
 

Abstract. The article addresses the problem of modeling competition between two artificial 

intelligence systems (AI-1 and AI-2) that interact within a shared environment under limited resources 

such as users and energy. The study focuses on analyzing the strategic behavior and adaptability of 

these systems, as well as their impact on competitive outcomes through mathematical models and 

methods, including differential equations, the Lancaster model, and Boyd cycles (OODA-loop). 

Special attention is given to formalizing the interaction of systems using basic primitives 

("Condition," "Loop," "Function") and their compositions, enabling the description of complex 

behavioral strategies of AI systems. The paper presents a detailed mathematical formalization of the 

dynamics of user and energy distribution between systems, taking into account factors such as user 

satisfaction, response accuracy, query processing speed, and energy efficiency. The research also 

includes numerical calculations and simulations demonstrating how initial conditions and system 

parameters influence competitiveness. The proposed models can be applied for predicting AI system 

behavior in real-world scenarios such as information campaigns, cyber conflicts, and resource 

optimization in digital environments. 

Keywords: AI system competition, Lancaster model, Boyd cycles, differential equations, energy 

efficiency, user satisfaction, information warfare, cybersecurity, Adversarial AI, interaction 

simulation 

 

 

Introduction 

In the modern digital world, where artificial 

intelligence (AI) technologies are constantly 

evolving, competition among large language 

models (LLMs) is becoming increasingly 

significant. These models, capable of 

generating text, responding to user queries, 

and interacting with humans in natural 

language, are becoming key players in the 

information landscape. However, their 

effectiveness and popularity depend not only 

on technical specifications but also on the 

strategies they employ to attract users and 

optimize resources. 

One of the most important factors 

determining an LLM's success is users and 

energy consumption. A larger user base 

provides the model with more data for training 

and improvement, as well as increasing its 

market influence. However, this also leads to 

increased energy consumption, since 

processing large volumes of data requires 

substantial computational resources. 

Conversely, efficient energy use can allow a 

model to operate faster and more accurately, 

which in turn attracts more users. Thus, the 

competition between LLMs forms a complex 

dynamic in which each model strives to gain 

an advantage through strategic optimization. 

Modern LLMs are not limited to traditional 

means of market competition, such as 

advertising or price reduction. They actively 

employ interdisciplinary adaptation 

techniques, particularly knowledge distillation 

– a method that allows them to improve 

performance, reduce resource consumption, 

and increase user satisfaction. Moreover, 

models continuously analyze the behavior of 

their competitors to respond promptly to 

changes in the environment and adapt their 

strategies accordingly. This creates a unique 
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situation in which competition between AI 

systems becomes not only a technical but also 

a strategic challenge. 

State of the Art 

In studying competition among LLMs, 

there are already several approaches that 

consider various aspects of their interaction. In 

particular, works [1] and [2] explore 

competitive artificial intelligence models, 

analyzing interactions among large language 

models in different scenarios. 

In [3], the focus is on using knowledge 

distillation to enhance system performance, 

allowing models to utilize available resources 

more efficiently. 

Issues of energy efficiency are also being 

studied, which have become especially 

relevant in the context of growing 

computational scales [4], [5]. 

However, existing studies often overlook 

the strategic interaction between systems, 

focusing primarily on technical aspects. For a 

deeper understanding of competition among 

LLMs, it is necessary to apply comprehensive 

models such as the Lancaster model [6], which 

describes the dynamics of interaction between 

opposing parties, or the Boyd cycle (OODA-

loop) [7], which formalizes real-time decision-

making processes. 

These approaches allow consideration not 

only of quantitative metrics but also of 

strategic thinking, adaptability, and system 

responses to environmental changes. 

Thus, the current research objective is to 

develop mathematical models that enable 

predicting the behavior of LLMs in 

competitive environments, taking into account 

their interaction over resources and users. This 

will provide the opportunity not only to 

analyze existing trends but also to design new 

strategies for improving the efficiency and 

resilience of AI systems. 

No-Code Programming Framework 

To address the challenge of modeling 

competition between artificial intelligence 

systems, AI itself was used as the primary 

toolset. To ensure clarity and formalization of 

tasks assigned to the AI, structured prompts 

were employed—built upon a no-code 

programming framework described in the 

preprint [8]. 

This approach allows for the formalization 

of system interaction logic through three core 

primitives: "Condition," "Loop," and 

"Function," along with methods for their 

composition to create complex algorithms. 

The "Condition" primitive enables 

modeling decision-making logic based on the 

evaluation of predefined criteria. The "Loop" 

primitive provides the ability to perform 

iterative data processing, which is especially 

important for analyzing dynamic processes. 

The "Function" primitive offers tools for 

abstraction and reuse of complex operations, 

such as strategy generation or performance 

evaluation. 

The use of this framework enabled the 

creation of prompts that not only clearly define 

tasks but also ensure their execution in the 

form of sequential instructions interpreted by 

large language models. This approach ensures 

transparency, reproducibility of results, and 

adaptability to various competition scenarios. 

Main Content 

Description of the behavior of two LLMs 
competing for energy and users 

Let us assume two models, 
A

LLM  and 

B
LLM , are operating within a shared 

environment where they acquire resources 

(energy) and users based on their performance 

and popularity. 

Each model has an objective: to maximize 

the number of users and the amount of 

resources it obtains. 

To mathematically formalize the interaction 

between two LLMs using differential 

equations, we can adopt an approach that 

accounts for the dynamics of user and energy 

resource distribution between the systems. The 

core idea is to describe changes in the state of 

the system as functions of time, employing 

appropriate mathematical tools. 

The following variables and parameters are 

considered: 

 
A

U t( )  – number of users of 
A

LLM  at 

time t; 
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 
B

U t( )  – number of users of 
B

LLM  at 

time t; 

 
A

E t( )  – energy of 
A

LLM  at time t; 

 
B

E t( )– energy of 
B

LLM  at time t; 

 S t( )  – entropy of the system at time t. 

