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Abstract

This paper presents an implementation of the six-state quantum key distribution protocol and the
LMO5 quantum secure direct communication protocol based on anyonic systems. We consider the
representation of logical qubits and operations of the protocol through the manipulation of abelian
anyons of the Kitaev model and non-abelian Fibonacci anyons. A comparative analysis of the anyonic
implementations with the classical photonic approach is carried out in terms of key characteristics such
as accuracy, stability, and complexity. The advantages and experimental challenges of anyonic platforms
for quantum information exchange are discussed.
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Introduction 1. Toolkit for Quantum Secure Direct
Communication Based on Anyons

The development of quantum computing
makes some primitives of traditional cryptogra- Key components of topological quantum com-
phy vulnerable and requires new approaches to  puting are exotic quasiparticle excitations, known
secure communication, while the fundamental as anyons [3].
problem of decoherence limits the creation of
reliable quantum devices. One promising way
to overcome decoherence is topological quantum
computing — a paradigm proposed by Alexei
Kitaev in 1997 [1], which encodes quantum in-
formation in global topological properties of the
system that are resistant to local perturbations.

In the field of quantum communication, quan-
tum secure direct communication protocols pro-
vide an alternative to traditional quantum key
distribution methods. One such protocol is the
LMOS5 protocol [2], which enables the determin-
istic transmission of secret information or the
establishment of a key via a two-way quantum
channel without using entanglement.

This work aims to develop LMOS5 protocol
implementations based on abelian Kitaev anyons
and nonabelian Fibonacci anyons, as well as the
six-state quantum key distribution protocol based
on nonabelian Fibonacci anyons, and analyze
their features. Example 1 (Kitaev Anyons). In this model,

the primary elementary excitations above the

Definition 1. Anyons are a type of quasiparti-
cle that can only exist in two-dimensional quan-
tum systems. They exhibit exchange statistics
that differ from those of bosons and fermions.

Exchange statistics determine how the quan-
tum state of a system changes when two iden-
tical particles are interchanged (braided). The
braiding operation, which corresponds to the
exchange of positions of two anyons a and b,
which then fuse into a common channel ¢, is
mathematically described by the operator RZ.
Depending on the nature of these statistics and
the fusion rules, anyons are divided into two
main types:

* Abelian anyons are characterized by the fact
that when they are exchanged, the system’s
state acquires only a phase factor ¢’ for
some 6 € [0, 27).
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vacuum state 1 are anyons such as the elec-
tric charge e, magnetic flux m, and their bound
state — the fermion €. The fusion rules are as
follows:
exm=e,

exe=m, €Xm=e¢,

exe=mxm=¢cxe¢e=1.

These rules are deterministic, meaning the fusion
always results in a specific anyon.

* Non-Abelian anyons are characterized by
the fact that, when exchanged, they cause a
unitary transformation of the system’s state
that acts on a degenerate state space.

Example 2 (Fibonacci Anyons). This model
contains two types of particles: the vacuum 1
and the non-Abelian anyon 7. The fusion rules
are as follows:

TXT=14T

These rules are nondeterministic: two 7 anyons
can either annihilate (result 1 — vacuum) or
form a new 7 anyon.

2. LM0O5 Quantum Secure Direct Com-
munication Protocol Based on Kitaev
Abelian Anyons

The logical qubit for Kitaev anyons is defined
through two basic physical states of the system
[4]:

* The vacuum state |0), which corresponds to

the absence of any nontrivial excitations.
 The state |e), which contains exactly one

fermionic anyon €, a bound state of electric

charge e and magnetic flux m (¢ = e X m).

These two states |0) and |¢) form the com-
putational Z-basis, on which the following basic
operations act:

* The identity operation Uy = I requires no

action; the state remains unchanged:

Uol0) =0), Uole) = e)-

* The operation U; (phase shift o,) acts non-
trivially only on the state |¢), imparting a
phase of —1 to it. This is achieved by
braiding the anyon e around itself, using the
property R = —1. The state |0) remains
unchanged:

Up10) =10), Uile) = —e).

e The operation Uy (bit flip o,) swaps the
states |0) and |¢). Physically, this is re-
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alized by locally creating a fermion e (if
the system is in state |0), according to
1 x € = ¢) or annihilating it (if the system
is in state |¢), according to € x ¢ = 1):

U210) = le),  Uzle) = 0).

