX-differential (𝑟;𝛼, 𝛽 → 𝛾)
for the function ℎ(𝑥, 𝑦) can be evaluated as fol-
lows:

1) 𝑥𝑟𝑝ℎ(𝑟;𝛼, 𝛽 → 𝛾) ̸= 0 iff

((𝛼 ∨ 𝛽) ≪ 1) ∧ 𝛿 ∧ 𝜇𝑛,𝑟 = 0;

2) if 𝑥𝑟𝑝ℎ(𝑟;𝛼, 𝛽 → 𝛾) ̸= 0, then

𝑥𝑟𝑝ℎ(𝑟;𝛼, 𝛽 → 𝛾) =

=

(︂
3

4
− 𝛿0

2

)︂(︂
3

4
− 𝛿𝑟

2

)︂
2−𝑤𝑡(((𝛼∨𝛽)≪1)∧𝜇𝑛,𝑟);

where 𝛿 = 𝛼⊕ 𝛽 ⊕ 𝛾.

Proof. Consider the equation

ℎ(𝑥𝑟 ⊕ 𝛼, 𝑦𝑟 ⊕ 𝛽) = (ℎ(𝑥, 𝑦))𝑟 ⊕ 𝛾.

It’s easy to show that this equation is equal
to 𝑢 ⊕ 𝑤 = 𝛿, where two vectors 𝑢 = 𝑢(𝑥, 𝑦),
𝑤 = 𝑤(𝑥, 𝑦) are introduced as

𝑢 = ((𝑥𝑦) ≪ 1)𝑟,

𝑤 = ((𝑥𝑟 ⊕ 𝛼)(𝑦𝑟 ⊕ 𝛽) ≪ 1).

The following relations describe each bit of
𝑢: ⎧⎪⎨⎪⎩

𝑢𝑖 = 𝑥𝑖+𝑛−𝑟−1𝑦𝑖+𝑛−𝑟−1, 0 ⩽ 𝑖 < 𝑟;

𝑢𝑟 = 0, 𝑖 = 𝑟;

𝑢𝑖 = 𝑥𝑖−𝑟−1𝑦𝑖−𝑟−1, 𝑖 > 𝑟;

and a similar system of relations describes every
bit of 𝑤:⎧⎪⎨⎪⎩
𝑤0 = 0, 𝑖 = 0;

𝑤𝑖 = (𝑥𝑖+𝑛−𝑟−1 ⊕ 𝛼𝑖−1)(𝑦𝑖+𝑛−𝑟−1 ⊕ 𝛽𝑖−1), 0 < 𝑖 ⩽ 𝑟;

𝑤𝑖 = (𝑥𝑖−𝑟−1 ⊕ 𝛼𝑖−1)(𝑦𝑖−𝑟−1 ⊕ 𝛽𝑖−1), 𝑖 > 𝑟.

Consider the equation 𝑢 ⊕ 𝑤 = 𝛿 bit by bit.
There are the following possible cases for this.

1. If 𝑖 = 0, then

𝑥𝑛−𝑟−1𝑦𝑛−𝑟−1 = 𝛿0.

2. If 𝑖 = 𝑟, then

(𝑥𝑛−1 ⊕ 𝛼𝑟−1)(𝑦𝑛−1 ⊕ 𝛽𝑟−1) = 𝛿𝑟.
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3. If 0 < 𝑖 < 𝑟, then

𝑥𝑖+𝑛−𝑟−1𝛽𝑖−1 ⊕ 𝛼𝑖−1𝑦𝑖+𝑛−𝑟−1 =

= 𝛼𝑖−1𝛽𝑖−1 ⊕ 𝛿𝑖.

4. If 𝑖 > 𝑟, then

𝑥𝑖−𝑟−1𝛽𝑖−1 ⊕ 𝛼𝑖−1𝑦𝑖−𝑟−1 = 𝛼𝑖−1𝛽𝑖−1 ⊕ 𝛿𝑖.

Let 𝐴𝑖 be the event 𝑢𝑖 ⊕ 𝑤𝑖 = 𝛿𝑖, and 𝑝𝑖
be the probability of 𝐴𝑖. Since all events 𝐴𝑖

depend on different bits of 𝑥 and 𝑦, they are
pairwise independent, therefore we have

𝑥𝑟𝑝ℎ(𝑟;𝛼, 𝛽 → 𝛾) =
𝑛−1∏︁
𝑖=0

𝑝𝑖.

Let’s compute the probabilities 𝑝𝑖 for each
value of 𝑖.