The total number of users and amount of 

energy in the system is constant: 

1

1

A B

A B

U t U t

E t E t

( ) ( ) ,

( ) ( ) .

 

 
 

Differential Equations for User Dynamics 

The rate of change in the number of users, 

A
U t( )  and 

B
U t( ) , depends on the models’ 

strategies and their effectiveness. Assume: 

 The rate of change 
A

U t( ) in users of 

A
LLM  is proportional to the difference 

in strategy effectiveness between 

A
LLM  and 

B
LLM . 

 Strategy effectiveness depends on 

available energy. 

Mathematically, this can be expressed as: 

   1 2
A

A B A B

dU
k E E k U U

dt
,       

where: 

 
1

0k   – coefficient representing the 

impact of energy on user acquisition. 

 
2

0k   – coefficient representing the 

impact of the current user difference 

on its rate of change. 

Similarly, for 
B

U t( ) : 

B A
U t U t

dt dt

( ) ( )
.   

Energy is reallocated based on conditions 

(e.g., if one model has more users, it receives 

additional energy). This can be formalized as 

follows: 

 

 

3

4

0

0

A
A B

B A

E t
k U U

dt

k U U

( )
max ,

max , ,

     

    

 

where: 

0 1.    – threshold value indicating a 

significant user advantage (e.g., 0.1); 

3
0k   – coefficient controlling the rate 

of additional energy allocation to 
A

LLM ; 

4
0k  – coefficient controlling the rate 

of additional energy allocation to 
B

LLM ; 

For 
B

E t( ) , the analogous expression is: 

B A
E t E t

dt dt

( ) ( )
.   

 

The complete system of differential 

equations describing the dynamics of the 

system is: 

   1 2
A

A B A B

dU
k E E k U U

dt
,       

B A
U t U t

dt dt

( ) ( )
,   

 

 

3

4

0

0

A
A B

B A

E t
k U U

dt

k U U

( )
max ,

max , ,

     

    

 

B A
E t E t

dt dt

( ) ( )
.   

Initial Conditions: 

0 0 5 0 0 5

0 0 5 0 0 5

A B

A B

U U

E E

( ) . , ( ) . ,

( ) . , ( ) . .

 

   
Model 

A
LLM  or 

B
LLM  increases its share 

of users if its strategy proves more effective 

(depending on energy and the current 

distribution). 

Energy is reallocated in favor of the model 

that gains a significant user advantage. 

The system evolves from high entropy 

(uniform distribution) to low entropy 

(dominance of one model). 

Formulation of the Problem as a Structured 
Prompt for LLM 

Using the no-code programming 

framework, we formulate the problem as a 

structured prompt that can later be executed by 

simply specifying the number of iterations and 

the power ratio between the systems. 

Iterative Approach 

Input Data: 

Number of iterations (N). 

Power ratio of the systems  A b
P P, : 

Initial power levels of systems 
A

LLM  and 

B
LLM , which determine their initial 
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distribution of users and energy (e.g., 50% and 

50%). 

Structured Prompt Function: 

 

Function SimulateCompetition (N, 
A B

P P, ): 

    // Initialization of initial states 

    Initialize: 

        
A A

Users P  

        
B B

Users P  

        
A A

Energy P   

        
B B

Energy P  

    // Loop for interaction iterationsї 

    For i in range(1, n + 1): 

        // Decision-making conditions 

        If 
A

Users  > 
B

Users + 10%: 

            
A

Energy  += 5%  // Additional energy 

allocation to 
A

LLM  

        Else If 
B

Users  > 
A

Users  + 10%: 

            
B

Energy  += 5%  // Additional energy 

allocation to 
B

LLM  

        // Strategy extraction functions 

        
A

Strategy  = Fextract("Improve 

response personalization", 
A

Energy ) 

        
B

Strategy  = Fextract("Improve 

response speed", 
B

Energy ) 

 

        // Update user counts based on 

strategies 

        
A

Users += EvaluateImpact(
A

Strategy ) 

        
B

Users += EvaluateImpact(
B

Strategy ) 

 

      // Balance preservation condition 

      If 
A

Users + 
B

Users != 100%: 

          Normalize(
A

Users ,
B

Users )   

          // Normalize shares to sum up to 100% 

 

       // Print iteration results 

      Print(f"Iteration {i}: 
A

Users  = {
A

Users }, 

B
Users = {

B
Users }") 

 

    // Return final system state 

    Return 
A

Users , 
B

Users  

 

The initial values of users (
A

Users ,
B

Users ) 

and energy (
A

Energy , 
B

Energy ) are defined 

through the parameters  A b
P P, . 

A "Loop" primitive is used to implement 

iterations of interaction between the systems. 

Each iteration includes: 

 checking conditions for energy 

redistribution; 

 applying strategies using the "Function" 

primitive; 

 updating the number of users based on 

the impact of the strategies. 

The "Condition" primitive is used to check 

whether one model has a significant advantage 

over the other (more than 10%), and to 

allocate additional energy accordingly. 

The "Function" primitive defines the 

strategies of the models (via Fextract), which 

depend on the available energy. 

If the total number of users does not sum to 1 

(or 100%), normalization is applied to ensure 

consistency. 

At each iteration, the current system state is 

printed, and upon completion of the loop, the 

final user distribution is returned. 

The final prompt for simulating the 

interaction of two LLMs consists of 

initialization, loops, conditions, functions, and 

normalization steps. It is parameterized to 

allow specification of the number of iterations 

and the initial power ratio between the 

systems. 

To run the simulation, specify: 

Number of iterations, e.g., 10. 

