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Abstract

This work addresses the problem of evaluating the security of block ciphers against impossible dif-
ferential cryptanalysis, with a particular focus on Kalyna-like ciphers. Based on formalized meth-
ods —specifically the Wu-Wang method — this work introduces refined rules tailored to AES- and
Kalyna-like ciphers. These refinements simplify compatibility checks by replacing large systems of
linear equations with computationally efficient conditions. Experimental results have identified several
classes of impossible differentials for three-round versions of certain Kalyna cipher variants, thereby
demonstrating the security of full-round ciphers against this method of cryptanalysis.
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Introduction

Impossible differential cryptanalysis is a pow-
erful method of evaluating the security of block
ciphers. It uses differentials with zero probability
to filter out incorrect keys. Since its introduc-
tion by Knudsen in 1998 [1] and many subse-
quent works (see, e.g., [2, 3, 4]), this approach
has proven effective against many ciphers, in-
cluding AES [5], Skipjack [4] and CLEFIA [6].
However, the method’s success heavily depends
on discovering long and complex impossible dif-
ferentials, which remains challenging for word-
oriented block ciphers such as Kalyna [7].

Formalized tools such as the {/-method [8]
and the UID-method [9] have been widely used
for finding impossible differentials. These tools
rely on the miss-in-the-middle approach to iden-
tify inconsistencies in differential propagation.
While effective for many ciphers, these methods
often fail to detect longer impossible differentials
or to handle the unique structures of ciphers like
Kalyna, which feature independent S-boxes and
MDS transformations.

Recent advances have sought to overcome
these limitations. The U/*-method proposed by

“turchyn.andrew @ gmail.com
byasv@rl kiev.ua

Sun et al. [10] integrates constraint programming
into the U/-method to exhaustively explore plain-
text and ciphertext difference patterns. How-
ever, it does not account for contradictions in
the S-box differential distribution tables (DDTs).
Separately, Sun et al. [11] introduced the primi-
tive index method, which estimates upper bounds
on the length of impossible differentials in SPN-
based ciphers by analyzing the structure of the
linear layer while omitting S-box behaviour.
Meanwhile, MILP-based approaches [12] have
been adapted to model impossible differentials
by embedding constraints on input-output differ-
ence pairs. While these approaches can detect
general contradictions, they require the testing of
a prohibitively large number of difference pairs.

A significant advancement was presented
in [13], where a partitioning strategy was pro-
posed for the MILP search space. This approach
makes exhaustive analysis feasible. This method
guarantees that if no impossible differentials are
found within a given number of rounds, none ex-
ist — thus offering a form of provable security.

In this paper, we refine the Wu-Wang
method [14] to address its limitations, simpli-
fying compatibility checks and reducing compu-
tational complexity. We describe an improved
practical procedure to automating the search of
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impossible differentials for Kalyna-like ciphers.
Our experimental results demonstrate the effec-
tiveness of this approach with Kalyna-128 and
Kalyna-256 ciphers.

This paper is organized as follows. Section 1
introduces the formal notation of AES- and
Kalyna-like SP-networks and the preliminaries
required for impossible differential analysis. Sec-
tion 2 describes the original Wu—Wang method
and outlines its miss-in-the-middle compatibility
checks. Section 3 refines the Wu—Wang frame-
work for AES- and Kalyna-like SP-networks by
introducing new B-rules that exploit the proper-
ties of MDS transformations used in AES-like ci-
phers. The practical procedure for the automated
search of impossible differentials using the re-
fined rules is then detailed. Section 4 presents
the experimental results for some Kalyna cipher
variants, highlighting the number and structure
of the impossible differentials found.

1. Preliminaries

1.1. SP-Networks and Kalyna-like Ciphers

Denote by V,, = {0,1}" the space of binary
vectors of length u; we name these vectors as
“words”. For n = mu we identify the space
Vy, as (V,)™, and n-bit vectors as m-tuples of
words.

An n-bit substitution-permutation network (or
SP-network) is an iterative block cipher scheme
with n-bit blocks, each round of which consists
of three layers:

¢ addition with round keys (usually with XOR
operation);

* nonlinear layer S with so-called S-boxes —
bijective mappings of form V,, — V,,, which
transform words to words;

* linear layer L — some bijective transforma-
tion V,, — V,,, linear w.r.t. XOR.