The implementation of the LMOS protocol for
Kitaev Abelian anyons using this encoding and
basic operations is provided in Protocol 1.

Algorithm 1.

1. Preparation (Bob):
Bob creates a sequence of anyonic qubits, ran-
domly choosing for each the preparation basis
and a specific state within that basis:

* In the Z-basis, one of the states is pre-
pared: |0) (vacuum) or |g) (state with
one fermion).

e In the X-basis, one of the states deter-
mined by the action of the Hadamard
operator H on the Z-basis states is pre-

pared.:
1
) = H10) = 2= (10 + ).
[v) = H1e) = — (0) — [e)).

V2
To realize the H operator in the context
of Kitaev anyon model, braiding and fu-
sion operations alone are insufficient;
additional non-topological methods are
required [5].

2. First Transmission (Quantum Channel):

Bob sends the prepared anyonic systems to
Alice via the quantum channel.

3. Encoding/Control (Alice):

Alice randomly chooses one of two modes for
each received qubit:

» Control Mode: She measures the qubit’s
state in a randomly chosen basis (Z or
X)) to check the channel’s security.

* Encoding Mode: She encodes one bit of
her secret message m € {0, 1} by apply-
ing the corresponding unitary operation
to the qubit:

If m = 0: she applies operation Uy (the
state does not change).

If m = 1: she applies the sequence of
operations U1Us. As a result of this
transformation, the states change ac-
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cording to the following principle:
U10210) = —le), Uilzle) =|0),
1

U1U2‘U> (U1U2’0>+U1U2|E>) =

2
(=le) +10)) =

Sl =S

1

(10) =) = lv),

(UhU210) — U1 Uz |e)) =

S

2
1

U1U2 ’1)> = 5

sl %

(=1le) = 10)) =

1
0+ ) =~

4. Second Transmission (Quantum Channel):
Alice sends the modified sequence of anyonic
systems back to Bob via the quantum channel.

. Decoding Phase (Bob):

Bob measures each received qubit in the same
basis in which it was prepared. By compar-
ing the measurement results with the expected
results for operations Uy and U, Us, Bob un-
ambiguously determines the bit m encoded by
Alice.

. Classical Verification (Classical Channel):
Alice publicly announces which qubits were
control qubits and which were encoding
qubits. For the control qubits, they compare
the results (where the bases matched) and es-
timate the Quantum Bit Error Rate (OBER).
If the error rate is low, then the sequence of
bits that Bob obtained in encoding mode is
considered the securely transmitted message.

Thus, the constructed algorithm shows how
the deterministic quantum communication proto-
col LMOS5 can be adapted for implementation on
the Kitaev Abelian anyon platform using their
specific states and operations.

3. Implementation of the Six-State Quan-
tum Key Distribution Protocol Using
Fibonacci Anyons

A qubit on Fibonacci anyons 7 is encoded in
the states of three such anyons with a total topo-
logical charge 7. The basis states are defined by
the fusion channel a of the first pair of anyons
in diagrammatic notation ((e,e),,®);, where o
denotes a T-anyon [6]:
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* g = 0: the first pair of anyons fuses into

the vacuum channel;

* a = 1: the first pair of anyons fuses into

the 7 channel.

Changing the qubit state is achieved by braid-
ing adjacent anyons. The basic exchange opera-
tions o1 (between the first and second) and o9
(between the second and third) are represented
in the corresponding state space by unitary ma-

trices:
—4mi
e 5
01 = 3mi |
0 es
_q A4mi 1 —3mi
p e’s @Y 2e s
g9 = 1 —3mi _1 s
p 2 5 ¥
where ¢ = 1*—2‘/5 is the golden ratio constant.

