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Abstract 
This paper investigates the integration of machine learning into the Row-Sampling technique to 

enhance its effectiveness in mitigating Rowhammer attacks in DRAM systems. A multidimensional 

multilabel predictor model is employed to dynamically predict and adjust probability thresholds based 

on real-time memory access patterns, improving the precision of row selection for targeted refresh. 

The approach demonstrates significant improvements in security, reducing Rowhammer-induced bit 

flips, while also maintaining energy efficiency and minimizing performance overhead. By leveraging 

machine learning, this work refines the Row-Sampling method, offering a scalable and adaptive 

solution to memory vulnerabilities in modern DRAM architectures. 
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Introduction 
 

Dynamic Random Access Memory (DRAM) 

is a critical component in modern computing 

systems, providing high-density and low-cost 

storage for a wide range of applications. 

However, as DRAM technology scales to smaller 

form factors, it becomes increasingly vulnerable 

to security threats such as the Rowhammer attack 

[1]. Rowhammer exploits physical vulnerabilities 

in DRAM by inducing bit flips in adjacent 

memory rows through frequent and aggressive 

row activations, potentially leading to data 

corruption or security breaches. 

To mitigate Rowhammer attacks, a common 

approach is to refresh vulnerable memory rows at 

a higher frequency. [2] However, static refresh 

strategies can impose significant performance 

and energy penalties, as they do not adapt to 

runtime memory access patterns or inherent 

variability in DRAM hardware. This calls for an 

intelligent, adaptive mechanism to optimize 

refresh rates for individual DRAM rows based on 

their susceptibility to Rowhammer and runtime 

usage characteristics. 

In this work, we propose a machine learning-

based approach leveraging Multidimensional 

predictor to dynamically generate and update 

refresh probabilities for DRAM rows. 

Multidimensional Predictors is an ensemble 

learning method, are particularly suited for this 

task due to their ability to handle high-

dimensional data, robustness to overfitting, and 

interpretability. By training the model on access 

patterns, row activation frequencies, and 

hardware-specific features, the algorithm can 

predict optimal refresh intervals for each row, 

minimizing the risk of  

Rowhammer while balancing performance 

and energy efficiency. By introducing machine 

learning into the DRAM refresh process, we aim 

to bridge the gap between security and efficiency, 

paving the way for more resilient memory 

systems in future computing architectures. 

1. Background 
 

The challenge of mitigating Rowhammer 

attacks and improving DRAM refresh strategies 

has garnered significant attention in recent years. 

[3] As DRAM scaling continues, innovative 

techniques are needed to address both the 

security vulnerabilities and the performance 

trade-offs inherent in traditional memory 

management strategies. Figure 1 illustrates the 

typical structure of a modern DRAM system. 

DRAM is arranged as a hierarchical array 
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containing billions of DRAM cells, each storing a 

single bit of data. In contemporary systems, the 

CPU chip incorporates multiple memory 

controllers, with each controller connected to a 

DRAM channel. These controllers handle read, 

write, and maintenance operations (such as 

refresh) via a dedicated I/O bus that operates 

independently of other channels in the system, as 

shown in Figure 1. 

Each DRAM channel can support one or more 

DRAM modules, and each module is composed 

of one or more DRAM ranks. A rank consists of 

several DRAM chips that function in unison, 

while multiple ranks within the same channel 

share access to the channel’s I/O bus through 

time-division multiplexing. 
 

 

Figure 1: Typical DRAM system organization 

Modern DRAM chips are prone to disturbance 

errors, which occur when frequent activations of 

a single DRAM row (within a refresh interval) 

unintentionally alter the stored values of cells in 

nearby rows. This phenomenon, widely known as 

RowHammer [1], arises from electromagnetic 

interference between circuit elements. The 

severity of RowHammer increases as the size of 

the manufacturing process technology node (and 

consequently the size of DRAM cells) decreases, 

causing circuit elements to be packed closer 

together. 

As shown in prior research [2, 3], the 

RowHammer effect is most pronounced between 

rows that are physically adjacent. Bit flips caused 

by RowHammer are more likely to occur in rows 

directly neighboring a "hammered" row that is 

activated repeatedly—e.g., 139K activations in 

DDR3 [2], 10K in DDR4 [4], and 4.8K in 

LPDDR4 [4]. The row that is repeatedly 

activated is referred to as an aggressor row, while 

affected neighboring rows are called victim rows, 

regardless of whether they actually experience bit 

flips. (Figure 2). 

 

Figure 2: Typical Single-sided (SS) and Double-
sided (DS) RowHammer access patterns. 

