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Abstract  
Proactive decision-making in all processes is difficult to imagine without forecasting methods, 

especially in the field of cybersecurity where the speed and quality of response are often critical. For 

this reason, we proposed a unique methodology based on a new hybrid architecture Transformer that 

perfectly captures long-term dependencies and an adaptive algorithm ACWA that quantifies historical 

patterns. Thus, the described approach considers short-term fluctuations, long-term trends, and 

seasonal patterns more effectively than traditional forecasting models, as demonstrated by the 

application of Information Operations and Disinformation occurrences time series forecasting. 
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Introduction 

Difficult to underestimate the importance of 

information security in the industry of our lives, 

and as an industry associated with high risks at 

every level of operation in our lives, where the 

priority has always been the need to be able to 

identify patterns, trends, and anomalies in 

advance, this is what the forecasting area helps 

with. Traditional methods like Autoregressive 

Integrated Moving Average (ARIMA) have been 

actively and efficiently used for decades [1], but 

due to their specific nature, such analytical 

approaches often face limitations, variability, and 

complexity, which significantly reduces the 

reliability of forecasts.  

Recent advancements in sequence modeling, 

particularly transformer architectures, have 

revolutionized processings by leveraging 

tokenization and attention mechanisms to 

interpret contextual dependencies [2]. While 

recurrent neural networks like Long Short-Term 

Memory (LSTM) have been common for time 

series analysis, transformers excel in processing 

long sequences without recurrence but struggle 

with overfitting on smaller datasets [3]. 

Weighted average approaches, offer an adaptive 

solution by weighting historical data based on 

confidence and time decay, making them 

effective for capturing non-stationary phenomena 

with long-term dependencies and sudden 

changes [4]. 

However, the inherent volatility and non-

linearity of real-world captured datasets demand 

more sophisticated tools capable of balancing 

short and long-term accuracy and interpretability. 

To combine the benefits of broad contextual 

awareness and adaptive weighting, a hybrid 

approach integrating Adaptive Contextual 

Weighted Average (ACWA) with Transformer 

models was developed, where Transformers 

provide a powerful mechanism for detecting 

long-term dependencies, ACWA promotes 

contextual weighting of historical events, thereby 

enhancing already short-term responsiveness. 

This integration not only improves predictive 

accuracy but also enables dynamic adjustments 

in the face of rapidly changing patterns, making 

it suitable for applications requiring high 

resilience. 

Experiments on collected Open Source 

Intelligence (OSINT) datasets demonstrated that 

the hybrid architecture delivers a robust, 

accurate, and flexible forecasting system. Initial 

systems testing was made on circular functions 

and achieved accurate results bringing us to 

perform an actual application on actual 

Cybersecurity related datasets. Where that 

related scenario can be strongly characterized by 

uneven temporal distributions and abrupt 

changes in event frequency, reflecting the noise 

in real-world challenges of anomaly detection 

and trend forecasting providing a challenging 

environment for analysis and method’s research. 
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1. Methodology 
 

Selected time series for this study represents a 

complex relationship between the occurrence of 

specific events, gathered using Open Source 

Intelligence technology, over one-year, two-

years, and three-years intervals, creating lesser 

334, 700, and bigger 1064 days observed 

datasets which were allocated for training the 

models, while the remaining 30 days, 

representing the final month, were reserved for 

prediction and subsequent analysis. The high 

Hurst exponent values that were calculated with 

R/S analysis for both series confirmed strong 

persistence, indicating predictability based on 

historical trends. The values varied from a 

smaller H≈0.71 and H≈0.76 to a bigger dataset 

up to H≈0.77. 

Collected events inside formed datasets 

include values for the frequency of mentions of 

terms such as "Information Operation" and 

"Disinformation" within the context of Ukraine 

in online sources like news articles, blogs, and 

other internet platforms. Data for the time series 

was sourced primarily from Infostream resources 

for statistical analysis, additionally, 

preprocessing steps ensured uniformity in data 

intervals while mitigating noise caused by 

sudden surges or gaps in event reporting. 