1. In the case 𝑖 = 0, if 𝛿0 = 0, then

𝑝0 = Pr{𝑥𝑛−𝑟−1𝑦𝑛−𝑟−1 = 0} =
3

4
,

and if 𝛿0 = 1, then

𝑝0 = Pr{𝑥𝑛−𝑟−1𝑦𝑛−𝑟−1 = 1} =
1

4
.

Therefore, we have

𝑝0 =

(︂
3

4
− 𝛿0

2

)︂
.

2. The case 𝑖 = 𝑟 is considered similarly to
the previous case; we have

𝑝𝑟 =

(︂
3

4
− 𝛿𝑟

2

)︂
.

3. Next we consider the case for all other
values of 𝑖 when 𝑖 ̸= 0 and 𝑖 ̸= 𝑟. All these
cases are described by a general equation of the
following form:

𝛿𝑖 ⊕ 𝛼𝑖−1𝛽𝑖−1 = 𝑥*𝛽𝑖−1 ⊕ 𝑦*𝛼𝑖−1,

where 𝑥* and 𝑦* are random independent bits.
The Table 3 shows the values of the proba-

bility 𝑝𝑖 for all possible values of the parameters
𝛼𝑖−1, 𝛽𝑖−1, and 𝛿𝑖.

From the Table 3 it is clear that there are
specific values of the parameters 𝛼𝑖−1, 𝛽𝑖−1, and
𝛿𝑖, for which the probability 𝑝𝑖 = 0, namely
𝛿𝑖 = 1 and 𝛼𝑖−1 = 𝛽𝑖−1 = 0 (the latter being
equivalent to 𝛼𝑖−1 ∨ 𝛽𝑖−1 = 0), where 𝑖 ̸= 0,
𝑖 ̸= 𝑟. Clearly, if a vector

((𝛼 ∨ 𝛽) ≪ 1) ∧ 𝛿 ∧ 𝜇𝑛,𝑟

has at least one non-zero bit, then
𝑥𝑟𝑝ℎ(𝑟;𝛼, 𝛽 → 𝛾) is zero.

Table 3
The probabilities 𝑝𝑖 in the general case of 𝑖 ̸= 0, 𝑟.

𝛼𝑖−1 𝛽𝑖−1 𝛿𝑖 equation of 𝐴𝑖 𝑝𝑖
0 0 0 0 = 0 1

0 0 1 1 = 0 0

0 1 0 0 = 𝑦*
1
2

0 1 1 1 = 𝑦*
1
2

1 0 0 0 = 𝑥*
1
2

1 0 1 1 = 𝑥*
1
2

1 1 0 1 = 𝑥* ⊕ 𝑦*
1
2

1 1 1 0 = 𝑥* ⊕ 𝑦*
1
2

If the probability of the RX-differential is not
zero, then for 𝛼𝑖−1 = 𝛽𝑖−1 = 0 the probability
𝑝𝑖 is one, and in all other cases where either
one of the two bits 𝛼𝑖−1, 𝛽𝑖−1 equals one, the
probability 𝑝𝑖 is 1

2 . Consequently, we have 𝑝𝑖 =
1
2 for every bit equal to one in the vector (𝛼⊕
𝛽) ≪ 1 (except for the positions 𝑖 = 0 and
𝑖 = 𝑟).

In summary, we have that non-zero proba-
bilities of RX-differentials of ℎ(𝑥, 𝑦) are equal
to

𝑥𝑟𝑝ℎ(𝑟;𝛼, 𝛽 → 𝛾) =

=

(︂
3

4
− 𝛿0

2

)︂(︂
3

4
− 𝛿𝑟

2

)︂
2−𝑤𝑡(((𝛼∨𝛽)≪1)∧𝜇𝑛,𝑟),

which concludes the proof.

Theorem 7. For any fixed rotation value 𝑟,
1 ≤ 𝑟 ≤ 𝑛− 1, and arbitrary vectors 𝛼, 𝛽, 𝛾 ∈ 𝑉𝑛,
the probability of the RX-differential (𝑟;𝛼, 𝛽 → 𝛾)
for the function 𝑣(𝑥, 𝑦) can be evaluated as fol-
lows:

1) 𝑥𝑟𝑝𝑣(𝑟;𝛼, 𝛽 → 𝛾) ̸= 0 iff

((𝛼 ∨ 𝛽) ≪ 1) ∧ 𝛿 ∧ 𝜇𝑛,𝑟 = 0;

2) if 𝑥𝑟𝑝𝑣(𝑟;𝛼, 𝛽 → 𝛾) ̸= 0, then

𝑥𝑟𝑝𝑣(𝑟;𝛼, 𝛽 → 𝛾) =

=

(︂
3

4
− 𝛿0

2

)︂(︂
3

4
− 𝛿𝑟

2

)︂
2−𝑤𝑡(((𝛼∨𝛽)≪1)∧𝜇𝑛,𝑟).

where 𝛿 = 𝛼⊕ 𝛽 ⊕ 𝛾.

