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Abstract  
The article provides a systematic review of modern steganalysis methods for digital images based on 

artificial neural networks. The primary stages of development of advanced cover-image models, from 

widely used artificial neural networks to contemporary hybrid models, are considered. Advantages and 

limitations of various types of neural networks for constructing stegodetectors for digital images are 

investigated. Based on comparative analysis of steganalysis accuracy, it is established that the use of 

advanced artificial neural networks achieves a detection accuracy of steganograms exceeding 90%, 

even at low embedding rates (less than 20%). Additionally, applying complex methods of processing 

both examined images, and feature vectors in multidimensional spaces with studied neural networks 

allows reducing the computational complexity of configuring stegodetectors without significant losses 

in stego images detection accuracy. 
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Introduction 

Given the rapid growth in volumes of digital 

data circulating, processed, and stored in 

information and communication systems, there is 

an increasing need for effective protection of 

sensitive information (SI). Special attention of 

developers of restricted access information 

protection systems is devoted to early detection 

of covert communication channels, which are 

widely used by intruders for unauthorized SI 

transmission. In particular, this relates to 

counteraction to military, industrial, political 

espionage, and prevention of terrorist attempts to 

name a few. 

The novel adaptive steganographic methods, 

such as WOW, HILL, or S-UNIWARD [24, 23, 

1], have become widely used in order to help 

increasing the robustness of the resulting 

steganograms against widespread methods of 

steganalysis of digital cover files, especially 

digital images (DI). This is due to the embedding 

of data (stegodata) into cover images (CI) while 

considering the values of their local 

characteristics, such as statistical and spectral 

parameters of each block of CI partitioning [19]. 

A significant number of modern steganalysis 

methods have been proposed to reveal the 

created stego images. Among these statistical 

methods based on analyzing changes in statistical 

parameters of the examined image, caused by 

message embedding, are most widely used [25]. 

This increases the probability of detecting 

messages embedded with classical 

steganographic methods (such as the LSB 

group). However, the effectiveness of these 

statistical detectors is significantly reduced in the 

case of data embedding in adaptive way and low 

embedding levels (payload) of steganographic 

data into the CI (less than 10%). 

One of the promising directions in developing 

novel steganalysis methods is the application of 

artificial neural networks (ANN) [10]. 

Significant advantage of this approach is the 

capability of neural networks to detect and 

generalize weak (insignificant) deviations from 

CI in coefficient values or pixel brightness 

values of DI [10, 9]. This allows detection and 

analysis of unmasking features of stego images 

without usage of pre-configured statistical 

models of CI. This feature of ANN-based 

stegodetectors (SD) is of particularly interest for 

cases of revealing of stego images formed 

according to prior unknown embedding methods. 
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Comparative analysis results [10] of such SD 

confirmed the expediency of transitioning from 

traditional statistical detectors to machine 

learning based methods, which do not require 

forming a large set of pixel brightness values that 

are set prior the analysis. Furthermore, applying 

of novel approaches for designing of ANN 

allows for additional improve the accuracy of 

such SD [10, 9]. 

To overcome the limitations of SD based on 

neural networks, a number of approaches have 

been proposed, such as multilevel processing of 

CI [45], global averaging of statistical 

parameters of DI [21], focusing the ANN 

“attention” on regions of the analyzed image 

where small brightness or color variations are 

visually less noticeable [22], and employing 

reinforcement learning methods [13]. However, 

open-source literature does not include 

information regarding achievable accuracy of SD 

based on the mentioned approaches. This 

complicates the selection of an appropriate type 

of ANN for design detectors due to the necessity 

to examine several ANN architectures. It leads to 

increased duration in SD construction that may 

be inapplicable for real usage. 

Thus, we may conclude that comparative 

analysis of modern approaches to constructing 

ANN-based SD is topical and important task 

today. In particular, it is of interest to investigate 

the influence of modern ANN characteristics 

(such as ResNet blocks, attention mechanisms, 

reinforcement learning, and methods of 

transforming feature vectors in multidimensional 

spaces) on detection accuracy of stego images, 

formed according to adaptive steganographic 

methods. The paper explores the achievable 

accuracy of ANN-based SD when embedding 

steganographic data in both spatial and frequency 

domains of the CI. 