In word-oriented SP-networks the linear layer
is normally defined as matrix multiplication over
the space V,, or a finite field Fou, thus all en-
cryption rounds become some transformations
over words.

The AES cipher [5] introduced a specific
form of the byte-oriented SP-network. In AES-
like SP-networks every state block is considered
as a word matrix with ¢ rows and ¢ columns (so
m = {c), and the linear layer is divided into two
subroutines:

» ShiftRows: words in every row of state are

permuted;

* MixColumns: every column of state is mul-

tiplied by a given ¢ x ¢-matrix over Fau.

The standardized version of AES uses u = 8
(bytes) and the state matrix with ¢ = ¢ = 4;
Rijndael cipher, the predecessor of AES, also
allows ¢ =6 and ¢ = 8.

MixColumns transformation of AES is built
upon a so-called MDS-matrix, which is character-
ized as follows. A branch number of ¢ x {-matrix
M is defined as

B(M) = an;g{wt(x) +wt(M - x)},

where wt(z) is the number of non-zero words
in vector . The MDS-matrix M has the
highest possible value of the branch number:
B(M) =/{¢+1. The MixColumns transforma-
tion of AES uses an MDS matrix 4 x 4 with
the branch number B = 5.

In 2015 the block cipher Kalyna [7] was
adopted as Ukraine’s national encryption stan-
dard DSTU 7624:2014, replacing the ageing
GOST 28147-89 and offering far better soft-
ware performance on modern 64-bit platforms.
Kalyna is an iterated SP-network inspired by
Rijndael/AES, but enlarged and re-parametrised
to meet domestic security goals.

Kalyna cipher allows different block length
and key sizes, as shown below:

Block (bit) Key (bit) Variant Rounds r
128 128 128/128 10
128 256 128/256 14
256 256 256/256 14
256 512 256/512 18
512 512 512/512 18

The main differences between AES and Ka-
lyna, which are relevant to our research, are as
follow.

» Kalyna is tuned to 64-bit architectures, so
its state matrix always has £ = 8 (unlike
¢ =4 in AES); therefore, states of Kalyna
have sizes 8 x 2, 8 x 4, 8 x 8.

This difference is crucial, since ShiftRows trans-
formation of Kalyna cannot distribute words
from one column to different columns of state,
which affects avalanche effects and creates addi-
tional dependencies between internal words.
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* The first and the last round keys are added
to the state modulo 24, while others are
added with XOR operation.

* MixColumns transformation of Kalyna is
built upon 8 x 8 MDS-matrix with the
branch number B = 9.

For a detailed description of Kalyna cipher

we refer to [7].

The properties of Kalyna cipher allow to de-
termine Kalyna-like ciphers as AES-like cipher
with ¢ < c.

In this paper, we use the notation “Kalyna-n”
for model Kalyna-like ciphers with n-bit block
and XOR addition with round keys (which cor-
responds to internal encryption rounds of Kalyna
cipher). Note that key size doesn’t matter for
considered cryptanalytic methods due to usual
assumption of round key independence.

In addition to the standardized Kalyna-128
and Kalyna-256 with state matrices of sizes 8 x 2
and 8 x 4, respectively, we also consider the re-
duced cipher Kalyna-64 with a 4 x 2 state matrix.
Its ShiftRows function is analogous to that of
Kalyna-128, while its MixColumns function is
based on the AES MixColumns transformation.

Note, that wider 8-byte columns and a higher
branch number dramatically enlarge the search
space for classical U-/UID- or naive MILP-
methods in application to Kalyna cipher.

1.2. Formal Approach to Impossible Dif-
ferential Cryptanalysis

The U-method [8] and the UID-method [9]
introduced the following formalization of impos-
sible differential cryptanalysis of word-oriented
block ciphers.

Let (x1,Z9,...,2n) — (Y1,92,...,Yn) de-
note an 7r-round difference transition in an
n-word block cipher E. This notation im-
plies that starting from the input difference
(z1,...,2zy) before round 1, after r rounds the
cipher output difference (y1,...,yn) is a possi-
ble pattern. If no pair of actual plaintexts (or
intermediate states) can implement such a tran-
sition, we call this differential an impossible r-
round differential and denote it as

(T1,...,Tp) R (Y1 -+ Yn)-

Suppose U = (u1,...,up,) is an in-
put difference vector (each wu; corresponds
to the difference of i-th input word), and

let U" = (uf,...,u;) be the difference after
r rounds. Each u} can be one of several types
of word differences, as described next.