Proof. The proof is very similar to that of
Theorem 6. Once again, consider the equation

𝑣(𝑥𝑟 ⊕ 𝛼, 𝑦𝑟 ⊕ 𝛽) = (𝑣(𝑥, 𝑦))𝑟 ⊕ 𝛾.

It’s easy to show that this equation is equivalent
to the equation 𝑢 ⊕ 𝑤 = 𝛿 ⊕ ((𝛼 ⊕ 𝛽) ≪ 1),
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where two vectors 𝑢 = 𝑢(𝑥, 𝑦), 𝑤 = 𝑤(𝑥, 𝑦) are
introduced as

𝑢 =
(︀
(𝑥 ≪ 1)⊕ (𝑦 ≪ 1)⊕ ((𝑥𝑦) ≪ 1)⊕ 1

)︀𝑟
,

𝑤 = (𝑥𝑟 ≪ 1)⊕ (𝑦𝑟 ≪ 1)⊕
⊕ ((𝑥𝑟 ⊕ 𝛼)(𝑦𝑟 ⊕ 𝛽) ≪ 1)⊕ 1.

Let 𝐴𝑖 be the event 𝑢𝑖 ⊕ 𝑤𝑖 = 𝛿𝑖 ⊕ 𝛼𝑖−1 ⊕
𝛽𝑖−1, and 𝑝𝑖 be the probability of 𝐴𝑖, so that
𝑥𝑟𝑝𝑣(𝑟;𝛼, 𝛽 → 𝛾) is a product of all 𝑝𝑖. Com-
pute the probabilities 𝑝𝑖 for each value of 𝑖.

1. For 𝑖 = 0 we have

𝑝0 = Pr{𝑥𝑛−𝑟−1𝑦𝑛−𝑟−1 = 𝛿0} =

(︂
3

4
− 𝛿0

2

)︂
.

2. For 𝑖 = 𝑟 we similarly have

𝑝𝑟 = Pr{(𝑥𝑛−1 ⊕ 𝛼𝑟−1)(𝑦𝑛−1 ⊕ 𝛽𝑟−1) = 𝛿𝑟} =

=

(︂
3

4
− 𝛿𝑟

2

)︂
.

3. For all other values of 𝑖 ̸= 0, 𝑟, the events
𝐴𝑖 are described by a general equation of the
following form:

𝛿𝑖⊕𝛼𝑖−1⊕𝛽𝑖−1⊕𝛼𝑖−1𝛽𝑖−1 = 𝑥*𝛽𝑖−1⊕ 𝑦*𝛼𝑖−1,

or, equivalently,

𝛿𝑖 ⊕ 𝛼𝑖−1𝛽𝑖−1 = 𝑥*𝛽𝑖−1 ⊕ 𝑦*𝛼𝑖−1,

where 𝑥* and 𝑦* are random independent bits.
Clearly, a substitution 𝑥* ↦→ 𝑥*, 𝑦* ↦→ 𝑦* allows
us to describe all possible values of 𝑝𝑖 with Ta-
ble 3.

Therefore, the probabilities 𝑝𝑖 for 𝑥𝑟𝑝𝑣 are
the same as for 𝑥𝑟𝑝ℎ (see the proof of Theo-
rem 6), from which the statement of the theorem
follows.

From the statements of the Theorems 6 and 7,
it follows that the behaviour of the probabilities
of RX-differentials for the functions ℎ(𝑥, 𝑦) and
𝑣(𝑥, 𝑦) is described by identical expressions, so
that their numerical values coincide. This al-
lows us to conclude that both operations have
the same level of security against RX-analysis
and can be used as alternatives. It should be
noted that, unlike the distribution of 𝑥𝑟𝑝+, the
distribution of 𝑥𝑟𝑝ℎ (𝑥𝑟𝑝𝑣) values over all RX-
differentials does not depend on 𝑟, so all pos-
sible values of 𝑟 can be considered equally in
cryptanalysis.