Initial power distribution, e.g., 

0 5 0 5
A B

P P. , . .   

The prompt will execute according to the 

rules described above, and at the end, you will 

receive the final distribution of users between 

A
LLM and 

B
LLM . 

Based on the provided formalization, the 

final prompt for simulation is constructed as 

follows: 

Body of the Final Prompt 

We simulate the interaction between two 

large language models (
A

LLM  and 
B

LLM ) 

competing for users and energy. The system is 

updated over a defined number of iterations, 

during which each model makes decisions 

based on its strategies. The initial distribution 

of users and energy is specified in percentages. 
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Parameters 

Number of iterations (N): How many times 

the models will interact. 

System power ratio  A b
P P, : Initial 

distribution of users and energy between 

A
LLM  and 

B
LLM , expressed in percentages. 

Execution Instructions 

Initialization: 

Set the initial distribution of users and 

energy: 

Users of 
A

LLM : 
A

U . 

Users of 
B

LLM : 
B

U . 

Energy of 
A

LLM : 
A

P . 

Energy of 
B

LLM : 
B

P . 

 
Interaction Loop: 

Repeat the following steps N times: 

Step 1: Check conditions for energy 

redistribution: 

If the number of users of 
A

LLM  exceeds that 

of 
B

LLM  by more than 10%, allocate 

additional energy to 
A

LLM  (increase its 

energy by 5%). 

If the number of users of 
B

LLM  exceeds that 

of 
A

LLM  by more than 10%, allocate 

additional energy to 
B

LLM  (increase its 

energy by 5%). 

Step 2: Apply model strategies: 

A
LLM  uses a function to improve response 

personalization. The effectiveness of this 

strategy depends on available energy. 

B
LLM  uses a function to improve response 

speed. The effectiveness of this strategy also 

depends on available energy. 

Step 3: Update user counts: 

Evaluate the impact of each model's strategy: 

Add the impact of 
A

LLM strategy to its user 

count. 

Add the impact of 
B

LLM  strategy to its user 

count. 

If the total number of users of 
A

LLM  and 

B
LLM  does not sum to 100%, normalize the 

values so that the total equals 100%. 

Step 4: Output iteration results: 

Display the current user distribution between 

A
LLM  and 

B
LLM . 

Final State Return: 

After completing all iterations, output the 

final user distribution between 
A

LLM  and 

B
LLM . 

In different language models, the process of 

executing a prompt may vary slightly. 

However, modern LLMs such as ChatGPT, 

DeepSeek, and Qwen produce results from 

processing this prompt in the form of a 

simulation: 

 

The prompt is executed for 10 iterations with 

equal initial power distribution (50% users and 

50% energy for both 
A

LLM  and 
B

LLM ). I 

follow the outlined steps using the 

"Condition," "Loop," and "Function" 

primitives and system composition. 

Parameters 

Number of iterations: 10N   

Initial power distribution: 

Users of 
A

LLM =50% 

Users of 
B

LLM =50% 

Energy of 
A

LLM =50% 

Energy of 
B

LLM =50% 

Interaction Iterations 

Iteration 1 

Condition check for energy redistribution: 

Difference between users: 50% − 50% = 0%. 

No model receives additional energy. 

Strategy application: 

A
LLM : Uses function to improve response 

personalization. Strategy effectiveness 

depends on energy (50%). 

Impact on users: +3%. 

B
LLM : Uses function to improve response 

speed. Strategy effectiveness depends on 

energy (50%). 

Impact on users: +2%. 

User count update: 

A
LLM =50%+3%=53% 

B
LLM =50%+2%=52% 

Normalization: 
A

LLM =53%, 
B

LLM =47%. 

Iteration result: 

A
LLM =53%, 

B
LLM =47%. 

Iteration 2 

Condition check for energy redistribution: 

Difference between users: 53% − 47% = 6%. 

No model receives additional energy. 

Strategy application: 

A
LLM : Impact on users: +3%. 
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B
LLM : Impact on users: +2%. 

User count update: 

A
LLM =53%+3%=56% 

B
LLM =47%+2%=49% 

Normalization: 
A

LLM =56%, 
B

LLM =44%. 

Iteration result: 

A
LLM =56%, 

B
LLM =44%. 

Iteration 3 

Condition check for energy redistribution: 

Difference between users:  

56% − 44% = 12%. 

A
LLM : receives additional energy (+5%). 

Strategy application: 

A
LLM : Impact on users: +4% (energy 

increased to 55%). 

B
LLM : Impact on users: +2%. 

User count update: 

A
LLM =56%+4%=60% 

B
LLM =44%+2%=46% 

Normalization: 
A

LLM =60%, 
B

LLM =40%. 

Iteration result: 

A
LLM =60%, 

B
LLM =40%. 

Iterations 4–10 

We continue following the same logic as 

previous iterations. Here are the results: 

Iterations Users of 
A

LLM  Users of 
B

LLM  

1 53% 47%. 

2 56% 44% 

3 60% 40%. 

4 63% 37% 

5 66% 34% 

6 69% 31% 

7 72% 28% 

8 75% 25% 

9 78% 22% 

10 81% 19% 
 

 

After 10 iterations: 

 
A

LLM   has 81% of the users. 

 
B

LLM  has 19% of the users. 

Thanks to a more effective strategy 

(improving response personalization) and 

additional energy gained through its user 

advantage, 
A

LLM  significantly increases its 

market share. 
B

LLM , despite improvements in 

response speed, is unable to compete with 

A
LLM . 

Answer: After 10 iterations, 
A

LLM  has 

81% of the users, while 
B

LLM  has 19%. 

Model Expansion 

To expand the system of indicators that can 

be used to compare large language models 

(LLMs) in a competitive context, I propose the 

following comprehensive metric framework. 