The structure of the paper is as follows: the 

review of used terms and abbreviation in the 

domain of DI steganalysis is presented in the 

Section 1. The Section 2 is devoted to a literature 

review for the current overall state of the ANN 

based SD. The Section 3 follows with the review 

of the most popular and latest SD models. The 

Section 4 is dedicated to a comparative analysis 

of the reviewed models. Next, the Section 5 

contains discussions based on finding of the 

previous section. The Section 6 presents 

conclusions of the paper. 

 

 

1. Preliminaries 
1.1. Digital images steganography 

Steganography is a branch of science that 

studies models, methods, and means of 

embedding messages (stegodata) into physical 

and digital information carriers while 

maintaining minimal visual changes. One of the 

most common types of cover files is DI, 

primarily due to their widespread usage in global 

and local information systems, as well as the 

availability of numerous processing methods. 

This significantly simplifies the masking of 

minor pixel brightness changes caused by 

embedding stegodata into the CI [17, 40]. 

In the field of digital steganography, 

numerous methods for embedding messages into 

CI have been proposed. These methods are based 

on embedding stegobits through modifications of 

pixel brightness values of the CI or changes in 

the coefficients obtained from image 

transformations (e.g., when using a two-

dimensional discrete cosine transform, 2D DCT). 

Depending on the specifics of the stegodata 

embedding process into DI, particularly the 

magnitude of brightness changes in the pixels of 

the CI, known steganographic methods can be 

divided into two groups [17]: 

 non-adaptive methods, where changes in 

pixel brightness occur with approximately 

equal probability regardless of their position 

in the DI, typically resulting in a uniform 

distribution of changes throughout the CI. 

Examples include the group of LSB 

methods, embedding stegobits using 

pseudo-random sequences, etc. 

 adaptive methods, which account for the 

specifics of the distribution of brightness 

values within the CI to minimize changes in 

its statistical characteristics during the 

creation of steganograms. This allows for 

masking message embedding by altering 

pixel brightness in textured regions of the 

image. Examples include WOW, HILL, S-

UNIWARD methods, and others [16, 26, 

36]. 

To minimize distortions of the statistical and 

spectral parameters of the CI when forming 

steganograms, additional processing stages of 

stegodata can be used, such as message encoding 

using syndrome-trellis codes. This allows 

reducing the message bit-size while ensuring 

robustness against possible changes in individual 
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bit values, thus decreasing the number of CI 

pixels used to embed the message [16, 2]. 

To quantitatively assess the degree of CI 

changes caused by message embedding, the 

embedding rate indicator (∆α) is used. This 

indicator reflects the number of bits per pixel 

(Bits Per Pixel, BPP) that can be hidden in a 

single pixel of the CI at a given level of changes 

to statistical and spectral parameters. It is 

generally accepted in the literature that message 

embedding at values ∆α ≤ 20% provides a 

compromise between the message size and the 

robustness of the resulting steganograms to 

detection methods. With increasing embedding 

rates (∆α ≥ 40%), a steganographer can embed 

more stegobits into the CI at the expense of 

reduced resistance to steganalysis methods. 

Depending on the approach used for 

embedding stegobits into the CI, known 

steganographic methods can be divided into two 

groups: embedding in the spatial domain of the 

CI and embedding in the transform domain. 

When embedding messages in the spatial 

domain, individual stegobits are hidden by 

changing the brightness values of a selected 

group of pixels from CI [32, 15]. It should be 

noted that the majority of methods for detecting 

steganograms embedded in the spatial domain 

are based on detecting weak changes in the 

degree of correlation between the brightness 

values of neighboring pixels. Detection is carried 

out by analyzing deviations in statistical 

parameters of pixel distributions caused by 

embedding hidden data. For instance, the 

Subtractive Pixel Adjacency Matrix (SPAM) 

method is based on assessing changes in the 

distribution of brightness differences between 

pairs of neighboring pixels. SD are configured by 

comparing these characteristics with 

corresponding parameters obtained from 

processing original (unmodified) CI [43, 39]. 

In the case of message embedding in the 

transform domain of DI, the transform 

coefficients of the CI in the chosen transform 

basis undergo changes. An example of methods 

based on this approach is JPEG steganography. 

These methods involve adaptive or nonadaptive 

modifications of block-based DCT coefficients 

to minimize visual distortions of the CI and 

ensure robustness of the created steganograms 

against possible transformations, especially lossy 

compression [44, 41, 53].  