1.1. Mitigation Techniques 

Several hardware and software-based 

methods have been proposed to mitigate 

Rowhammer attacks. Yaglikci et al. [3] 

categorize these mechanisms into four main 

strategies: 

 Increasing the refresh rate to reduce the 

number of activations possible within a 

refresh interval [4] 

 Isolating sensitive data from DRAM rows 

that could be targeted by an attacker [5]. 

 Tracking row activations and refreshing 

potential victim rows [6] 

 Throttling row activations to limit the 

number of times a row can be activated 

during a refresh interval [7]. 

 

However, DRAM vendors currently 

implement proprietary in-DRAM RowHammer 

mitigation mechanisms collectively referred to as 

Target Row Refresh (TRR) [8]. TRR works by 

detecting potential aggressor rows and refreshing 

their neighboring rows. Unfortunately, vendors 

have not disclosed the specific implementation 

details of TRR mechanisms, making it difficult to 

openly evaluate their security guarantees. 

Recent research, such as TRRespass [9], 

reveals that existing proprietary TRR 

mechanisms can be bypassed using many-sided 

RowHammer attacks. These attacks exploit the 

limitations of internal tables used by TRR to 

track aggressor rows, effectively overflowing 

them. This underscores the need for a rigorous 

methodology to identify weaknesses in TRR 

mechanisms and to develop more secure 

alternatives. 

For our application we lean into the last group 

as it can be passively reducing number of bit flips 

while not tanking system performance. In this 

category most widely used method is Row-

Sampling-based Rowhammer defenses [10]. 

They are among the earliest and simplest classes 

of techniques suitable for implementation in 

memory controllers. With each row activation, 

the memory controller flips a biased coin. With a 

low probability p (p << 1), the row address is 

selected (sampled) and treated as if it is an 

aggressor row. The memory controller then takes 

mitigative action, such as refreshing the 

corresponding victim rows. 

By using a sufficiently high sampling rate p, 

these defenses can effectively prevent a 

Rowhammer attack, as the likelihood of an 

aggressor row escaping sampling becomes 
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exceedingly small. The downside, as for most of 

the techniques is balancing p to prevent attacks 

and in the same time be not very costly in energy 

terms. So main task of rowsampling optimization 

can be boiled to choosing big enough p-value to 

prevent most of the attacks and in the same time 

small enough to not use big amounts of 

additional energy for rows refreshment.   

2. Problem Definition 

In the previous section we established that 

energy efficiency is the most critical problem in 

most Rowhammer defense system, so we try to 

enhance Row-Sampling approach using Machine 

Learning. The framework integrates machine 

learning techniques into the memory controller to 

enable continuous adaptation of Row-Sampling 

parameters, based on real-time memory access 

patterns. 

In traditional Row-Sampling, a fixed or semi-

random subset of rows is refreshed at a higher 

rate to guard against Rowhammer-induced bit 

flips. While this reduces the attack surface, it 

suffers from the following shortcomings: 

 Static Probabilities: Row selection is 

typically based on uniform or pre-

determined probabilities, which fail to 

account for dynamic variations in row 

activation patterns or usage contexts. Rows 

that are frequently activated under a 

specific workload may remain under-

refreshed, increasing their vulnerability to 

Rowhammer. 

 Over-Refreshing: To ensure safety, Row-

Sampling often refreshes rows that are not 

at immediate risk, leading to unnecessary 

energy consumption and reduced system 

performance. 

 Lack of Adaptability: Memory access 

patterns vary significantly across 

workloads and applications. Static Row-

Sampling techniques lack the flexibility to 

adapt to these variations in real time, 

resulting in suboptimal refresh strategies. 

 

These limitations underscore the need for a 

more intelligent and adaptive approach that can 

improve the precision of row selection for 

refresh, balancing energy efficiency and security.  

On the other hand, machine learning has 

already been applied in Rowhammer defenses, 

particularly in predicting and mitigating attacks 

at the software level. [10] These approaches 

leverage machine learning models to analyze 

system-level metrics, such as cache misses, 

memory access patterns, or CPU performance 

counters, to detect abnormal behaviors indicative 

of Rowhammer attacks. Techniques like neural 

networks and decision trees have been employed 

to classify workloads as benign or malicious in 

real-time, allowing the system to trigger 

countermeasures, such as throttling memory 

accesses or isolating processes. While effective 

for attack prediction and prevention at the 

software level, these methods operate at a coarse 

granularity and are not directly applicable to 

hardware-level strategies like Row-Sampling, 

which require fine-grained insights into 

individual memory rows’ vulnerability. 