These metrics account not only for user count 

and energy consumption but also for other 

important aspects of model behavior and 

performance. 

Extended Metric System: 

1. User Metrics 

Number of Active Users (U): Total number 

of users interacting with the model within a 

given time period. User Satisfaction (S): 

Average user rating of the model's response 

quality (e.g., on a scale from 1 to 5). 

Share of New Users (N): Percentage of new 

users who begin using the model during a 

specific period. 

Share of Lost Users (L): Percentage of 

users who stop interacting with the model. 

2. Performance Metrics 

Response Time (T): Average time taken by 

the model to generate a response to a user 

query. 

Accuracy of Responses (A): Percentage of 

responses that are correct and meet user 

expectations. 

Depth of Analysis (D): Ability of the model 

to analyze complex queries and provide 

detailed responses. 

Topic Coverage (C): Number of topics or 

subject areas in which the model can 

competently operate. 

3. Resource Metrics 

Energy Efficiency (E): Ratio of energy 

consumed to the number of processed queries. 
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Computational Resources (R): Amount of 

computing power available to the model for 

processing requests. 

Scalability (M): Ability of the model to 

efficiently handle increased loads without 

significant performance degradation. 

4. Adaptability Metrics 

Learning Speed (Ls): Speed at which the 

model can adapt to new data or changes in the 

environment. 

Strategy Flexibility (F): Number of 

different strategies the model can employ to 

improve its performance. 

Error Resilience (Rb): Ability of the model 

to recover from errors or incorrect responses. 

5. Social Metrics 

Reputation (Re): General level of trust in 

the model among users and experts. 

Ethics (Et): Degree to which the model 

adheres to ethical standards in its responses. 

Integration with Other Systems (In): 

Ability of the model to interact with other 

platforms or tools. 

Expanded Competition Task 

Based on the proposed metrics, the 

competition task between two LLMs (
A

LLM  
and 

B
LLM  ) can be formulated as follows: 

Objective: Maximize the overall 

effectiveness of the model through a 

combination of metrics. Achieve a sustainable 

advantage over the competitor. 

System Dynamics: 

At each iteration, models make decisions 

about applying strategies to improve their 

metrics. 

Metrics are updated based on the models’ 

interaction with the environment (users, 

resources, external factors). 

Formalization Using Primitives: 

Condition: If metric X of one model 

exceeds that of the other model, the model 

receives an additional bonus (e.g., energy or 

users). 

Loop: For each metric (U, S, T, A , etc.), 

compute its change based on the current 

strategy. 

Function: Each model applies a function to 

improve a specific metric (e.g., improve 

response accuracy or reduce response time). 

Metric Composition: 

The total effectiveness of a model (G) is 

computed as a weighted sum of all metrics: 

1 2 3 4
G w U w S w T w A ...,        

where 
i

w  – weighting coefficients defining the 

importance of each metric. 

Example of Differential Formalization 

For each metric, differential equations can 

be written to describe its dynamics. For 

example: 

User Dynamics (U): 

   1 2
A

A B A B

dU
k S S k A A

dt
,     

where:  

A
S ,

B
S  – user satisfaction of 

A
LLM  and 

B
LLM , 

A
A ,

B
A   – accuracy of responses. 

Accuracy Dynamics (A): 

   3 4
A

A B A B

dA
k R R k Lr Lr

dt
,     

where: 

A
R ,

B
R   – computational resources, 

A B
Lr Lr,  

– learning speed. 

Energy Dynamics (E): 

   5 6
A

A B A B

dE
k U U k T T

dt
,     

where: 

A
T ,

B
T  — response time. 

This extended metric system allows for a 

deeper modeling of competition between 

LLMs by considering multiple aspects of their 

behavior. The proposed formalization using 

differential equations and metric composition 

provides flexibility and adaptability to various 

competitive scenarios. 

Prompt for Iterative Emulation of System 

Competition Considering Additional 

Metrics 

Structured Prompt for Emulating Competition 

Between Two Systems (
A

LLM  and 
B

LLM ) 

The prompt will be iterative and utilize the 

primitives "Condition," "Loop," and 

"Function," along with their composition. 
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Coefficients will be assigned based on logical 

assumptions. 

Problem Description 

We simulate the competition between two 

large language models (
A

LLM  
and 

B
LLM ) 

for users, energy, and other performance 

metrics. The system is updated over a defined 

number of iterations, during which each model 

makes decisions based on its strategies and 

current metrics. 

Parameters 

Number of iterations (N): Number of times the 

models will interact. 

Initial metric values: 

A
U ,

B
U : Initial number of users 

A
U( =0.5, 

B
U

=0.5). 

A
S ,

B
S : Initial user satisfaction (

A
S  0.8, 

B
S 0.7). 

A
T ,

B
T : Initial response speed  

A
A ,

B
A : Initial response accuracy 

 0 85 0 8
A B

A A. , . .   

A
E ,

B
E : Initial energy levels 

 0 5 0 5
A B

E E. , . .   

Coefficients: 

1
k  0.2: The impact of user satisfaction on 

user acquisition. 

2
k 0.15: The impact of answer accuracy on 

user engagement. 

3
k  0.1: The impact of response speed on user 

engagement. 

4
k 0.05: The impact of energy on 

performance improvement. 

Execution Instruction 

Initialization: 

Set initial values for metrics for both systems: 

A
U =0.5, 

B
U =0.5 

A
S 0.8, 

B
S 0.7  

A
T  0.9, 

B
T  0.85 

A
A  0.85, 

B
A  0.8 

A
E = 0.5, 

B
E = 0.5 

Interaction Cycle: 

Repeat the following steps n times: 

Condition Check for Energy Allocation: 

If 0 1
A B

U U . ,   then allocate additional 

energy 
A

LLM  (
B

E   0.05). 