 

 

 

1.2. Digital images steganalysis 

Steganalysis methods are used to detect 

formed steganograms. Currently, a wide range of 

DI steganalysis methods has been proposed, 

including signature-based detection, statistical 

and spectral analysis methods [17, 31, 3]. One of 

the widespread steganalysis directions involves 

building SD based on complex statistical models 

("rich models"). These methods are based on 

combining several "simple" statistical models 

into a single (complex) model to enhance 

detection accuracy of subtle distortions 

introduced by steganographic embedding. The 

selection of these individual "simple" models is 

aimed at capturing as many parameters of the 

processed DI as possible. For instance, intra-

block differences are computed as deviations 

between neighboring pixels (or their coefficients) 

within one DI partition block (most commonly 8 

× 8), while inter-block differences encompass 

similar deviations between adjacent DI blocks. 

Resulting statistical parameters (both intra- and 

inter-block) can be combined and used to train a 

classifier that identifies differences caused by 

steganographic embedding [18, 34, 27]. To 

further increase detection accuracy, calibration 

methods for DIs are widely applied [48]. 

Calibration involves identifying differences 

between processing results of original CIs and 

steganograms using standard image processing 

techniques [33, 34, 41]. 

The continuous improvement of 

steganographic methods, particularly involving 

generative adversarial networks (GAN) [34, 47], 

necessitates corresponding enhancements in SDs 

to ensure high detection accuracy (exceeding 

95%). One modern direction in the development 

of SDs involves using an ensemble of classifiers 

capable of incorporating multiple feature types 

and adapting to changes in stego-bit distributions 

within CIs (e.g., via domain adaptation or 

ensemble processing) [34, 28, 36, 54]. 

As a preventive measure, active steganalysis 

methods aimed at damaging or destroying 

(destructing) hidden stegodata may also be 

employed. One contemporary direction for 

improving stegodata destruction methods is 

determining pixel positions in the CI used for 

embedding specific stego-bits. Utilizing this 

information enables targeted modifications of 

processed DI, effectively masking interference in 

the steganographic transmission channel [41]. 
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2. Literature Review 

A significant portion of existing steganalysis 

methods is based on constructing SD by 

identifying differences between statistical, 

spectral, and structural parameters of CI and 

steganograms [17, 34, 27]. As an example, 

modern steganalysis methods utilizing complex 

statistical image models can be mentioned, such 

as Markov models and Gabor-filter residuals [43, 

18, 33]. Due to the large number of image 

features used in various statistical models (which 

can reach approximately 40,000), ensemble 

classifiers are employed to configure SDs, 

achieving high steganogram detection accuracy 

(above 90%) even at low embedding rates (∆α ∈ 

[10%;20%]) [16, 36, 2]. When embedding 

stegodata in the transform domain, a common 

approach to detecting formed steganograms 

involves statistical analysis of transform 

coefficients and calibration methods of the 

processed DI [7, 33, 41]. This allows for more 

precise detection of weak anomalous shifts in the 

transform coefficients of DI, particularly 

violations of typical statistics [26, 39, 44]. 

Given the difficulty of reliably detecting 

formed steganograms and the proliferation of 

steganographic methods based on generative 

models (e.g., GAN, CycleGAN), active 

steganalysis methods are increasingly being 

employed as a preventive measure. 

The need to counteract these methods 

motivates the development of new steganalysis 

approaches that not only detect but also remove 

or distort hidden data by combining calibration 

procedures with ensemble classifiers [7, 26, 30]. 

One of the contemporary approaches to 

constructing these methods is the application of 

ANN [7]. However, the information available in 

open sources about such ANNs is limited, 

complicating their comparison. 

Therefore, the purpose of this paper is to 

provide an analytical review of modern ANN-

based SDs to identify the advantages and 

limitations of their practical application. The 

study focuses on the formation of steganograms 

using adaptive embedding methods (namely 

WOW, HILL, S-UNIWARD, etc.) and variations 

in embedding rates ∆α across a wide range. 

Subsequent sections review common ANN 

architectures (e.g., QianNet, XuNet, YeNet, 

YedroudjNet, and others), present results from 

comparative analyses of steganogram detection 

accuracy using these models, and discuss the 

advantages and limitations of their practical 

applications. Particular attention is given to the 

impact of embedding rate (∆α) on detection 

accuracy, computational resource requirements, 

and the ability of various models to detect data 

hidden using adaptive methods in different 

embedding domains. 