Following the convention in many word-

oriented ciphers, we allow four basic labels:

* Zero difference (0): the difference word is
exactly zero.

* Nonzero fixed difference (l;): the difference
word is nonzero but takes a fixed, predeter-
mined value.

* Nonzero variable difference (m;): the dif-
ference word is nonzero but may take any
nonzero value.

» Unknown variable difference (r;): the dif-
ference word may have any value (zero or
nonzero).

Two difference vectors
U= (U,Us,...,U,),
V: (‘/17‘/27"')‘/71)7

are called inconsistent if there exists a non-
empty subset I C {1,2,...,n} such that

Du # DV (1)
il il
under all possible assignments of variable dif-
ferences. Intuitively, some fixed vs. variable dif-
ferences cannot logically coincide, making these
XOR sums impossible to match.

For example, if U = (l; & my,0) and
V = (I1,0), where [y is nonzero fixed and m; is
nonzero variable, then [; & m; can never equal
l1, so U and V are inconsistent. Similarly, if
U= (l1,li ®my) and V = (mg, mz), we find
u1 ®uy = mq and vy vy = 0, which cannot be
equal; thus U and V' are inconsistent again.

In an n-word block cipher F, let an input
difference U transit through 4 encryption rounds
to become U’. Likewise, an output difference
V0 can be traced backward through j decryption
rounds to V7. If at some point U’ and V7 are
found to be inconsistent according to (1), then
the (i + j)-round differential

v° o
is impossible because the forward and backward
paths for those words cannot be reconciled.

In the model considered, each round’s trans-
formations of words are categorized as one of
three general types:
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* Zero transformation (0): if the input differ-
ence is 0, the output difference remains 0.

o Identity transformation (1): no matter what

difference is input, the output is unchanged.

* Nonlinear transformation (F'): represents

S-boxes or mixing steps. Typical rules in-
clude:

— if input is 0, output is 0;

— if input is Il; (nonzero fixed) or m;
(nonzero variable), output becomes
some new m;.

— otherwise, output is r; (unknown vari-
able).

A schematic illustration of how input dif-
ferences map to output differences under these
three transformations is shown in Table 1.

In practice, these definitions provide a for-
mal approach to identifying impossible differen-
tials: we label each round’s input/output differ-
ence as one of 0, [;, m;, or r;, and check for
mismatch that indicate no valid plaintext/cipher-
text pair could implement that difference pattern.
If such a mismatch arises after a total of 7 + j
rounds (forward and backward), the correspond-
ing difference transition is deemed impossible.

2. A General Description of the Wu-Wang
Method

The Wu-Wang method [14] is designed for
the automated search of impossible differentials
in various types of block ciphers. The main idea
of the method involves the following steps.

1) Constructing a formal model of the cipher,
where the input, output, and intermediate states
(differences) are represented by sets of variables
and relations. Each variable corresponds to some
difference word and can be zero, nonzero, or
unknown.

2) Expressing the round function of the cipher
as a system of equations, divided into:

* linear equations (covering XOR, branching,

linear transformations etc.);

* nonlinear equations (covering S-boxes, pos-

sibly key-dependent).

3) Enumerating different input-output differ-
ence templates and checking for contradictions
by combining linear-consistency checks and an
information leakage evaluation. If a contradic-
tion is found, the corresponding differential is
classified as impossible.

This method thus enables one to determine
whether a given pair (AP, AC) of differences of
two plaintexts and two ciphertexts cannot arise
during encryption, irrespective of the key.

Formal model of cipher involves several types
of relations, which connected with every compo-
nent of the encryption rounds as it given below.

Linear Transformations. Common linear oper-
ations in block ciphers include:

1) branching: AX = AY = AZ, represented
by equations

Az; ® Ay; =0, Az; @ Az =0

2) XOR: AX & AY = AZ, defined by Az; &
Ay; & Az; = 0;

3) linear mixing: AYT = M - AXT, where
M is a matrix specifying the linear layer
of encryption round (or some of its internal
transformation); each word Ay; depends lin-
early on several Az;, yielding equations of
the form

Ayi D @(mi,j . AZL‘J) =0.
J

Such relationships are linear and can be pro-
cessed by standard linear-algebraic methods (e.g.,
Gaussian-Jordan elimination). Combining them
across multiple rounds forms a large system of
equations whose consistency is crucial in the
Wu-Wang method.