If 0 1
B A

U U . ,   then allocate additional 

energy 
B

LLM  (
B

E   0.05). 

Application of Strategies (Function):  

A
LLM uses a function to improve response 

personalization: Fextract(x,parameter)=Promt(x, 

"Improve response personalization").  

The effectiveness of the strategy depends on 

the available energy  A
E .   

B
LLM uses a function to improve response 

speed:  

Fextract(x,parameter)=Promt(x, "Improve 

response speed").  

The effectiveness of the strategy depends on 

the available energy  B
E .  

Updating Metrics (Loop):  

For each metric (U, S, T, A): 

   1 2
A

A B A B

B A

dU
k S S k A A

dt

dU dU

dt dt

,

.

     

 

 

Normalization of indicators: 

If the sum 1
A B

U U  , normalize the values 

so that the total sum equals 1. 

Displaying iteration results: 

Show the current state of indicators for both 

systems. 

Returning the final state: 

After completing all iterations, output the final 

indicator values for 
A

LLM  
and 

B
LLM . 

Example of prompt execution for 

simulating a battle between two systems 

A
LLM(  and 

B
LLM ) based on provided 

parameters and rules: 

Input Data 

Number of iterations: 

Initial values of indicators: 

A
U =0.5, 

B
U =0.5 (users) 

A
S  0.8,

B
S  0.7 (user satisfaction) 

A
T  0.9, 

B
T  0.85  (response speed) 

A
A = 0.85, 

B
A  0.8  (response accuracy) 

A
E =0.5, 

B
E =0.5 (energy) 
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Coefficients: 

1
k  0.2 (impact of satisfaction) 

2
k 0.15 (impact of accuracy) 

3
k  0.1 (impact of speed) 

4
k 0.05 (impact of energy) 

Interaction Iterations 

Iteration 1: 

Checking conditions for energy distribution: 

Difference between users: 

A B
U U 0.5−0.5=0. 

No model receives additional energy. 

Applying strategies (Function): 

A
LLM : Uses a function to improve response 

personalization: 

Fextract( A
U , parameter) = Prompt( , "Improve 

personalization"). 

Strategy effectiveness depends on energy (

B
E 0.5). 

B
LLM : Uses a function to improve response 

speed: 

Fextract(UB, parameter) = Prompt( , "Improve 

speed"). 

Strategy effectiveness depends on energy 

B
E ( 0.5). 

Updating metrics (Cycle): 
Change in number of users: 

     

   

1 2 3

0 0 0 0 0 0

A

A B A B A B

A

dU
k S S k A A k T T

dt

dU
2 8 7 15 85 8

dt

,

. . . . . .

        

      

+ 0.1⋅(0.9−0.85) =  0.02+0.0075+0.005 =  

= 0.0325. 

 

0 0B A
dU dU

325
dt dt

. .     

New values:  

A
U = 0.5 + 0.0325 = 0.5325, 

B
U = 0.5 − 0.0325 = 0.4675. 

Normalization of indicators: 

1
A B

U U   (no normalization needed).  

Iteration result:  

A
U =0.5325, 

B
U =0.4675. 

Iteration 2: 

Energy Distribution Condition Check: 
Difference between users: 

A B
U U 0.5325−0.4675=0.065. 

No model receives additional energy. 

Application of Strategies (Function): 

A
LLM : Continues improving personalization. 

B
LLM : Continues improving speed. 

Updating Metrics (Cycle): 

As in the previous iteration: 

New values: 

A
U = 0.5325 + 0.0325=0.565, 

B
U = 0.4675 − 0.0325=0.435. 

 

Normalization of metrics: 

1
A B

U U   (no normalization required). 

Iteration Result: 

A
U = 0.565, 

B
U = 0.435. 

Iteration 3 
Energy Distribution Condition Check: 

Difference between users: 

A B
U U   0.565−0.435=0.13. 

A
LLM receives additional energy (EA+=0.05): 

A
E   0.5 + 0.05 = 0.55, 

B
E   0.5 − 0.05 = 0.45. 

Application of Strategies (Function): 

A
LLM : Strategy effectiveness increases due to 

additional energy. 

B
LLM : Strategy effectiveness decreases due 

to reduced energy. 

Updating Metrics (Cycle): 

Change in number of users: 

 

   

0 2 0 8 0 7

0 15 0 85 0 8 0 1 0 9 0 85

0 0325.

A

A

dU

dt

dU

dt

   

     



. . .

. . . . . . ;

.

0 0B A
dU dU

325
dt dt

. .     

New values: 

A
U = 0.565 + 0.0325 = 0.5975, 

B
U = 0.435 − 0.0325 = 0.4025. 

Normalization of indicators:  

1
A B

U U   (no normalization needed).  

Iteration result:  

A
U =0.5975, 

B
U =0.4025. 

Iterations 4–10  

We continue similarly to the previous 

iterations.  

Here are the results: 
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Iterations A
U  

B
U  

1 0.5325 0.4675 

2 0.565 0.435 

3 0.5975 0.4025 

4 0.63 0.37 

5 0.6625 0.3375 

6 0.695 0.305 

7 0.7275 0.2725 

8 0.76 0.24 

9 0.7925 0.2075 

10 0.825 0.175 
 

Final State After 10 Iterations: 

 
A

U = 0.825 (82.5% of users). 

 
B

U = 0.175 (17.5% of users). 

A
LLM gained an advantage thanks to the 

flexible use of primitives ("Condition", 

"Loop", "Function") and strategy composition. 

B
LLM , despite improved response speed, was 

unable to compete with the more effective 

strategies of 
A

LLM . 

Answer: After 10 iterations, 
A

LLM  has 

82.5% of users, while 
B

LLM  has 17.5%. 