Combinations of these elementary braids and
their inverses allow for the realization of arbi-
trary quantum operations.

The six-state quantum key distribution pro-
tocol [7], an extension of the BB84 protocol
that incorporates an additional measurement ba-
sis, is theoretically more resistant to certain at-
tacks. To operate in three bases on the non-
Abelian Fibonacci anyon platform, it is essential
to leverage their unique properties, namely the
ability to perform the necessary quantum opera-
tions through braiding.

Thus, the protocol uses three mutually unbi-
ased bases: the computational (Z), diagonal (X),
and circular (Y) bases. States in these bases are
defined as follows:

* The Z-basis consists of states |0)_
1),. where [0), = ((o,®)o,®)1, |1),
((e,0)1,0)1.

* The X-basis states are obtained by applying
an approximated Hadamard operator H to
the Z-basis states.

* The Y-basis states are obtained by sequen-
tially applying approximated ST and H op-
erators to the Z-basis states.

Preparing states in these bases requires ap-
plying the corresponding unitary transformations,
which, in turn, are approximated by sequences
of Fibonacci anyon braids. One of the key oper-
ations necessary for constructing the protocol is
the Hadamard gate H, which is mathematically
defined as follows:

and
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1 /1 1
i)

Figure 1 shows one sequence of elementary
braids that approximates the H gate with high
precision. This sequence consists of 34 elemen-
tary braiding operations and is written as fol-
lows:

H =

4 —4 2 4 2 -2 —4 -2 -2 2 2

- —2 —4_-2_ -2 -2 -2 2 —
By =05 0, “o501050, "0y "0 "0y 0, “05 “070,

K S5

Figure 1: Braiding approximating the Hadamard gate

The matrix approximates the target H ma-
trix with an error of approximately 0.003. This
small error value shows that the Hadamard gate
can be accurately implemented using Fibonacci
anyon braiding. This example shows how the
fundamental operations o1 and o2 can be com-
bined to perform complex quantum gates, which
is the basis for constructing quantum algorithms
on this platform.

Another important single-qubit gate is the
phase gate ST, which corresponds to a phase
rotation by —% and is defined by the following

2
matrix:
1 0
T
= %)

This gate is commonly used in quantum al-
gorithms, especially for implementing measure-
ments in the Y-basis.

One sequence of elementary braids Bgy, that
approximates the ST gate, is defined as follows:

2 —4 -2 2 2 4 —4 —4 2 -2 4 2 2
BSJ(:0'20'1 09 01090109 01 0907 090109

Figure 2 graphically depicts this sequence of
36 elementary operations.

D e

Figure 2: Braiding approximating the phase gate S*.

Applying this braiding sequence Bgi to a
three-anyon Fibonacci qubit yields a unitary
transformation that approximates the target ST
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2

matrix with an error of approximately 0.0045.
Like the Hadamard gate, this example shows
that it is possible to perform necessary quantum
operations by physically manipulating Fibonacci
anyons.

It is important to note that By and B:rg are
sequences of elementary braids (o1, 02) that only
approximate ideal unitary operations. The accu-
racy of this approximation depends on the length
and complexity of the braiding sequence.

Thus, the described methods for approximat-
ing the key H and ST gates using Fibonacci
anyon braiding form a necessary toolkit for con-
structing the six-state protocol, the step-by-step
procedure of which is given in Protocol 2.

Algorithm 2.

1. Preparation Phase (Alice):

Alice creates a sequence of three-anyon qubits.
For each qubit, she first randomly chooses one of
three bases (Z, X,Y ) and one bit of classical infor-
mation (0 or 1). She then prepares the correspond-
ing anyonic state:

e Z-basis: If bit 0 is chosen, she prepares state

|0)..; if bit 1 is chosen, state |1)_:

‘0>1— = ((.7.)07.)17 ‘1>1— = ((.7.)17.)1'

e X-basis: If bit 0 is chosen, she prepares state
|+) ... which corresponds to the result of the
Hadamard operation H acting on state |0)_;
if bit 1 is chosen, state |—)_, which corre-
sponds to the result of the Hadamard opera-
tion H acting on state |1)_:

+), =HI0),, [, =H[),.