Inspired by tokenization approaches in natural 

language processing [5], the method transformed 

the time series into sequences by dividing values 

into unequal ranges using quantiles, with an 

adaptive upper bound ensuring robustness to 

future data variations, employed ACWA method 

as an attention-inspired pattern search, assigning 

dynamic weights based on frequency and 

recency, normalized to emphasize significant 

patterns [6]. A custom attention mechanism with 

dynamic ACWA weights improved pattern 

recognition, while residual connections, 

feedforward layers, and attention dropout 

enhanced stability and temporal dependency 

capture. 

By merging raw data with ACWA-derived 

attention, the methodology provides a robust 

framework for addressing the challenges of time 

series forecasting, showcasing the synergy 

between statistical pattern recognition and 

transformer architectures.  

Presented approach was benchmarked against 

ARIMA, LSTM, and regular Transformer 

models, revealing consistent superiority in 

identifying and predicting nuanced temporal 

patterns critical for operational decision-making. 

2. Framework 
 

Transformers, renowned for their attention 

mechanisms, excel at handling long 

dependencies without explicit repetition, 

however, when dealing with small or noisy 

datasets, they risk overfitting, necessitating a 

reduction in layers and heads. To address this, 

we applied a simplified transformer architecture, 

modifying the self-attention mechanism to 

incorporate ACWA-based weights, thereby 

prioritizing critical time steps, and called such 

approach - ChronoTensor. 

In turn, adaptive pattern weighting 

approaches, especially ACWA, have proven 

promising in non-stationary environments, as 

ACWA algorithm systematically assigns 

dynamic weights that depend on researched 

pattern frequency and time decay, allowing it to 

quickly adapt to new modes or signals. 

Such a method systematically collects pattern 

occurrences from historical data and assigns 

dynamic weights based on the frequency and 

time decay of each pattern. The adaptive nature 

of ACWA has brought tremendous value to time 

series use, enabling the model to focus on current 

or relevant historical intervals most likely to 

shape future behavior. 

Thus, the hybrid approach described above 

combined two distinct but complementary 

components, by tokenizing the data, assigning 

robust contextual weights using ACWA, and 

feeding this knowledge into the transformation 

pipeline, we combined local reactivity with 

global contextual awareness. This synergy 

proved particularly effective for OSINT 

collected data, where sudden changes of captured 

mentions of researched frequency for 

"Information Operations" and "Disinformation" 

can have the same impact as underlying multi-

week or multi-month trends. 

2.1. Pattern Recognition 

Tokenization, inspired by text processing in 

NLP, partitions the time series   
               into   unequal ranges (tokens) 

such that each token contains an approximately 

equal number of data points. Token boundaries 

are determined using quantiles: 

       
 

 
   

 

 
(1) 

where     is the inverse Cumulative 

Distribution Function (CDF), each value in the 
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series is assigned to the corresponding token. An 

adaptive upper bound ensures robustness to new 

data values, calculated as:  
 

 

 

                      

 
(2) 

where   is the standard deviation of the series 

and   is a scaling coefficient. This approach 

ensures that the model remains resilient to 

outliers and future extreme values. 

The ACWA method extends the tokenization 

process by identifying patterns in historical data. 

For a given value   , relevant patterns are 

searched using tokens       corresponding to 

each value   . Matched patterns are weighted 

dynamically, with weights    assigned based on 

confidence scores and recency: 
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where    is a confidence score derived from 

the frequency of pattern  ,     is the time 

difference between the pattern’s occurrence and 

the current time, and   is a decay rate parameter 

prioritizing recent patterns. Weights are 

normalized to ensure they sum to 1: 
 

 

 

   
  

   
 
   

  

 

 
(4) 

The ACWA prediction        is computed as 

a weighted average of subsequent values 

following matched patterns: 
 

 

 

              

 

   

 

 

 
(5) 

where     represents the value immediately 

following the  -th matched pattern. 

Multiple pattern lengths (3, 5, 7, 9) were 

tested iteratively to capture varying temporal 

dependencies. The model was retrained and 

evaluated for each configuration to identify the 

optimal pattern length, ensuring the approach 

remained adaptable to diverse forecasting 

scenarios and applications  

Additionally, the tokenization process was 

adjusted to handle multi-dimensional data where 

it’s not used within the chosen dataset it has been 

foreseen to use when it’s applicable, dictionary 

was modified to accommodate extended patterns. 