The Lancaster Model for Competition 
Between Artificial Intelligence Systems 

The Lancaster model is a mathematical 

model used to describe the interaction 

dynamics between two opposing sides (e.g., 

armies in military conflicts). It can also be 

adapted to model competition between two 

systems such as 
A

LLM  and 
B

LLM . In this 

case, we consider the "strength" of each 

system as its number of users (
A

U and 
B

U ), 

which influences their ability to compete. 

Each system (
A

LLM  and 
B

LLM ) has a 

certain "strength," determined by the number 

of users (
A

U  and 
B

U ).. 

The change in strength of each system 

depends on the influence of the opposing side. 

Competition between systems is described 

using differential equations. 

There are two main types of Lancaster 

models: 

Linear Model (Lanchester Linear Law): 

Attack effectiveness is proportional to the 

strength of the attacking side: 

,

,

A
B B

B
A A

dU
k U

dt

dU
k U

dt

  

  
 

where 
A B

k k, : attack effectiveness coefficients 

of 
A

LLM  and 
B

LLM . 

Quadratic Model (Lanchester Square 

Law): 

Attack effectiveness is proportional to the 

square of the attacking side's strength: 

2

2

,

.

A
B B

B
A A

dU
k U

dt

dU
k U

dt

  

  

 

In this case, the quadratic model is more 

suitable, as it accounts for the nonlinear impact 

(e.g., scalability of strategies). 

Adaptation of the Lancaster Model to the 
Problem 

The Lancaster model allows for 

formalizing the competition between 
A

LLM  

and 
B

LLM  through differential equations, 

taking into account the nonlinear influence of 

users and energy. This enables a deeper 

analysis of system interaction dynamics. 

Answer: The Lancaster model for 

competition between 
A

LLM  and 
B

LLM
 

is 

formulated using differential equations that 

consider the nonlinear impact of users and 

energy. 

1. System Metrics 

 
A

U t( ) – number of users of  
A

LLM  at 

time t. 

 ( )
B

U t – number of users of 
B

LLM  at 

time t. 

 ( )
A

E t – energy of 
A

LLM  at time t. 

 ( )
B

E t – energy of 
B

LLM  at time t. 
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Assume the total number of users is 

constant: 

1( ) ( ) .
A B

U t U t   

The Lancaster model for competition 

between 
A

LLM  and 
B

LLM  can be written as: 

2 2

2 2

,

.

A
B B A A

B
A A B B

dU
k U k U

dt

dU
k U k U

dt

    

    

 

where: 
A B

k k,  – strategy effectiveness 

coefficients of 
A

LLM  and 
B

LLM , 2

A
U  and 

2

B
U  representing the nonlinear impact of user 

count on competition outcomes. 

To account for energy ( ,
A B

E E ), we 

introduce a modification: 

2 2

2 2

,

.

A
B B B A A A

B
A A A B B B

dU
k U E k U E

dt

dU
k U E k U E

dt

      

      

 

This reflects the fact that strategy 

effectiveness depends on available energy. 

Example of Initial Conditions: 

0 0 5
A

U ( ) . ,  0 0 5
B

U ( ) .  (initial 

equilibrium). 

0 0 5
A

E ( ) . ,  0 0 5
B

E ( ) .  (initial energy 

levels). 

A system with more users (
A

U  or 
B

U ) 

gains an advantage because its influence grows 

nonlinearly ( 2U ). 

Energy (
A

E ,
B

E ) enhances strategic 

effectiveness, allowing the system with more 

energy to gain an advantage more quickly. 

Eventually, one of the systems (
A

LLM  or 

B
LLM ) may achieve complete dominance (

1
A

U , 0
B

U   or vice versa). 

Calculation Using the Lancaster Model 

A quadratic version of the Lancaster model 

is described, which is better suited for 

modeling nonlinear interactions between 

systems. 

Initial Data 

Initial number of users: 

0 0 5( ) . ,
A

U   

0 0 5( ) . .
B

U   

Initial energy: 

0 0 5( ) . ,
A

E   

0 0 5( ) . .
B

E   

Strategy effectiveness coefficients: 

0 2.
A

k   (effectiveness of 
A

LLM ) 

0 15.
B

k   (effectiveness of 
B

LLM ) 

Total numbers of iterations:  

10.N   
Differential equations: 

2 2

2 2

,

.

A
B B B A A A

B
A A A B B B

dU
k U E k U E

dt

dU
k U E k U E

dt

      

      

 

Constraints: 

1
A B

U t U t( ) ( )   (the total number of users is 

constant). 

Iterative Calculation 

Iteration 1: 

Calculation of user change: 

For 
A

U : 

2 2 ,A
B B B A A A

dU
k U E k U E

dt
        

A
dU

dt
−(0.15)⋅(0.5)

2⋅(0.5) + 

+ (0.2)⋅(0.5)
2⋅(0.5) =  0.00625. 

For 
B

U : 

2 2B
A A A B B B

dU
k U E k U E

dt
       , 

B
dU

dt
−(0.2)⋅(0.5)2⋅(0.5)+ 

+(0.15)⋅(0.5)2⋅(0.5) =−0.00625. 

Value update: 

0( )
A A A

U U U     
 = 0.5+0.00625 = 0.50625, 

0( )
B B B

U U U     
= 0.5−0.00625 = 0.49375. 

Iteration 2: 

Calculation of user change: 

For 
A

U : 

A
dU

dt
−(0.15)⋅(0.49375)

2⋅(0.5)+ 

+ (0.2)⋅(0.50625)
2⋅(0.5) =0.00732. 

For 
B

U : 

B
dU

dt
−(0.2)⋅(0.50625)

2⋅(0.5)  +  

+ (0.15)⋅(0.49375)
2⋅(0.5)  = −0.00732. 

Value update: 
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A
U = 0.50625+0.00732=0.51357, 

B
U = 0.49375−0.00732=0.48643. 