3. Steganalysis Methods Based on 
Convolutional Neural Networks 

This section provides a comparative analysis 

of ANN construction features for solving 

steganogram detection tasks. A significant 

advantage of using ANN to build SD, compared 

to traditional statistical SD, is the automatic 

identification of revealing features during SD 

training. This eliminates the need for prolonged 

manual feature identification by the analyst, thus 

accelerating the SD training process. 

The following subsections examine the most 

commonly used ANN architectures employed in 

contemporary SD development. The 

characteristics of each neural network type are 

analyzed, along with the advantages and 

limitations of their practical application in 

Figure 1: Structural architecture of the QianNet artificial neural network according to paper [11] 
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detecting steganograms and localizing stegobit 

embedding positions within CI pixels. 

3.1. QianNet Model 

The QianNet model, proposed in [11], was 

among the first ANN adapted for solving image 

steganalysis tasks. Specifically, this model 

enables all stages of steganogram detection 

(including extraction of statistical parameters 

from the processed DI and subsequent 

classification) without prior manual 

identification of the features revealing hidden 

messages. 

The structural scheme (architecture) of the 

QianNet model is shown on figure 1. 

The architecture of the QianNet network 

comprises five convolutional layers (fig. 1). A 

distinctive feature of these layers is the use of a 

special activation function type, specifically 

based on the Gaussian function: 

 

f(x) = exp(−αx
2
),                     (1) 

 

where α is frequently set at 1 to moderately 

"compress" large values and enhance small 

deviations (brightness changes of 1−2 units in 

the range from 0 to 255). The use of activation 

function (1) amplifies minor brightness 

variations in CI pixels arising from stegobit 

embedding. 

Data obtained at each convolutional layer’s 

output in the QianNet network is processed using 

average pooling with a sliding window (kernel) 

size of 2 × 2 or 3 × 3 pixels. 

At the last convolutional layer’s output, data 

is forwarded to the classification block (1). This 

block consists of several fully connected layers, 

whose outputs utilize the softmax function: 

 

             
   

  
  

 
,                  (2) 

where zi represents outputs of the i-th neuron. 

Values of the softmax function (2) correspond to 

the probabilities of classifying the analyzed DI as 

either a CI or a steganogram. 

The increased detection accuracy of SDs 

based on QianNet, combined with relatively low 

computational complexity, spurred further 

research in this direction. Researchers 

particularly focused on adapting this model for 

localizing stegobit embedding positions by 

modifying preprocessing layers. 

3.2. XuNet Model 

The XuNet artificial neural network [20] was 

proposed by Xu, Shi, and collaborators. A 

distinctive feature of this network is the use of an 

ABS layer of artificial neurons at the first stage 

of processing the investigated DI, in combination 

with convolutional layers. The ABS layer is 

applied to improve the accuracy of detecting 

deviations in the statistics of pixel values (or 

transform coefficients) by employing the 

operation y = |X| on the feature vectors obtained 

at the outputs of the network’s convolutional 

layers. 

Unlike the QianNet network, the data 

processing at the output of the fully connected 

Figure 2: Structural architecture of the YeNet artificial neural network according to paper [29] 
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layers in XuNet is performed using the tanh 

activation function in the first two layers of 

artificial neurons, and the ReLU activation 

function [38] in the subsequent layers. To reduce 

the variability of the values of the elements in the 

feature vectors at the output of each 

convolutional layer and, accordingly, to increase 

the robustness of the model tuning procedure to 

changes in the distribution of statistical 

parameters of the DI, the batch normalization 

(BN) procedure is applied during the 

configuration of the XuNet model: 

 

                 
    

   
   

  

where µB and σB
2 
are the mean and variance of 

the values of the feature vector elements for the 

processed batch of feature vectors, and γ and β 

are parameters used to normalize the output 

vectors at each layer of the network. This ensures 

robustness to potential perturbations of the 

network’s parameters during the configuration of 

the SD. The parameter ε is a small constant (on 

the order of 10
−5 

or 10
−8

) introduced to ensure 

numerical stability during the computation of the 

normalized values. 

3.3. YeNet Model 

A distinctive feature of the YeNet network 

[29] is the use of a group of filters proposed for 

the statistical SRM model, instead of a single 

high-pass filter in the input layers of the network, 

which is characteristic of earlier ANN-based SD 

such as QianNet. This approach made it possible 

to improve the accuracy of detecting subtle 

changes in pixel intensities of the CI caused by 

message embedding by approximately 5–7% 

compared to the QianNet network, assuming the 

use of S-UNIWARD at ∆α ≈ 20% [49]. 