Machine learning offers a powerful solution to 

address these challenges by providing data-driven 

insights into the vulnerability of individual 

DRAM rows. Specifically, by integrating a 

machine learning model into the Row-Sampling 

framework, it becomes possible to predict a p-

value for each row, representing its likelihood of 

being vulnerable to Rowhammer-induced bit 

flips. This enables targeted and dynamic refresh 

strategies that are both secure and energy 

efficient. 

 

3. Machine Learning Approach to Row-
Sampling 

The core challenge addressed by this 

framework is the dynamic prediction of optimal 

probability value for rowsampling individual 

DRAM rows. Given a set of input features 

representing the memory access patterns; the goal 

is to predict a refresh time for each row that 

minimizes the risk of Rowhammer attacks while 

reducing the overall energy consumption and 

performance overhead.  

For our data input we use set of memory 

access features (such as row activation frequency, 

time since last refresh, row locality, and system 

workload). In output we will get a vector of p-

value thresholds where each element corresponds 

to the optimal Row-Sampling value for each 

DRAM row. The key objective is to model the 

vulnerability of each DRAM row based on its 

activation patterns and predict a threshold value 

that can be adjusted dynamically in response to 

changes in memory access behavior. 

Multidimensional multilabel Predictor is an 

ensemble learning technique that aggregates 

predictions to improve predictive accuracy and 

prevent overfitting. For this application, we use a 

__________________________________________________________________________________

79

Intelligent Data analysis methods in cybersecurity



BCE With Logits Loss to predict continuous 

probability value for each row based on the 

features extracted from the memory access 

patterns. In our framework, we extract and 

preprocess several features from the memory 

access patterns to feed into the model. These 

features are designed to capture both the spatial 

and temporal behaviors of memory accesses, 

which are key factors in determining the 

vulnerability of rows to Rowhammer attacks. By 

combining these features, we can create a 

comprehensive model that reflects both the 

behavior of individual rows and their interactions 

with neighboring rows. Main scheme of data 

gathering and inserting into neural network can 

be seen in Figure 3. 

 

 

Figure 3: Hardware implementation of the ML-
based Row-Sampling technique 

Predictor models are trained using historical 

memory access data, which is collected from 

either real workloads or simulated memory 

access patterns. We collect memory access traces 

from a set of representative workloads. These 

traces provide the raw data from which features 

are derived. The traces include both access events 

(read/write) and the corresponding memory row 

addresses. For each access trace, we compute the 

relevant features, such as row activation 

frequency, time since the last refresh, and 

locality, for each memory row. The p-values for 

each row are set as the target values (labels). 

These can either be determined through 

simulation or through a static refresh policy for 

comparison purposes. The labels indicate the 

optimal refresh time for each row based on its 

vulnerability. 

After training, the model is validated using a 

separate validation set to assess its predictive 

accuracy and generalization ability. Cross-

validation techniques are used to ensure that the 

model performs well across different memory 

access patterns. Once the model is trained, it can 

be integrated into the DRAM subsystem for real-

time prediction and adaptation of p thresholds. 

Also, additional optimization can be added to 

reduce neural network size to ensure that it can fit 

inside memory controller. For continuous updates 

for weights, we use driver-sided backpropagation 

algorithms to evolve our network in an Online 

Learning manner. 

4. Evaluation of Machine Learning-based 
Framework 

The evaluation of created defense system 

must be focused on two primary objectives: 

assessing the security effectiveness in mitigating 

Rowhammer attacks and evaluating the system’s 

performance and energy efficiency relative to 

traditional static refresh strategies. We also 

perform a sensitivity analysis to understand the 

impact of various features and model parameters 

on the system's performance. 

4.1. Experimental Setup 

To evaluate the proposed framework, we use 

both synthetic memory access traces and real-

world workloads. The experiments were 

conducted on a simulated DRAM environment 

with the following setup: 

For simulation platform we use a custom 

memory simulator to model DRAM behavior and 

memory access patterns. The simulator supports 

fine-grained control over memory access timing, 

refresh rates, and Rowhammer attack simulation. 

For the workloads we selected several real-

world workloads, including: 

 SPEC CPU 2017: A standard benchmark 

suite commonly used to evaluate system 

performance [7]. 

 Memcached: A memory-intensive 

application used in cloud computing 

environments. 

 Rowhammer Attack Simulation: We 

simulate Rowhammer attacks by activating 

specific memory rows in rapid succession 

to induce bit flips in adjacent rows. 