Nonlinear Transformations. The differential
transition through an S-box is denoted as

Al‘i — Ayi,

meaning if Ax; is the input difference and Ay;
is the output difference, their relationship is spec-
ified by a set of (possibly non-linear) constraints.
In [14], these are called “nonlinear equations.”

A procedure for finding impossible differen-
tials can be described as a sequence of the fol-
lowing steps.

o Assigning Input-Output Templates. One
first designates which words of input and out-
put differences AP — AC are zero (0) or
nonzero (l;). For example, one might explore
all patterns with exactly one nonzero word, or
two nonzero word, etc.

o Combining Equations into a Single System.
All linear equations (branching, XOR, linear mix-
ing) and nonlinear ones (S-box) are merged into
a formal description. For a multi-round cipher,
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Table 1
Types of formal transformations in word-oriented block ciphers
Transformation Input Output Notes
0 x € {0,l;,mj,r;} 0 Zero transformation
1 x €40,l;,mi,r;} x Identity transformation
0 0
l; j .
F : M F-transformation
my m;
unknown T

the system captures the sequential passage of
states through each round.

o Checking Linear Consistency. Using linear
algebra (such as row reduction to echelon form),
the method checks whether the linear part of for-
mal system has a solution. If no solution exists,
the input-output difference AP — AC cannot
occur, therefore this differential is classified as
impossible.

Note that this step is the main innovation of
the Wu-Wang method: linear constraints are ex-
plicitly tested for possible (in)consistency, unlike
the earlier UID-method.

o Miss-in-the-middle Contradictions. 1f the
linear system is consistent, the algorithm prop-
agates these differences forward and backward
through all stages of the cipher, applying S-box
constraints and other rules (e.g., zero-in — zero-
out). If at some point a variable is forced to be
both zero and nonzero, we have a contradiction,
implying an impossible differential.

e Conclusion. Once a contradiction is found
(due to an unsolvable linear system or inconsis-
tent assignments in intermediate variables), the
differential is labeled “impossible.” Conversely,
if no contradiction arises, the method does not
exclude the possibility that the given differential
might be impossible.

Hence, the Wu-Wang method supports com-
bining arbitrarily complex linear transforma-
tions (e.g., MDS) and S-box-based nonlinearities,
checking whether certain long differential paths
can occur. It does not necessarily increase the
number of rounds for which impossible differ-
entials are found but automates the detection of
unreachable difference patterns.

3. Improved Formalization of the Wu-
Wang Method for AES-like and Kalyna-
like Ciphers

We describe three types of formal rules
for the Wu-Wang method, applied to AES-like
SP-networks. Two of them replicates rules
from [14], and the last one is introduced in this
work.

1) Non-linear transformation (NL-rules): For
each input word Ax;, a new variable Ay; is
introduced, representing the output difference af-
ter passing through the S-box. For each pair
(Ax;, Ay;), a non-linear rule is added:

For example, in Kalyna-128 each round adds 16
non-linear rules.

2) Linear transformation (L-rules): After ap-
plying ShiftRows to the state Ay, the resulting
state is Ay, and after applying MixColumns to
the state Ay, the resulting state is Az. Each
column Ay} is multiplied by an MDS matrix
M, producing the output vector Az;:

Azj =DM - Ay;-.

For example, in Kalyna-128 linear transformation
generates 16 linear equations per round.

3) B-rules: For each column j, the B-
rule B[Ay’, Az] checks the number of non-zero
words among both input and output variables:

wt(Ay;) + wt(Azj) > B,

where B is the branch number of the MDS ma-
trix M (this value is fixed for given cipher). For
Kalyna-128, where the state matrix has two 8-
byte columns, each round adds two B-rules, each
with 16 corresponding variables and B = 9.
The proposed B-rules add valuable insights
into the relationship between input and output
variables in MDS transformations, streamlining
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linear-system compatibility checks. The Wu-
Wang method checks the compatibility of the
linear system only at the beginning of the anal-
ysis. However, during the search for contradic-
tions and the assignment of intermediate vari-
ables, changes in the system may occur, po-
tentially leading to contradictions. Evaluating
these conditions can provide additional insights
into differential propagation and possible incon-
sistencies in the cipher. Moreover, the following
properties of AES-like SP-networks with MDS-
transformations allow significant simplification
of the linear consistency checking step.