Operation H is approximately realized by the
braid sequence By, given by Equation 3.

* Y-basis: If bit 0 is chosen, she prepares state
|+1) ., which corresponds to the result of se-
quentially applying operations ST and H to
state |0)_; if bit 1 is chosen, state |—1) _, which
corresponds to the result of sequentially ap-
plying operations ST and H to state |1)_:

|+i)_ = HST|0)_,  |—i)_ = HST|1), .

Operation HS' is approximately realized by
the braid sequence B HB;, where By and B:rg
are given by Equations 3 and 3 respectively.
Alice records the sequence of prepared states
and their corresponding bases.
2. Transmission Phase (Quantum Channel):
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Alice sends the prepared anyonic systems to
Bob via the quantum channel. Each system carries
the state of one qubit.

3. Measurement Phase (Bob):

For each received system, Bob, independently
of Alice, randomly chooses one of the three mea-
surement bases (Z, X or'Y') and performs the cor-
responding measurement:

* Z-basis:

— If state |0) _ (vacuum) is measured, bit 0
is recorded.

— If state |1)_ (anyon T) is measured, bit 1
is recorded.

* X-basis:

- If state |+). is measured,
recorded.

- If state |—).
recorded.

* Y-basis:

- If state |+i)_ is measured,
recorded.

bit 0 is

is measured, bit 1 is

bit 0 is
- If state |—i)_ is measured, bit 1 is
recorded.

Bob stores the results of his measurements and
the corresponding bases.

4. Classical Reconciliation Phase (Classical
Channel):

After the quantum transmission, Alice and Bob
use an open authenticated classical channel to rec-
oncile the key. They compare their preparation and
measurement bases for each state, discarding cases
where they diverge. Results where the bases match
form the sieved key. It is expected that the bases
will match in approximately % of cases.

5. Error Estimation and Post-Processing Phase
(Classical Channel):

Alice and Bob publicly compare a random sub-
set of the sieved key bits to calculate the Quantum
Bit Error Rate (OBER).

* Ifthe QBER is acceptably low, they apply stan-
dard error correction and privacy amplifica-
tion procedures to the remaining sieved key,
obtaining the final secret key.

* [f the OBER exceeds the security threshold,
the protocol is aborted, and the potential key
is discarded.

Using Fibonacci anyons to implement the
six-state protocol has potential advantages be-
cause qubits are topologically protected from lo-
cal perturbations. However, the main challenge
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is the protocol’s practical complexity. Achieving
high precision in approximating the H and ST
gates requires very long and complex braiding
sequences, which increases execution time and
the probability of errors.

Despite these challenges, constructing the six-
state protocol with Fibonacci anyons shows the
flexibility and potential of this platform for quan-
tum communication tasks.

4. Implementation of the LM05 Quantum
Secure Direct Communication Proto-
col Using Fibonacci Anyons

As previously stated, the LMO5 protocol is a
deterministic quantum communication protocol
that enables both direct secure message trans-
mission and quantum key establishment. When
implemented on a non-Abelian Fibonacci anyon
platform, the protocol’s security is further en-
hanced by the inherent topological protection
of quantum information, encoded in degenerate
fusion spaces, and the robustness of universal
braiding operations against local perturbations.

For encoding and control within the LMO05
protocol using Fibonacci anyons, two key mutu-
ally unbiased bases are utilized, formed from the
logical states of a three-anyon qubit:

» The Z-basis consists of states |0)_ and

1),. where [0), = ((o,®)o,®)1, 1), =
((.7 )i, .)1'

* The X-basis states are obtained by apply-
ing an approximated Hadamard operator H,
implemented by the sequence of elemen-
tary braids By (Equation 3), to the Z-basis
states..

Unlike quantum key distribution protocols,
whose primary goal is to establish a shared se-
cret from measurement results, the LMO5 proto-
col involves an active message encoding phase.
This means that Alice must apply at least two
different unitary operations to the qubits she re-
ceives from Bob, which allows her to intention-
ally change their state.