The configuration of the YeNet network Is 

performed in several stages. In the first step, the 

parameters of the input convolutional layers are 

initialized by employing a group of 30 SRM 

filters as convolution kernels of size 5 × 5 pixels. 

In the second step, the output of each 

convolutional layer is processed using the TLU 

activation function: 

 

        
      

         
       

  

 

where T is a threshold value in the truncated 

linear unit (TLU) function, which limits the 

output amplitude and typically equals 3. In total, 

the YeNet network consists of ten convolutional 

layers (fig. 2), which employ either the ReLU or 

TLU activation functions. The output of the last 

convolutional layer is passed to fully connected 

artificial neural layers for assigning the 

processed image to either the cover or stego 

class. 

3.4. YedroudjNet Model 

In the study [37], the authors proposed 

combining the previously discussed neural 

networks XuNet [20] and YeNet [29] in order to 

merge their advantages. This resulted in the 

construction of the artificial neural network 

YedroudjNet, whose architectural diagram is 

shown in fig. 3. 

The first two convolutional layers of the 

network use the TLU activation function (fig. 3), 

while the next three layers apply the ReLU 

function. To reduce the dimensionality of the 

feature vectors at the output of intermediate 

layers, the YedroudjNet network employs an 

averaging procedure. At the output, classification 

of the analyzed image is performed using two 

fully connected layers of artificial neurons. The 

use of a double fully connected structure enables 

a reduction in the false decision rate by 

Figure 3: Structural architecture of the YedroudjNet artificial neural network according to paper [37] 
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approximately 0.5–1% compared to the single-

layer design used in the YeNet model. 

 

 

3.5. ZhuNet Model 

The ZhuNet network [14] is a further 

development of the previously discussed neural 

networks (XuNet, YeNet, and YedroudjNet). In 

designing this architecture, the authors proposed 

the use of not only a group of SRM filters within 

the convolutional layers but also a specialized 

convolutional procedure known as separable 

convolution, to further enhance the detection of 

subtle changes in cover image parameters caused 

by steganogram embedding [8]. 

A key feature of separable convolution is the 

use of convolution kernels of size 3 × 3 × B 

(where B is the number of images in the input 

batch), followed by averaging the resulting 

outputs using a sliding window of size 1 × 1 × B 

pixels. This approach enables more efficient 

extraction of both spatial and inter-channel 

features, while maintaining fixed computational 

complexity. 

To further improve the accuracy of SD based 

on the ZhuNet model, the authors proposed using 

a feature averaging method based on the pyramid 

decomposition of the CI [42]. This method 

involves multi-level partitioning of the extracted 

features into groups of elements at different 

scales, followed by averaging the values within 

each cell. As a result, a final matrix is formed 

that captures characteristics of the CI across 

multiple levels of detail simultaneously and 

adapts to variations in its size or aspect ratio. 

This contributes to improved robustness of the 

network to input image scale or proportion 

changes, thereby enhancing the overall detection 

accuracy of steganograms. 

3.6. SRNet Model 

The SRNet (Spatial Residual Network) 

architecture [6] was proposed as one of the first 

neural network models capable of detecting 

changes in CI parameters caused by message 

embedding in both the spatial and frequency 

domains. A key feature of this network is the use 

of residual blocks, which allow the depth of the 

network to be increased without encountering the 

adverse effects of gradient vanishing. 

When applying the SRNet model to an image, 

the following sequence of transformations is 

performed: 

 

                                

 

where l = 1,...,L is the layer index, W
(l) 

is the 

convolution kernel, b
(l) 

is the bias vector, σ(·) is 

the activation function (e.g., ReLU), and * 

denotes the convolution operation. 

The distinguishing feature of residual blocks 

lies in the use of skip connections between layers 

k and k + 1 [51]: 

 

                                   

        

This structure enables improved gradient flow 

during the training of deep networks with a large 

number of layers (25–30) [18]. In the SRNet 

model, the depth can reach up to 25–30 layers 

(incorporating both T2 and T3 block types), 

which enhances its ability to detect even weak 

steganographic signals at low payload rates (e.g., 

∆α ≈ 20%). 