2.2. Attention Mechanism 

To utilize the transformer’s capabilities for 

sequential data processing, the ACWA method 

was integrated into a simplified transformer 

architecture, where model was adjusted to 

mitigate overfitting by reducing the number of 

layers and tuning hyperparameters such as the 

learning rate and dropout rate. Enhancements 

were introduced to the attention mechanism to 

incorporate ACWA predictions effectively. 

The model input combines normalized time 

series values and ACWA predictions, expressed 

as: 
 

 

 

               
                 

 

 
(6) 

where    is the normalized time series value 

and    
    

 is the corresponding ACWA 

forecast.  

These inputs are first converted through a 

token embedding layer, mapping them to a 

higher-dimensional space optimized for use with 

the transformer model. To encode temporal 

relationships, positional information is added to 

these embeddings, compensating for the 

transformer's inability to inherently recognize 

sequence order. This combined embedding is 

formulated as: 
 

 

 

                                              

                                                
 

 
(7) 

The transformer’s multi-head self-attention 

mechanism was modified to integrate dynamic 

pattern weights derived from the ACWA 

method, enabling it to better capture significant 

temporal dependencies. The self-attention 

computation was adjusted as follows: 
 

 

 

                                                  

                            
   

   
       

 

 
(8) 

where  ,  , and   are query, key, and value 

matrices,    is the dimension of the key vectors, 

and   incorporates ACWA-based weights. 

These weights prioritize patterns with higher 

confidence scores and recency, aligning the 

model’s focus with the most relevant sequences. 

This adjustment enhances the model’s ability to 

recognize critical patterns and improve 

forecasting accuracy. 
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2.3. Model Processing  

In addition an attention dropout layer was 

incorporated to improve generalization and 

reduce overfitting by randomly deactivating 

certain attention connections during training. The 

normalized attention output is processed by a 

simplified position-wise feedforward network: 

 

                                                
                                            

 

 

(9) 

where   ,    are weight matrices, and   , 

   are weights and biases of the feedforward 

layers. Residual connections propagate benefits 

across the encoder, enhancing learning of 

complex representations. For time series 

forecasting, an encoder-only architecture 

simplifies the model by omitting the decoder 

stack, focusing on input dependencies without 

autoregressive decoding. 

The output from the final encoder layer is 

passed through a linear projection layer to map 

the model's hidden states back to the target 

dimension, then combine the transformer's 

prediction with the weighted ACWA prediction 

to produce the final forecast: 

 

     
                                               

                                           

 
(10) 

 

The final transformer output,      
           

, 

is blended with the ACWA prediction, 

     
    

, to produce the final forecast: 

 

               
                                   

                                              
      

 
(11) 

 

where   is a blending coefficient determined 

through validation. This combination leverages 

the global sequence modeling of the transformer 

and the local adaptability of ACWA. 

Gradient clipping (max_norm = 1.0) was 

applied to prevent exploding gradients, and  2 

regularization (weight_decay = 1 × 10−5) 

minimized overfitting. The encoder-only 

transformer design, omitting the decoder, 

reduced complexity and focused on dependency 

modeling within the input sequence. 

These optimizations preserved the adaptive 

nature of ACWA while harnessing the 

transformer’s representational power, enabling 

robust and accurate time series forecasting. 

3. Results and Discussion 
 

The software for each method was developed 

with algorithms tailored to analyze OSINT data 

and forecast trends. Time series data was 

prepared through cleaning and formatting for 

compatibility with all models. Figure 1 shows 

prediction results for smaller (364, one-year) and 

larger (1094, three-years) datasets, providing a 

clear visual comparison between predicted 

within actual series and between methods. 

The inherent noise in observed OSINT 

collected datasets, characterized by sporadic 

spikes driven by real-world events, posed a 

challenge for traditional models. ACWA 

integration mitigates this by emphasizing recent 

and frequent patterns and dynamically 

discounting outdated signals. This allows for 

adaptation in real-time, offering a tailored 

approach well-suited to threat intelligence 

forecasting needs.  

The process was repeated multiple times and 

refined to ensure the generation of the most 

accurate median predictions, enabling a 

comprehensive efficiency comparison across the 

models represented in Table 1, which provides 

averaged over 20 runs results of Root Mean 

Squared Error (RMSE) for each observed model. 
 