One such fundamental operation used for en-
coding one of the logical values is the identity
operation I, which in matrix representation is:

=)
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One sequence of elementary braids By, which
approximates the I gate with an error € ~ 1.5 -
1073, is defined as follows:

By = o307 %205 Yot os0ioy 2o
02_401_402_2J%U%JfZU%U%%_za?.

To encode the other logical bit in the
LMOS5 protocol using Fibonacci anyons, a combi-
nation of operations that approximates the Pauli
0, and io, operators is used:

=y
7

e !
)

. 0
W0z = <z 0

Unlike other operations that require complex
approximating sequences, the o, operator on the
Fibonacci anyon platform can be realized exactly
using a short sequence of braids Byz:

0
-1

By =o°

The corresponding sequence of braids B;x,
which approximates the io, operation with an
error € ~ 8.6 - 107, is defined as:

-2 4.4 -2 2 2 -2 4
Bix = 0{ 0y 0105 “01050] "0y
-2 42 —4 2 -2 2 -2 -2

01090109 0109 0709 0y ".
Using this toolkit, the step-by-step procedure
for the LMOS5 protocol is outlined in Protocol 3.

Algorithm 3.

1. Preparation Phase (Bob):

Bob creates a sequence of three-anyon qubits,
randomly choosing the preparation basis and the
specific state within that basis for each:

* In the Z-basis, one of the following states is

prepared:

|0>7— = ((.7.)()’.)17 |1>T = ((.7.)17.)1'
e In the X-basis, one of the states defined by

applying the Hadamard operation H to the
Z-basis states is prepared:

), =H[0),, |-),=HI),.

Operation H is approximately realized by the
braid sequence By, given by Equation 3.
Bob records the sequence of prepared states and
their corresponding bases.
2. First Transmission Phase (Quantum Chan-
nel):
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Bob sends the prepared sequence of anyonic

systems to Alice via the quantum channel.

3. Encoding Phase (Alice):

For each received qubit, Alice randomly selects

one of two modes:

* Control Mode: Alice measures the qubit’s
state in a randomly chosen basis (Z or X)
to check the channel’s security. She records
the measurement result and the basis used for
each system in this sequence.

* Encoding Mode: Alice encodes a bit of her se-
cret message m € {0, 1} by applying the cor-
responding unitary operation to the received
anyonic qubit:

— Ifm = 0, she applies the braid sequence
By, which approximates the identity op-
eration 1. Thus, in this case, the state
remains unchanged.

— Ifm =1, she applies the braid sequence
Bz B;x, which approximates a combi-
nation of the Pauli operators o, and i0,,.
As a result of this transformation, the
states change according to the following

principle:
|O>’T - _Z|]‘>T7 |1>T _>Z‘O>T7
‘+>T_>i‘_>7'7 |_>T_>_Z‘+>T

4. Second Transmission Phase (Quantum Chan-
nel):

Alice sends the modified sequence of anyonic
systems back to Bob via the quantum channel.

5. Decoding Phase (Bob):

Bob measures each received qubit in the same
basis in which he prepared it and records the re-
sults. By comparing the measurement result with
the expected result for operations By and Bz B, x
in the corresponding basis, Bob unambiguously
determines the bit m encoded by Alice.

6. Classical Verification Phase (Classical Chan-
nel):

After the quantum transmission is complete,
Alice and Bob use an open authenticated clas-
sical channel. Alice publicly announces which
qubits were control qubits and which were encod-
ing qubits.

For the control qubits, she also declares the
measurement basis she used. Alice and Bob com-
pare results in cases where they randomly chose
the same basis and estimate the Quantum Bit Error
Rate (OBER).



Construction of secure direct communication protocols in the topological guantum computing model

* [fthe QBER is acceptably low, the sequence
of bits obtained by Bob in encoding mode is
considered the securely transmitted message.

o [f the QBER exceeds the security threshold,
the protocol is considered compromised and
immediately aborted to ensure security, and
all potentially transmitted message bits are
discarded.

