
Information Security Challenges in an Enterprise-Grade Software Development
Lifecycle

Kamil Mahomedov

National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

Abstract
In an era of escalating cyber threats and digital complexity, the integration of information security into
the software development lifecycle (SDLC) is imperative for building trustworthy enterprise-grade
software systems. This literature review synthesizes and critically evaluates over 30 scholarly and
industry sources to identify current practices, frameworks, and tools for SLDC implementation. It
explores prominent cybersecurity frameworks, such as Microsoft’s SDL, OWASP SAMM, NIST
SSDF, and assesses how well they accommodate modern cloud security practices within contemporary
SDLCs. Special attention is given to the DevSecOps paradigm, which integrates automated security
checks and developer engagement into continuous integration and delivery pipelines, and to SBOMs as
a means of exposing and managing third-party component risks in complex supply chains. Findings
reveal persistent challenges related to integration with agile workflows, cost, lack of standardized
metrics, and organizational resistance (i.e. the human factor). The overall result is the amalgamation of
software security best practices extracted from the examined literature into a concise overview to assist
further research in this area. The paper concludes with a call for more adaptable, scalable, and
measurable security practices that align with modern software development methodologies aimed at
facilitating the enterprise-grade integration and delivery of code.

Keywords: SDLC, CI/CD, DevSecOps, SBOM, cyberattacks, vulnerabilities, threat models, scalability
__

Introduction

The integration of information security

throughout the Software Development Lifecycle
(SDLC) has become a foundational requirement
for mitigating modern software threats. As
organizations face increasingly sophisticated
cyberattacks, the consequences of inadequate
security — including data breaches, financial
losses, and reputational harm — grow more
severe. Despite the availability of mature tools
and methodologies, widespread vulnerabilities
often stem from treating security as an
afterthought rather than a foundational aspect of
software engineering. This can happen due to
several reasons, ranging from budgetary
constraints to insufficient level of security
awareness, which in most cases boils down to lack
of organizational maturity.

1. Methodology

This literature review aims to explore the

evolution of security practices in the SDLC by
synthesizing key research contributions, critically

evaluating the strengths and weaknesses of
different models, tools, and frameworks aimed at
addressing security concerns in software
development, focusing particularly on challenges
faced in enterprise-grade environments. The goal
is to establish a foundation for future work toward
measurable, scalable, and integrated security
practices across heterogeneous software
development contexts.

1.1. Research type

This study employs a qualitative research

design, grounded in an interpretive, narrative
synthesis of existing scholarly and industry
literature on integrating information security into
the Software Development Lifecycle (SDLC).
Qualitative methods are particularly well-suited
for this inquiry because the objective is to
understand how and why security practices have
evolved, the contextual factors that shape their
adoption, and the interplay between technical
frameworks and organizational culture. Unlike
quantitative meta-analysis, which aggregates
numerical findings, qualitative synthesis allows

UDC 004.056.53:512.6

24

__Information Security Challenges in an Enterprise-Grade Software Development Lifecycle

for a rich, nuanced examination of conceptual
developments, practitioner experiences, and the
emergent trends—such as DevSecOps and cloud-
native security—that defy simple quantification.

The chosen topics span methodological,
technical, and socio-cultural dimensions. A
qualitative lens enables exploration of these
multifaceted aspects in their real-world context.
The emergent phenomena should also be
mentioned: practices like DevSecOps, which
enables continuous security automation, or
Software Bill of Materials (SBOMs), which aims
at creating a transparent overview of all software
components, are relatively recent and not yet
amenable to large-scale empirical measurement,
however they can be effectively captured through
interpretive analysis.

The idea is that by synthesizing diverse
sources, the study contributes to theory
development, identifying relationships among
security frameworks, software development
processes, and organizational best practices.

1.2. Literature selection

A comprehensive search was conducted in

academic and professional databases, including
IEEE Xplore, ACM Digital Library, Scopus, Web
of Science, and Google Scholar. Search strings
combined terms such as “secure SDLC,”
“DevSecOps,” “threat modeling,” and “SBOM.”
Inclusion criteria required that studies be peer-
reviewed, published in reputable outlets between
2005 and 2024, and focused on enterprise-scale
software development contexts. Exclusion criteria
filtered out articles lacking empirical grounding or
practical relevance (for example, purely
theoretical cryptography research).