* System decomposition: Linear equations for
each column on every round are indepen-
dent, allowing the overall linear system to
be split into several smaller subsystems for
each round. This significantly reduces the
complexity of the analysis.

Guarantee of solvability: MDS matrices en-
sure that if the number of non-zero words
at the input and output is at least B, the
system has a solution. For example, Kalyna-
128 uses 8 x 8 MDS matrix in MixColumns,
therefore the system is solvable when num-
ber of non-zero variables at the input and
output of every column is not less than 9.

Compatibility checks: Instead of solving the
entire MDS system, the process is reduced
to counting the number of non-zero vari-
ables in the input and output vectors for
each column, which is described as B-rule.

Therefore, the proposed approach with
B-rules enables the Wu-Wang method to be ap-
plied more effectively to AES-like and Kalyna-
like ciphers.

The method for finding impossible differen-
tials in ciphers involves the use of formal rules
that correspond to the structure of the cipher.
The algorithm proceeds in several stages, se-
quentially processing various types of rules. The
general idea is to establish values for input and
output variables, verify compliance with defined
rules, and identify contradictions in the differen-
tial path.

In general refined Wu-Wang method can be
described as a sequence of the following steps.

e Construction of Formal Cipher Model. For a
given number of rounds r a set of formal rules,
which describes differential transitions in cipher
FE, is determined.
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o Initialization. At the first stage, a set of
templates for input and output variables is se-
lected. These variables can take values “zero”
(0) or “non-zero fixed” (I;). To reduce compu-
tational complexity, it is recommended to limit
templates to those with a small number of non-
zero variables.

e Processing NL-Rules. At this stage, non-
linear equations associated with the cipher’s S-
boxes are processed. For each equation x — vy,
the following checks are performed:

e If x is a zero variable and y is non-zero,
or vice versa, a contradiction is found. The
rule processing stops, and the differential is
determined to be impossible.

e If x is a zero or non-zero variable and y is
unknown, y is set to the value of x. Simi-
larly, if y is a zero or non-zero variable and
z is unknown, x is set to the value of y.

e Processing L-Rules. At this stage, linear
equations related to MDS matrices and linear
transformations are processed. For each equation,
the following checks are performed:

* If the equation is of the form

a-x=0

and x is a non-zero variable, a contradiction
is found. The rule processing stops, and the
differential is determined to be impossible.
If the equation is of the form

a-x =const # 0

and x is a zero variable, a contradiction is
found. The rule processing stops.
If the equation is of the form

a - x = const

and x is unknown, z is set to const (zero
if const = 0, and non-zero if const # 0).
If the equation is of the form

a-x®b-y=0,

and x is a non-zero variable while y is un-
known, y is set to non-zero. Similarly, if y
is a non-zero variable while z is unknown,
x is set to non-zero.

e Processing B-Rules. For each B-rule [y, z],

the following checks are performed:

e If all variables in the vector y are zero,
all variables in z are set to zero, and vice
versa.
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Table 2
An example of difference propagation and mismatch
in 3-round cipher Kalyna-64.

Input

Round 0000 0001
SB: 0000 0001

1 SR: 0001 0000
MC: | 1111 0000

SB: 1111 0000

2 | SR: |[1100|||0011
MC: | [2200 0022

SB: 2200 0022

3 SR: 2222 0000
MC: | 0001 0000

* If the total number of zero variables in y
and z exceeds B — 1, a contradiction is
found. The rule processing stops, and the
differential is determined to be impossible.

e [terative Processing. The processing of all

types of rules is repeated iteratively until no new
information about intermediate variables can be
established. If, after a complete cycle of checks,
no new values are determined, the algorithm ter-
minates. If no contradiction is found, nothing
can be concluded about the differential.

4. Experimental results

To illustrate the effectiveness of the proposed
refinement to the Wu-Wang method we apply it
to the Kalyna-n ciphers. At first we considered
reduced Kalyna-64 cipher, then Kalyna-128 and
Kalyna-256 ciphers due to a form of their state
matrices with ¢ < c.