Using Fibonacci anyons to implement
LMOS5 protocol can theoretically provide the
advantages of topological protection. Encoding
in non-local degrees of freedom and performing
operations via braiding can increase robustness
against local perturbations and errors compared
to photonic implementations, and the univer-
sality of braiding ensures the possibility of
implementing the necessary operations.

Thus, while the implementation of the
LMOS5 protocol with Fibonacci anyons is theoret-
ically possible and potentially advantageous in
terms of topological protection, but it faces sig-
nificant practical challenges related to the preci-
sion of operation approximation and the physical
control over anyons.

Therefore, the implementation of the LMO05
protocol with Fibonacci anyons demonstrates the
use of their universal computational properties,
but it underscores the practical complexity as-
sociated with the need to approximate quantum
gates with long sequences of braids.

5. Comparative analysis of anyon-based
protocol implementations

The security of quantum secure direct com-
munication protocols largely depends not only
on the theoretical foundations of quantum me-
chanics, but also on the physical features of their
implementation. One of the most significant prac-
tical problems for QSDC systems using photons
as information carriers is the imperfection of
single-photon sources.

However, in the transition to the implementa-
tion of quantum cryptographic protocols on any-
onic platforms, the key physical properties of
information carriers change dramatically. This
directly affects the possibility of a PNS attack.

Lemma 1. The protocols implemented on the
platform of abelian Kitaev and nonabelian Fi-
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bonacci anyons are resistant to attacks based
on splitting the multiparticle states of the stor-
age medium, similar to the photon number split-
ting (PNS) attack.

Proof. Attacks based on multiparticle state
splitting, such as the PNS attack in photonic sys-
tems, exploit the ability of an attacker to imper-
ceptibly separate some of the redundant compo-
nents of a quantum signal to obtain information
about the transmitted state. Such attacks require
several identical or easily separable copies of the
logical state in one signal.

In anyonic protocol implementations, a logi-
cal qubit is encoded by manipulating the states
of anyons. Anyons are collective excitations of
the system or specific topological configurations
(e.g., the presence of a certain type of anyon,
the fusion state of a group of anyons, or the de-
generate ground state of an anyon system). This
encoding defines a logical qubit as a single, com-
plete quantum system that does not contain re-
dundant, easily separable copies of this logical
state that could be used for PNS attacks. There-
fore, due to the absence of a key prerequisite for
such attacks, anyonic systems are invulnerable
to such attacks. W

In addition to being resistant to PNS attacks,
anyonic implementations offer a fundamental ad-
vantage in the form of internal protection against
local errors due to the nature of the storage me-
dia.

Lemma 2. Compared to implementations on
standard physical qubits (e.g., photons), anyon-
based QSDC protocols provide increased robust-
ness to local physical errors and decoherence due
to topological protection.

Proof. The key advantage of topological
systems lies in how quantum information is en-
coded. Unlike standard qubits, which store infor-
mation in local properties (such as the polarisa-
tion of a photon), in anyonic systems it is en-
coded in global topological degrees of freedom
(e.g., in the degenerate merging space of non-
Abelian anyons). This nonlocality provides built-
in protection against local perturbations. Since
random local interactions with the environment
or minor control errors cannot instantly change
the global topology of the system, the encoded
information remains intact. Moreover, quantum
operations implemented by intertwining anyons
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are also topologically invariant: their result is de-
termined by the topology of the resulting braid,
not by the exact details of the particle trajecto-
ries. Thus, the intrinsic properties of anyonic
systems provide a much higher level of built-in
resistance to physical errors and decoherence, re-
ducing the need for complex external correction
mechanisms, unlike standard qubits such as pho-
tons, which remain vulnerable to such effects.
|

The considered advantages of anyonic sys-
tems, such as their internal resistance to cer-
tain types of attacks and local errors, highlight
their potential for practical applications in quan-
tum cryptography. Thus, the implementations of
QSDC protocols based on Kitaev and Fibonacci
anyons demonstrate the potential of topological
approaches for quantum communication. These
approaches offer an alternative to traditional pho-
tonic methods, as summarised in Table 1.