1.3. Data extraction and synthesis

From the initial pool of over 50 records,

approximately 20 core studies were selected for
detailed review. Information was extracted on key
dimensions: security integration models, tooling
and automation practices, organizational and
cultural enablers, and evaluation metrics. Using
an iterative coding process, concepts were
grouped into thematic categories, enabling
comparative analysis across frameworks such as
Microsoft SDL, OWASP SAMM, and NIST
SSDF.

1.4. Organizational pattern

The body of the literature review is organized

thematically, rather than strictly chronologically.
This choice is motivated by several reasons.

Firstly, it makes sense due to comparison of
existing frameworks being one of the main targets
of this review. By grouping content thematically
(e.g., “Frameworks and Methodologies,”
“Development and Testing Practices,” “Emerging
Trends”), readers can directly contrast different
approaches side-by-side.

Secondly, it’s worth noting that themes such as
automation, organizational culture, and metrics
recur throughout the SDLC phases – a thematic
structure brings these connections into focus,
allowing to highlight the cross-cutting issues.

It is also meant to facilitate the discovery for
enterprise practitioners, who often seek guidance
by topic (e.g., “How do I embed threat
modeling?”) rather than by publication date,
making thematic organization more actionable.

While a chronological overview could
illustrate the historical evolution of secure SDLC
practices, thematic organization better serves the
paper’s objective of providing a coherent,
integrated picture of current best practices and
research gaps. This pattern ensures that each
major theme is treated in depth, drawing on the
full spectrum of relevant literature, regardless of
its publication year, provided the recency criterion
is still met.

2. Related work

2.1. Development of security challenges in
literature

The literature on information security

challenges within the enterprise-grade software
development lifecycle (SDLC) has evolved
significantly, reflecting the increasing complexity
and urgency of securing software systems. Early
insights from [1] emphasized the tendency to
incorporate security measures late in the
development process, often resulting in costly
fixes post-deployment. They advocated for a
paradigm shift towards integrating security
considerations throughout all phases of the SDLC,
arguing that this proactive approach is essential
for safeguarding corporate data and network
resources against potential threats.

Building on this foundation, [2] called for a
more comprehensive understanding of security

25

__Theoretical and cryptographic problems of cybersecurity

methodologies within software engineering. They
highlighted the necessity of educating developers
about security risks and mitigation strategies,
challenging the perception that security features
are merely an additional expense rather than a
critical investment in protecting information and
customer data. Their survey underscored the need
for a cultural change in the industry to prioritize
security at every stage of software development.

Authors in [3] further explored security issues
in the SDLC, focusing on static analysis and risk
management. They examined various tools and
methodologies aimed at enhancing software
security, advocating for a more analytical
approach to identifying vulnerabilities early in the
development process. Their work contributed to
the discourse on the importance of integrating
security practices within software design and
testing phases.

Later [4] shifted the focus to practical tools for
developers, specifically static code analysis
(SCA). He argued that while SCA can effectively
identify security flaws, it is often applied too late
in the development cycle. It was proposed that
integrating security checks within popular
integrated development environments (IDEs)
would facilitate earlier detection of
vulnerabilities, thereby reducing the likelihood of
insecure code being deployed.

The focus on developer engagement continued
with [5], where the importance of fostering a
culture that encourages developers to adopt
automated security tools was identified. Authors
noted that prior models, such as the Secure
Development Lifecycle (SDL), faced resistance
due to their prescriptive nature. Their research
suggested a shift towards more flexible Security
Capability Maturity Models, emphasizing the
alignment of security practices with business
goals and the need for lightweight best practices
that resonate with developers’ realities.

Authors in [6] expanded on the importance of
security integration throughout the SDLC,
advocating for regular code reviews and the use of
automated tools to identify vulnerabilities. They
emphasized that security checks should not be
confined to the testing phase but should be a
continuous process throughout development.
Their insights reinforced the necessity of a
structured approach to security that includes
penetration testing and adherence to security
standards during deployment and maintenance.

In the same year, [7] highlighted the role of
periodic security testing and the need for ongoing
developer education in secure coding practices.

They pointed out that the integration of automated
security tools can significantly lighten the
workload of security engineers and improve the
security posture of software projects. Their
findings underscored the critical role of training
and mentorship in fostering a culture of security
awareness among developers.