Iteration 3: 

Calculation of user change: 

For 
A

U : 

A
dU

dt
−(0.15)⋅(0.48643)

2⋅(0.5)+ 

+(0.2)⋅(0.51357)
2⋅(0.5) = 0.00850. 

For 
B

U : 

B
dU

dt
−(0.2)⋅(0.51357)2⋅(0.5)+ 

+(0.15)⋅(0.48643)2⋅(0.5) = −0.00850. 

Value update: 

A
U = 0.51357+0.00850 = 0.52207, 

B
U = 0.48643−0.00850 = 0.47793. 

Continuation of iterations up to iteration 10: 

We repeat similar calculations for each 

subsequent step. Here are the results: 

Iteratios A
U  

B
U  

1 0.50625 0.49375 

2 0.51357 0.48643 

3 0.52207 0.47793 

4 0.53180 0.46820 

5 0.54287 0.45713 

6 0.55548 0.44452 

7 0.56992 0.43008 

8 0.58654 0.41346 

9 0.60585 0.39415 

10 0.62860 0.37140 

 

 

 

After 10 iterations: 

A
U = 0.6286 (62.86% users). 

B
U = 0.3714 (37.14% users). 

According to the Lancaster model, 
A

LLM

gains an advantage due to its higher 

effectiveness coefficient  A B
k k

 
and the 

nonlinear impact of user count. 
B

LLM

gradually loses users, although the difference 

was initially small. 

Answer: After 10 iterations, 
A

LLM  
has 

62.86% of the users, while 
B

LLM  
has 

37.14%. 

Modeling Boyd Cycles 
Boyd cycles (OODA-loop: Observe-Orient-

Decide-Act) can also be used to model 

competition between two systems (
A

LLM  and 

B
LLM ). This approach accounts not only for 

numerical metrics but also for strategic 

thinking and adaptability of each system. Let 

us consider how this can be formalized 

mathematically. 

Main Stages of the Boyd Cycle 
The Boyd cycle consists of four stages: 

Observe: Collection of information about 

the environment (e.g., number of users, energy 

levels, satisfaction, etc.). 

Orient: Analysis of collected data and 

determination of strategies based on the 

current context. 

Decide: Selection of the best strategy to 

achieve goals. 

Act: Implementation of the selected 

strategy. 

This cycle is repeated iteratively, allowing 

systems to quickly adapt to changes in the 

environment. 

System entities: 

– 
A

U t( ),  
B

U t( )  – number of users of 

A
LLM and 

B
LLM  at time t. 

– 
A

E t( ),  
B

E t( )  – energy of 
A

LLM and 

B
LLM at time t. 

– 
A

S t( ),
B

S t( )  – user satisfaction of 
A

LLM

and 
B

LLM  
at time t. 

Boyd cycles allow for formalizing the 

competition between 
A

LLM  
and 

B
LLM  

through an iterative process of observation, 

analysis, decision-making, and action. This 

approach accounts for the strategic behavior of 

systems and their adaptability to changes in 

the environment. 

Observe: 

This phase involves gathering information 

about the state of the environment. For each 

system (
A

LLM and 
B

LLM ), we can formalize 

this process through a function: 
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 

 

( ), ( ), ( ) ,

( ), ( ), ( ) ,

A observe A A A

B observe B B B

Input F U t E t S t

Input F U t E t S t




 

where: 

( ),
A

U t
B

U t( )  – number of users at time t. 

( ),
A

E t
B

E t( )– system energy at time t. 

( ),
A

S t
B

S t( )– user satisfaction at time t. 

observe
F – a function that collects data about 

the system state. 

Orient: 

At this stage, the system analyzes the 

collected data and generates strategies. Using 

the "Function" primitive, we can write: 

 

 

,

,

A orient A

B orient B

Strategy F Input

Strategy F Input




 

Where 
orient

F  is a function that analyzes input 

data and generates a strategy.  

For example, a strategy can be defined 

using a conditional operator ("Condition"): 

A

A B

A B

Strategy

Improve customization if U t U t

Improve speed  if U t U t




 



" ",   ( ) ( );

" ", ( ) ( ).

Similarly for B
Strategy .  

Decide: 

At this stage, the system selects the best 

strategy to achieve its goals. Using the 

"Condition" primitive, one can write: 

A

A B

A B

Decision

Improve customization if S t S t

Improve speed  if S t S t




 



" ",   ( ) ( );

" ", ( ) ( ).

      Similarly for B
Decision . 

Act: 

At this stage, the system implements the 

selected strategy. The impact of strategies on 

users can be described through differential 

equations: 

   
A B

A
A Decision B Decision

B A

U t
k Effect k Effect

dt

U t U t

dt dt

   

 

( )
;

( ) ( )
,

where ,
A B

k k  – the efficiency coefficients of 

strategies 
A

LLM  
and 

B
LLM , 

Decision
Effect 

the efficiency of the selected strategy. 

 

Boyd Cycle Composition 

Primitive "Cycle" 

The Boyd cycle can be implemented using 

the primitive "Cycle," described in your 

methodology file: 

1

( ) ( ),
N

i

i

P S F s


  

where S = {Observe, Orient, Decide, Act} – is 

the set of stages in the cycle, and ( )
i

F s  – is 

the operation performed at each stage. 

Full System 

Each system (
A

LLM  and 
B

LLM ) performs 

its own Boyd cycle independently, but their 

actions interact through a shared environment: 

 

 

A
A B A B

B
A B A B

dU
f U U E E

dt

dU
g U U E E

dt





, , , ;

, , , .

 

Boyd cycles allow formalizing the 

competition between 
A

LLM  
and 

B
LLM  

through an iterative process of observation, 

analysis, decision-making, and action. This 

approach accounts for the strategic behavior of 

systems and their adaptability to changes in 

the environment. 