For Kitaev Abelian anyons, basic topologi-
cal manipulations, including fusion and braiding,
used to implement the necessary single-qubit op-
erations {Up, U1, Us, Us}, are inherently precise.
However, to obtain a complete set of operations
for constructing QSDC protocols, additional non-
topological methods are required, the precision
of which can vary. In contrast, non-Abelian Fi-
bonacci anyons offer a path to universal quan-
tum computation exclusively through braiding.
Yet, the implementation of the required opera-
tions here is typically achieved by approximating
them with long sequences of elementary o; and
o9 braids. Achieving high precision for such ap-
proximations may demand a significant number
of braids, complicating practical implementation.
For comparison, in photonic systems, the theo-
retical precision of operations performed using
ideal optical elements is high, and universality
can be achieved with an appropriate set of opti-
cal components. In practice, however, precision
is significantly limited by the imperfection of
these components, the accuracy of their align-
ment, and the overall stability of the experimen-
tal setup.

Another significant advantage, thoroughly sub-
stantiated in Lemma 2, is error resistance, par-
ticularly to local perturbations and decoherence,
which is inherent to anyonic systems. For both
Kitaev anyons and Fibonacci anyons, quantum
information is encoded in global topological de-
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grees of freedom. This approach means that lo-
cal perturbations, which affect only a limited
part of the system, cannot instantly destroy glob-
ally encoded information. A particularly high
level of intrinsic robustness is characteristic of
non-Abelian Fibonacci anyons, where informa-
tion is encoded in degenerate fusion spaces, mak-
ing the system fault-tolerant by design. In con-
trast, photonic qubits are extremely sensitive to
interaction with the environment, leading to sig-
nificant losses in the transmission channel, phase
distortions, and other types of errors that require
the application of active and often complex cor-
rection protocols.

In addition to protection against physical er-
rors, the key properties of anyonic information
carriers also provide resistance to attacks based
on the splitting of multi-particle states, similar
to the photon number splitting (PNS) attack, as
proven in Lemma 1. This fundamentally distin-
guishes them from WCP-based photonic systems,
where vulnerability to PNS attacks remains a
relevant issue.

The main advantage of the photonic approach
for quantum communication is its maturity, evi-
denced by the availability of commercial QKD
protocol implementations. Anyonic platforms, on
the other hand, despite being at the stage of the-
oretical research, show rapid development. How-
ever, their practical implementation, ensuring sta-
ble control over anyons, and precise manipula-
tion of their braids still remain an extremely
complex experimental challenge. Nevertheless,
their unique advantages, such as topological pro-
tection and the potential for universal computa-
tions, open prospects for creating fundamentally
new, more reliable systems for quantum commu-
nication and computation.

Conclusions

This paper develops and theoretically substan-
tiates the implementation of the LMO5 quan-
tum secure direct communication protocol based
on anyonic systems, particularly using abelian
anyons of the Kitaev model and non-abelian Fi-
bonacci anyons. Additionally, we explore the
six-state quantum key distribution protocol based
on non-abelian Fibonacci anyons.

A comparative analysis of these anyonic ap-
proaches is performed based on key character-
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Table 1
Comparative Analysis of QSDC Protocol Implementations
Characteristic Kitaey anyons Fibonacci anyons Photons
(Abelian) (Non-Abelian) (Phase Encoding)
Physical topological excitations topological excitations single photons
Carrier (e,m,¢€) (fusion channels of 7 anyons) | (in practice WCP)
Operation . ' ' .
Accuracy high approximate high (in theory)
Error partial )
Resistance (Abelian statistics) high low
Resistance to . _
PNS Attack not applicable not applicable low
Universality limited yes yes (with apperrlate
set of operations)
Implementation . ] '
Complexity high very high medium

istics such as operational accuracy, system sta-
bility, and implementation complexity. The re-
sults demonstrate the potential of anyonic plat-
forms for building quantum communication sys-
tems that are more resistant to local disturbances
and certain types of attacks.
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