Table 1 
RMSE Comparison Across Models 

 One-
year 

Two-
years 

Three-
years 

ARIMA 72.943 69.555 66.910 
LSTM 77.763 77.900 78.997 

Transformer 75.362 76.813 77.775 
ChronoTensor 59.087 61.070 62.038 

 

 

From the achieved we see that ChronoTensor 

demonstrates improvements in short-range 

forecasts estimating an average enhancement of 

18.64% emphasizing the synergy between 

ACWA’s local adaptability and the transformer’s 

global sequence modeling. Such advantage is 

particularly evident in scenarios with abrupt 

shifts or spikes, such as changes in 

“Disinformation” and “Information Operation” 

activity patterns.   

For larger datasets ChronoTensor retains the 

lowest RMSE, although its relative improvement 

over standard transformers diminishes, this trend 

suggests that longer time horizons and increased 

noise levels may reduce the localized weighting 

advantage, particularly with higher embedding 

dimensions or additional layers.  
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Figure 1: The rows show applied forecast methods by 
chosen dataset: actual time series – blue, predicted – 
red, last month segment – grey cut, and truncated 
previous years for better representation – light blue. 

 
 

Nonetheless, the ability to generalize 

effectively across temporal scales underscores 

the strength of combining global attention 

mechanisms with adaptive local pattern 

weighting, which has demonstrated even more 

remarkable improvements in accuracy when 

applied to specific datasets and applications as 

were initially mentioned while testing on circular 

functions. 

While ChronoTensor incorporates gradient 

clipping and layer normalization to address these 

issues [7], future iterations may benefit from 

advanced stabilization techniques, such as 

tailored weight initialization or adaptive 

optimizers, to maintain performance on more 

complex architectures, as well as highlight the 

need for additional automatization for 

hyperparameter tuning [8] that would level up 

developed system. Furthermore, integrating 

meta-learning frameworks could enhance 

adaptability across varying temporal datasets. 

Conclusions 
 

Presented a hybrid forecasting framework 

ChronoTensor which combined the Adaptive 

Contextual Weighted Average method with a 

Transformer architecture to address OSINT time 

series collections with long memory and abrupt 

shifts, demonstrated that ACWA with its 

adaptive nature brought remarkable value in 

highlighting and weighting relevant historical 

patterns, while the transformer effectively 

modeled global sequence dependencies. By 

blending both outputs, we achieved better 

predictive accuracy in comparison to reviewed 

regular Transformer, standard deep learning 

(LSTM), and statistical (ARIMA) baselines, 

especially on datasets where strong persistence 

coexisted with noised and spiky fluctuations. 

Developed research showed that the 

uniqueness of merging ACWA’s pattern-driven 

approach with transformer-based attention 

offered a robust solution for cybersecurity threat 

intelligence for example predicting 

Disinformation in Ukraine frequencies, among 

other domains that demanded both long-term 

memory and short-term adaptability.  
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Moreover, the outcome suggested that the 

transformer's mechanism of assigning relevance 

to different parts of a sequence aligned naturally 

with ACWA’s adaptive weighting of past 

occurrences, reinforcing the notion that “where 

we look” in the time series should be guided by 

pattern confidence and time decay.  

With this real-world application, we 

demonstrated the clear advantages of the applied 

method, showing its ability to outperform 

traditional techniques in adaptive relevance 

assignment. We also discussed ways to enhance 

the solution’s efficiency, with plans to validate 

these improvements in future research. 

Specifically, we aim to explore ChronoTensor’s 

potential by integrating frequency 

decompositions to uncover hidden cycles or 

regularities, potentially addressing performance 

drops on longer datasets [9]. ACWA’s multi-

token or probabilistic extensions could further 

refine sequence processing, while advanced 

ensembling approaches may better capture 

complex nonlinear interactions [10]. 

We also plan to extend the architecture to 

support multivariate and multimodal datasets 

[11], enabling ChronoTensor to process diverse 

data types and contextual nuances. Incorporating 

OSINT sources through entity extraction and 

semantic networks would add richer contextual 

overlays to the framework [12]. These 

advancements could unlock features such as 

advanced weighting functions and real-time 

deployment, significantly improving the 

system’s ability to predict and model the 

occurrence and evolution of Information 

Operations with exceptional precision. 

In doing so, we believed that this synergy of 

time series within the context attention would 

continue to transform the landscape of 

forecasting not only in cybersecurity but even 

beyond established boundaries. 
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