 

To compare our ML-based adaptive refresh 

policy we use this refresh strategies: 

 Static Refresh: A traditional refresh policy 

where all rows are refreshed at the same 

fixed interval. (A in Fig 4) 
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 Targeted Refresh: A static policy where 

rows are classified as vulnerable based on 

predetermined criteria and refreshed more 

frequently. (B in Fig 4) 

 Our ML-solution (C in Fig 4) 

 

4.2 Security Effectiveness 
 

The primary security metric is the 

Rowhammer attack mitigation rate, which 

quantifies the ability of the system to prevent bit 

flips in adjacent rows during a simulated 

Rowhammer attack. For each of the test 

workloads, we measure the occurrence of bit flips 

under different refresh strategies. 

During each attack, specific rows are 

aggressively accessed to induce bit flips in 

adjacent rows. We monitor the number of 

successful bit flips and track the failure rate of 

the targeted rows. 

 

 

 

Figure 4: Number of bitflips in DRAM after 
Rowhammer attack 

As we can see from figure 4 the 

Multidimensional Predictor-based adaptive 

refresh policy significantly reduces the 

occurrence of bit flips compared to both the static 

refresh and targeted refresh strategies. 

Specifically, the model predicts refresh intervals 

dynamically, ensuring that rows under high 

activation pressure are refreshed more frequently.  

This leads to a reduction in Rowhammer 

attack success rates by up to 82.2% compared to 

the static refresh policy and 67.8% Row-

Sampling refresh policies. 

4.3 Performance Energy Efficiency 

In addition to security, the proposed 

framework is evaluated for its impact on system 

performance and energy efficiency. We focus on 

two key metrics: energy consumption and 

memory budget. We measure the system’s 

throughput (measured in operations per second) 

under each refresh policy. The goal is to 

minimize the impact on system performance 

while achieving strong Rowhammer protection. 

We estimate the energy consumption based on 

the refresh intervals and the associated power 

overhead of refreshing the DRAM rows more 

frequently. A key objective of our framework is 

to reduce unnecessary refreshes, thereby 

lowering energy consumption. 

 

 

Figure 5: Memory budget and energy 
consumption difference of 3 defense 
mechanisms 

Overall, the Multidimensional multilabel 

Predictor model strikes a favorable balance 

between security, performance, and energy 

efficiency, outperforming static and targeted 

refresh strategies in all evaluated workloads. 

5. Future Work 

In this paper, we have proposed a novel 

approach for mitigating Rowhammer attacks by 

dynamically predicting and adjusting 

RowSampling p-threshold using machine 

learning model. Our approach offers a dynamic, 

data-driven solution to the Rowhammer problem, 

improving the security of DRAM while 

minimizing the performance and energy costs 

typically associated with traditional refresh 

strategies. 

The evaluation results demonstrate the 

effectiveness of our framework across various 

real-world workloads. The Multidimensional 

Predictor model provides superior Rowhammer 

attack mitigation compared to static and targeted 

refresh approaches, reducing the occurrence of 
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bit flips by more than 80%. In terms of 

performance, our model incurs minimal 

overhead—just 2%—and reduces energy 

consumption by approximately 5%. This 

highlights the ability of our framework to strike a 

balance between security, performance, and 

energy efficiency, making it a promising solution 

for future memory systems. 

The growing vulnerability of DRAM to 

attacks like Rowhammer necessitates innovative 

solutions that balance security with performance 

and energy efficiency. Our proposed framework 

represents a step forward in adaptive memory 

management, showing how machine learning can 

be used to improve memory system security 

without sacrificing system efficiency. By 

continuously updating refresh rates in response to 

real-time memory access patterns, our approach 

opens the door for more resilient and efficient 

memory architectures in future computing 

systems. 

Conclusions 

As DRAM technology continues to evolve, 

the need for adaptive, intelligent systems will 

only increase. Machine learning techniques, 

particularly ensemble models like 

Multidimensional Predictors, offer significant 

potential to enhance the security and performance 

of these systems, providing a path toward more 

secure and energy-efficient memory management 

in the face of increasingly sophisticated attacks. 

As the technological process of embedded 

memory systems becomes smaller, we need to 

adapt our defense strategies. This paper presents 

new ways to deal with new threads using 

Multidimensional multilabel Predictor approach 

to enhance RowSampling defense from 

RowHammer. This shows that defense strategies 

can always be improved and enhanced with new 

technologies and with optimization. Also, this 

paper opens new ways for applying machine 

learning into software and hardware in the future. 
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