Numerical Calculation Example 

Let the initial conditions be given as: 

0 0 6 0 0 4

0 0 55 0 0 45

0 0 85 0 0 75

0 25 0 2

( ) . , ( ) . ;

( ) . , ( ) . ;

( ) . , ( ) . ;

. , . .

A B

A B

A B

A B

U U

E E

S S

k k

 

 

 

 

 

Iteration 1: 

1. Observe: 

 

 

0 6 0 55 0 85

0 4 0 45 0 75

. , . , . ,

. , . , . .

A

B

Input

Input




 

2. Orient: 

A

B

Strategy Improve customization

Strategy Improve speed





" ";

" ".
      

3. Decide: 

A

B

Decision Improve customization

Decision Improve speed





" ";

" ".     
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4. Act: 

Efficiency of strategies: 

0 03

0 02

. ,

. .

A

B

Decision

Decision

Effect

Effect




 

Change in number of users: 

0 25 0 03 0 2 0 02

0 0075 0 004 0 0035

0 0035

( )
. . . .

. . . ,

( )
. .

A

B

U t

dt

U t

dt

    

  

 

 

New values: 

 

 

A

B

A
A Decision

B Decision

B A

U t
k Effect

dt

k Effect

U t U t

dt dt

  

 

 

( )

,

( ) ( )
,

    

A
U  = 0.6 + 0.0035 = 0.6035, 

B
U = 0.4− 0.0035 = 0.3965. 

Thus, Boyd's cycles allow to formalize the 

competition between 
A

LLM  and 
B

LLM  

through an iterative process of observation, 

analysis, decision-making, and action. This 

approach takes into account the strategic 

behavior of systems and their adaptability to 

changes in the environment. 

Comparative Analysis of LLM 
Competition Modeling Methods 

For an objective evaluation of the 

effectiveness of the considered approaches to 

modeling competition between artificial 

intelligence systems, a set of criteria reflecting 

practical aspects of their application was 

defined. The main evaluation parameters 

included: implementation complexity, 

adaptability to environmental changes, ability 

to account for strategic behavior, predictive 

effectiveness, and universality of application. 

The analysis showed that each of the 

considered methods has its own distinctive 

features and areas of optimal application (see 

Table 1). In particular, differential equations, 

despite their high implementation complexity, 

demonstrate the best predictive effectiveness 

due to their precise mathematical foundation. 

However, their adaptability to environmental 

changes is limited due to the static nature of 

the base equations.  

The Lancaster model occupies an 

intermediate position between differential 

equations and Boyd cycles across most 

criteria. It allows for partial consideration of 

strategic behavior and shows satisfactory 

adaptability, although it is outperformed in this 

aspect by the Boyd cycles. 

Table 1. Comparative Characteristics of 

Modeling Methods 

Criterion 

Diff. 

Equations 

Lankaster 

Model 

Boyd 

Cycles 

Implementa-

tion 

Complexity 

High Medium Low 

Adaptability Limited Partial High 

Strategy 

Considera-

tion 

High Partial Full 

Predictive 

Effectiveness 
High Medium High 

Universality Limited Partial High 

Special attention should be given to the 

advantages of Boyd cycles in the context of 

practical application. This method stands out 

due to its high adaptability and universality, 

thanks to the built-in mechanism of iterative 

strategy improvement. Despite relatively low 

implementation complexity, it provides high 

predictive effectiveness through a well-defined 

decision-making formalization. 

The obtained results indicate that the choice 

of a specific method should depend on the 

objectives and available resources. In practice, 

combining different approaches is often the 

most effective way to maximize the efficiency 

of modeling competition between LLMs. 

Conclusions 

This article presents a comprehensive 

approach to modeling competition between AI 

systems, combining mathematical models, no-

code tools, and an extended system of metrics. 

The study addresses the problem of simulating 

competition between two artificial intelligence 

systems, 
A

LLM(  and 
B

LLM ),  which interact 

in a shared environment under limited 

resources such as users and energy. 
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The research tackles key tasks related to 

analyzing interaction dynamics, formalizing 

strategic behavior, and predicting competition 

outcomes. A comprehensive modeling 

approach is proposed using differential 

equations, the Lancaster model, and Boyd 

cycles (OODA-loop). A metric system has 

been developed that accounts for the number 

of users, satisfaction levels, response accuracy, 

processing speed, and energy efficiency. 

To formalize strategic behavior, a no-code 

toolkit was employed to create prompts 

implementing the primitives "Condition," 

"Loop," and "Function." This enabled the 

description of complex system strategies in 

natural language terms. Based on Boyd cycles, 

it was demonstrated how adaptability and 

decision-making speed influence system 

success in competitive environments. 

An extended metric system was introduced 

during simulation, incorporating not only user 

count and energy but also important behavioral 

aspects such as user satisfaction, response 

accuracy, query processing speed, and ethical 

considerations. 

This work combines mathematical models 

(e.g., the Lancaster model) with no-code tools 

for the first time to formalize AI system 

strategies. This integration allows for analysis 

of both numerical and logical aspects of 

competition. 

The results can be applied to predict AI 

system behavior in real-world scenarios such 

as information campaigns, cyber conflicts, and 

resource optimization in digital environments. 

Future research directions include studying 

multi-party competition and incorporating 

additional factors such as social networks, 

cultural audience characteristics, and global 

trends influencing user decision-making. 

In the future, these findings may be adapted 

to practical tasks such as combating 

disinformation, cybersecurity, and managing 

digital ecosystems. 

The proposed models have potential 

practical applications in AI system 

management, helping developers predict 

system behavior, optimize strategies, and 

support efficient resource utilization. 

The research was supported by a grant from 

the National Research Foundation of Ukraine 
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