It’s also interesting to compare the behaviour
of the differential and RX-differential probabil-
ities of ℎ(𝑥, 𝑦), as well as 𝑣(𝑥, 𝑦). As we
can see from the Theorems 4 and 6, similar to

𝑥𝑟𝑝+ and 𝑥𝑑𝑝+, 𝑥𝑟𝑝ℎ has softer requirements
for RX-differential to have non-zero probabil-
ity than 𝑥𝑑𝑝ℎ for the corresponding ordinary
differential: the condition is identical, but bit
positions 0 and 𝑟 are also excluded from con-
sideration. Thus, the number of RX-differential
with non-zero probability is approximately four
times higher than the number of ordinary dif-
ferential, and, moreover, we can claim that
𝑥𝑟𝑝ℎ(𝑟;𝛼, 𝛽 → 𝛾) ̸= 0 if

𝑥𝑑𝑝ℎ(𝛼 ∧ 𝜇𝑛,𝑟, 𝛽 ∧ 𝜇𝑛,𝑟 → 𝛾 ∧ 𝜇𝑛,𝑟) ̸= 0.

Consider the case where both 𝑥𝑑𝑝ℎ and 𝑥𝑟𝑝ℎ

probabilities of the corresponding differentials
are non-zero. The value of 𝑥𝑟𝑝ℎ is multiplied
by the factor 9

16 , 3
16 or 1

16 compared to the corre-
sponding 𝑥𝑑𝑝ℎ value, and can also be multiplied
by 2, depending on 𝛿0, 𝛿𝑟 and 𝛼𝑖−1 ∨ 𝛽𝑖−1, so
that in most cases 𝑥𝑟𝑝ℎ has less values than
𝑥𝑑𝑝ℎ. Interestingly, however, there are RX-
differentials of ℎ which have a higher probability
than corresponding ordinary differentials. More
precisely, if 𝛿0 = 0, 𝛿𝑟 = 0 and 𝛼𝑟−1∨𝛽𝑟−1 = 1
then

𝑥𝑟𝑝ℎ(𝑟;𝛼, 𝛽 → 𝛾) ≥ 𝑥𝑑𝑝ℎ(𝛼, 𝛽 → 𝛾).

For 𝑥𝑑𝑝ℎ ̸= 0 the ratio 𝑥𝑟𝑝ℎ/𝑥𝑑𝑝ℎ is 9
8 under

the above conditions.
Consider the next example: 𝑛 ≥ 3, 𝑟 = 1,

and differential

𝛼 = 0 . . . 0011, 𝛽 = 0 . . . 0011, 𝛾 = 0 . . . 0100;

then 𝛿0 = 0, 𝛿1 = 0, and

𝑥𝑑𝑝ℎ(𝛼, 𝛽 → 𝛾) =
1

4
,

𝑥𝑟𝑝ℎ(1;𝛼, 𝛽 → 𝛾) =
9

32
>

1

4
.

From the Theorems 5 and 7 it follows that
for 𝑥𝑟𝑝𝑣 and 𝑥𝑑𝑝𝑣 all the above considerations
are the same.

Conclusions

In this work, we study the properties of the
RX-differentials of modular addition and their
LRX-approximations. We introduced the notion
of enhanced differential probabilities for modular
addition, which allow the differential properties
to be considered from different angles, and pro-
vided explicit and simple analytic expressions
for them. We then provided expressions for
the probabilities of RX-differential with arbitrary
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rotation values for modular addition in terms
of enhanced differential probabilities and conse-
quently in Lipmaa-Moriai style. These results
generalize the pioneering results of T. Ashur
and Yu. Liu, and are also much simpler than
analogous results of M. Huang et al. Among
other things, our results allow to compare the
behaviour of the corresponding ordinary and RX-
differentials, to effectively describe a set of RX-
differentials with non-zero probabilities and to
find RX-differentials with higher probability than
the corresponding ordinary differentials. The lat-
ter, although interesting from a mathematical
point of view, does not seem to be very useful
since such differentials generally have relatively
low probabilities.

We also considered two operations that ap-
proximate modular addition with purely logical
functions. One of these operations is used in
the NORX cipher. We provided explicit an-
alytic expressions of the probabilities of RX-
differentials for both operations in the Lipmaa-
Moriai style, and showed that the behaviour of
the RX-differentials of these operations is similar
to that of modular addition.

We believe that the presented results advance
the theory of differential-rotational cryptanalysis
and allow the creation of new cryptographically
secure ARX- and LRX-cryptosystems.
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