Results for the Kalyna-64. For the three-
round version of the Kalyna-64 cipher all pos-
sible templates for input and output difference
words were analyzed. As a result, 900 classes
of truncated impossible differentials were found.
It was identified that, in all these differentials,
contradictions arose during the processing of B-
rules, with the contradiction being detected after
just two iterations of rule processing. For differ-
entials where the methodology could not deter-
mine whether they were impossible or not, the
processing typically completed in three iterations
(in rare cases, four iterations).
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Table 3
An example of difference propagation and mismatch
in 3-round cipher Kalyna-128

Input
Round 0000 | 0000 [ 0000 | 0101
SB: | 0000 | 0000 | 0000 | 0101
I | SR: | 0000 | 0101 | 0000 | 0000
MC: | 2222 | 2222 | 0000 | 0000
SB: | 2222 | 2222 | 0000 | 0000
2 | SR: | 2222|0000 | 0000 | 2222
MC: | 2222|0000 | 0000 | 2222
SB: | 2222 | 0000 | 0000 | 2222
3 | SR: | 2222 | 2222 | 0000 | 0000
MC: | 0000 | 0001 | 0000 | 0000

For the four-round version of Kalyna-64 ci-
pher no impossible differentials were found.

Table 2 provides an example of the differen-
tial path for a three-round impossible differential.
Here, 0 represents a zero variable, 1 represents a
non-zero variable, and 2 represents an unknown
variable. The input vector shows the input differ-
ence values, and the area where the contradiction
was detected is highlighted.

Results for the Kalyna-128 and the
Kalyna-256. For the Kalyna-128 and the
Kalyna-256 ciphers, only templates with input
and output vectors of weight no more than 2
were considered. For the three-round ciphers,
the following results were obtained:

* Kalyna-128: 5,184 classes of impossible dif-

ferentials out of 18,496 templates analyzed;

* Kalyna-256: 278,784 classes of impossible

differentials, which constituted all analyzed
templates.

Similar to the reduced 64-bit version, in all
identified impossible differentials contradictions
arose during the processing of B-rules and were
detected after just two iterations. Interestingly,
all the discovered impossible differentials in-
cluded at least one fully zeroed column in the
output. This observation suggests that for the
Kalyna-256 cipher, there may exist classes of im-
possible differentials with differences of weight
3 in both input and output (guaranteeing ze-
roed columns), and potentially even with higher
weights.
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Table 4

An example of difference propagation and mismatch in 3-round cipher Kalyna-256

Input

Round 1000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000
SB: | 1000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000

1 | SR: | 1000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000
MC: | 1111 | 1111 {0000 | 0000 | 0000 | 0000 | 0000 | 0000

SB: | 1111 | 1111 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000

2 | SR: [[1100]|]|0000|| 0000 | 0011 | 0000 | 1100 | 0000 | 0011
MC: | [0022] [|0000 || 2200 | 0000 | 0000 | 0022 | 0000 | 2200

SB: | 0022 | 0000 | 2200 | 0000 | 0000 | 0022 | 0000 | 2200

3 | SR: | 0000 | 0000 | 2222|2222 | 0000 | 0000 | 0000 | 0000
MC: | 0000 | 0000 | 1000 | 0000 | 0000 | 0000 | 0000 | 0000

Examples of differential paths for the discov- References

ered impossible differentials are provided in Ta-
ble 3 and Table 4.

The obtained results demonstrate that the full-
round variants of the Kalyna ciphers (Kalyna-
128 with 10 rounds and Kalyna-256 with 14
rounds) can be considered as secure against im-
possible differential cryptanalysis.

Conclusions

In this work, we considered the Wu-Wang
method, one of the most powerful approaches for
finding impossible differentials in word-oriented
ciphers. It has been shown that, for AES- and
Kalyna-like SP-networks, this method can be
simplified and enhanced by performing addi-
tional checks on the properties of MDS transfor-
mations during the analysis of differential paths
within the cipher.

The proposed refinement was used to discover
classes of three-round impossible differentials for
the Kalyna-128 and Kalyna-256 ciphers. In par-
ticular, it was demonstrated that all differentials
with two non-zero input and output words are
impossible in the three-round Kalyna-256 cipher.

Future research may focus on refining these
methods to evaluate the probabilities of truncated
differentials and finding impossible differentials
for specific classes of block ciphers. This would
require more detailed studies of the properties of
their algebraic structures.
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