3.7. MRS-Net Model 

The MRS-Net (Multi-Resolution Steganalysis 

Network) was proposed in [45] to improve the 

detection accuracy of stego images at low 

embedding rates (∆α). To address the issue of 

diminishing feature values in consecutive 

convolutional layers, the authors suggested using 

parallel processing branches with convolutional 

kernels of varying sizes. 

At the first stage of MRS-Net operation, the 

input image X is processed by a set of SRM 

filters [45]: 

 

                             

   

   

where hp,q are the elements of one of the 30 

SRM kernels. 

The resulting features XHPF are then 

distributed among m parallel branches 

(subnetworks): 
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each of which performs convolutions at 

different scales. 

At level k, the feature representation is 

computed as: 

 

  
     

     
    

   

 

where Wk is the convolutional kernel for the l-

th layer in the k-th subnetwork and σ(·) is the 

activation function (typically ReLU). 

This architecture allows MRS-Net to capture 

multiscale spatial information, thereby 

improving the detection of subtle changes in 

cover images caused by steganographic 

embedding under low payload conditions. 

3.8. ResFormer Model 

The ResFormer model is based on a hybrid 

architecture that combines residual blocks with a 

projection method for feature vectors into a 

multidimensional space [35, 50, 55], aiming to 

reduce the number of parameters required for 

model training while maintaining high 

steganogram detection accuracy [35].  

The ResNet architecture (fig. 4) consists of a 

sequence of convolutional layers, each 

computing the activation F
(l)  

using the equation: 

 

                                

where σ(·) denotes the activation function, 

W
(l) 

and b
(l) 

are the convolutional kernel and bias 

vector respectively, and * denotes the 

convolution operation with appropriate stride and 

padding. 

A key role in the operation of ResFormer is 

played by the skip connection mechanism, which 

enables signals to bypass the main path of the 

network. Specifically, if F
(k) 

is the output of layer 

k, then layer k + 1 receives both the transformed 

and the original signal: 

 

                                   

       

These features of the ResFormer model help 

mitigate the vanishing gradient problem and 

make it feasible to train deep networks with a 

large number of layers. 

4. Comparative Analysis of Detection 
Accuracy for Stegodetectors Based on 
Artificial Neural Networks 

Given the application of the considered types 

of ANN in the design of steganalyzers, it is of 

practical interest to conduct a comparative 

analysis of their detection accuracy in the case of 

steganograms formed using modern adaptive 

steganographic methods. 

It is worth noting that the literature lacks 

standardized results for evaluating these 

networks under identical test image datasets and 

embedding techniques. Therefore, this study 

presents a comparative performance assessment 

of ANN-based steganalyzers under harmonized 

testing conditions — using the same dataset of 

test images and identical steganographic 

embedding methods. The results of the analysis 

are presented in Table 1. 

Based on testing using BOSSBase and 

BOWS2 datasets [4], the majority of ANNs 

(QianNet, XuNet, YeNet, YedroudjNet) 

demonstrate detection accuracies in the range of 

70–80% for low embedding rates (∆α ≈ 20%), 

depending on the specific steganographic method 

(WOW, S-UNIWARD, or HILL) and the test set 

used. 

According to recommendations in [11], 

QianNet is typically trained on BOSSBase using 

Figure 4: Structural architecture of the ResFormer 

artificial neural network according to paper [35] 
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a 60/20/20 split for training, validation, and 

testing. Compared to traditional SPAM-based 

detectors [43], QianNet improves detection by 

approximately 3–4%. However, under more 

complex scenarios (e.g., SRM+EC [18, 27]), 

QianNet may underperform by 5–6%.  

YeNet offers a 2–3% improvement over 

XuNet while YedroudjNet surpasses YeNet by 

an additional 1.6–2% at ∆α = 20%, nearly 

matching the SRM+EC baseline at moderate 

embedding rates of ∆α ∈ [30%;40%]. 

ZhuNet further outperforms YedroudjNet by 

2–3% at ∆α = 40%, with differences up to 7–8% 

relative to simpler ANNs. 

SRNet, which does not require SRM filter 

initialization, achieves over 90% accuracy even 

at low embedding levels (∆α ≈ 20%), albeit with 

higher computational demands. 

MRS-Net maintains high-resolution feature 

extraction via multi-branch processing and yields 

2–3% higher accuracy than SRNet, particularly 

for ∆α ∈ [20%;40%], though it requires more 

memory and training time. 

Finally, ResFormer combines residual blocks 

with high-dimensional projection layers, 

reducing the total number of parameters by 

approximately 90% compared to SRNet and 

improving detection accuracy by 2–5%, 

depending on the method (WOW, S-UNIWARD, 

HILL) and the chosen ∆α. 

5. Discussions 

Based on the comparative analysis of 

detection accuracy for steganalyzers built using 

ANN such as QianNet, XuNet, YeNet, and 

YedroudjNet, it was found that the achievable 

detection accuracy on standard digital image 

datasets (e.g., BOSSBase) ranges from 68.7% to 

77.4% for medium levels of cover image payload 

(∆α ∈ [20%;40%]) and modern types of 

steganographic methods [11, 20]. The use of the 

ZhuNet architecture enables an increase in 

detection accuracy up to 84.5% at ∆α = 40%, 

which outperforms XuNet and YeNet, although 

it requires additional time for steganalyzer 

training and configuration [12]. 

In contrast, applying deep ANN models — 

such as SRNet, which includes up to 25 layers — 

makes it possible to achieve high detection 

accuracy (above 80%) even for low embedding 

levels (∆α ∈ [10%;20%]) [6, 22]. A significant 

practical advantage of SRNet is its independence 

from high-pass filtering operations when 

processing digital images. However, the practical 

deployment of SRNet-based steganalyzers 

requires longer training times and large datasets 

due to the depth and complexity of the 

architecture [52]. 

The use of parallel feature extraction in the 

MRS-Net model reduces computational 

complexity during training while maintaining 

accuracy in the evaluation of image 

characteristics, particularly high frequency 

components [45]. Experimental studies have 

confirmed that the detection accuracy of MRS-

Net based steganalyzers improves by 

approximately 2–3% compared to SRNet in 

scenarios with ∆α ∈ [20%;40%] [45, 10]. 

The hybrid model ResFormer combines 

residual blocks with feature transformation 

layers. The use of attention mechanisms enables 

the network to emphasize the influence of 

elements in adjacent layers and compactly 

represent their interdependencies, while the 

residual blocks allow the network to effectively 

process residual signals. This approach reduces 

the number of parameters by more than 90% 

compared to SRNet while maintaining the 

desired level of detection accuracy [35]. 

Thus, the ResFormer architecture integrates 

the advantages of SRNet — notably, its ability to 

model dependencies in brightness variations 

between adjacent pixel groups — and those of 

MRS-Net, by enabling the network to focus on 

textured regions in the image that are more likely 

to be targeted for steganographic embedding [5]. 

6. Conclusion 

This paper presents results of comparative 

analysis of state-of-the-art stegodetectors based 

on artificial neural networks. The state-of-the-art 

ANN architectures (such as QianNet, XuNet, 

YeNet, YedroudjNet, ZhuNet, SRNet, MRSNet, 

and ResFormer) were reviewed, and their 

detection accuracy was analyzed under various 

evaluation conditions (for example, by changing 

of steganographic payload from 20% to 40%). It 

was shown that first convolutional neural 

network models (e.g., QianNet, XuNet, YeNet 

models) improve detection accuracy by 

approximately 2–3% compared to statistical 

detection methods (such as those based on SRM 

filters, SPAM/CC-PEV statistical models, or rich 

cover models). However, performance of ANN-

based SD in case of usage of adaptive embedding 

methods (like HILL or WOW) at low payload 
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rates (up to 20%) remains insufficient for 

practical steganalysis applications (the detection 

accuracy is about 68–79%). 

The development of steganalyzers   based   on 

YedroudjNet and ZhuNet models made it 

possible to further improve detection accuracy 

(up to 80-85%) due to the application of 

specialized convolution techniques, the use of 

SRM filters for preprocessing, and spatial-

pyramid averaging of  

 

extracted feature vectors. Meanwhile, SRNet 

and MRS-Net models achieved even higher 

accuracy levels (up to 90–93%), although they 

require greater computational resources. 

Recent advances in digital image steganalysis 

research [35] focus on applying of hybrid 

approaches that incorporate ResNet blocks and 

feature transformation in multidimensional 

spaces.  

Specifically, the application of the ResFormer 

model in steganalyzer design reduces the total 

number of parameters by more than 90% 

compared to SRNet, while maintaining the 

similar detection accuracy. This makes such 

ANN architectures promising candidates for 

practical deployment in real-time steganogram 

detection systems that maintain high levels of 

accuracy (above 90%). 
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