Authors in [8] addressed the emerging
DevSecOps paradigm, which aims to incorporate
security into the agile development process. Their
systematic review identified numerous challenges
faced by practitioners in adopting DevSecOps,
including the need for automation and the balance
between rapid delivery and security. They called
for a greater focus on developer-centric security
tools to facilitate this integration.

Most recently, [9] addressed the ongoing
challenges in secure software development,
emphasizing the need for continuous security
validation throughout the coding and testing
phases. They advocated for thorough security
assessments and the implementation of robust
security measures before software deployment.
Their work encapsulated the evolution of secure
software development practices, stressing that
regular code reviews and updates are essential to
mitigate emerging vulnerabilities.

2.2. The importance of SSDLC

Together, these articles illustrate a clear

trajectory in the literature, from recognizing the
necessity of integrating security throughout the
SDLC to advocating for specific methodologies
and tools that facilitate this integration. The
collective insights highlight the persistent
challenges and evolving strategies in addressing
information security within enterprise-grade
software development, underscoring the
importance of a proactive and comprehensive
approach to safeguarding software systems.

Several studies underscore the importance of
integrating security from the outset of the SDLC.
Davis [10] argues that information security should
be "built in" rather than "bolted on" after
development, emphasizing the idea of a Secure
Software Development Lifecycle (SSDLC). This
perspective shifts the traditional approach to
security, which often treats it as an afterthought,
toward a proactive stance where security is an
integral part of every phase of the SDLC, as
illustrated in Figure 1.

26

__Information Security Challenges in an Enterprise-Grade Software Development Lifecycle

Figure 1: SDLC vs. SSDLC comparison

This approach is further reinforced by Jones

and Rastogi in [11], where it is suggested that
earlier and more frequent security interventions
can drastically reduce vulnerabilities in the final
product.

Newton et al. [12] also argue that introducing
security as an early-stage consideration within
Agile projects reduces long-term complexity and
cost. NIST further supports this view by
recommending security activities be initiated
from the concept phase through to deployment
[13].

The integration of security into the SDLC is
not only about technical practices but also
involves adopting frameworks that guide
developers through secure processes. NIST’s
Secure Software Development Framework
(SSDF) is a notable standard that offers a flexible
and comprehensive approach to integrating
security practices across SDLC stages [14]. SSDF
consists of practices grouped into four categories:
Prepare the Organization, Protect the Software,
Produce Well-Secured Software, and Respond to
Vulnerabilities.

Davis [10] and Saeed et al. [15] note that
although frameworks like SSDF offer structure,
they often demand specialized skills and
consistent oversight. These practices can be
demanding for smaller organizations with limited
security budgets or staff, which presents a
challenge to widespread adoption.

2.3. Security practices in development and
testing phases

During the development phase, secure coding

practices are a primary focus. Saeed et al. [6]
highlight the use of OWASP's Top Ten
vulnerabilities as a key resource for development
teams to ensure secure application design. Tools
like Static Application Security Testing (SAST)
and Dynamic Application Security Testing
(DAST) offer automated analysis to detect
vulnerabilities both during coding and runtime.

However, SAST tools are often context-
dependent and may not capture complex runtime
issues, while DAST tools require skilled manual
oversight, making them more resource-intensive.
Integrating DAST into CI/CD pipelines ensures
that security testing is not an isolated post-
development activity but part of the continuous
development process [6].

2.4. Emerging trends: DevSecOps, Cloud
Security, SBOMs

Recent research spotlights the DevSecOps

paradigm, which addresses the issue of the so-
called “knowledge silos” by treating security-
related issues as a shared responsibiliy across
development, operations, and security teams.
Case studies demonstrate that embedding
automated security checks within CI/CD
processes fosters a “shift-left” culture, reducing
the latency between code commit and
vulnerability detection This approach fosters a
collaborative environment that helps reconcile the
traditional tension between rapid deployment and
stringent security controls [14], [15]. However,
adoption challenges persist. As noted in [17],
cultural resistance, skill gaps, and tooling
fragmentation often slow implementation.

In parallel, the move to cloud-native
architectures introduces novel attack surfaces.
Organizations must now secure not only their
application code but also infrastructure-as-code,
container images, and managed services. Cloud
security presents an evolving challenge in modern
SDLCs. The shared responsibility model in cloud
environments, as defined by NIST [13], requires
software vendors to take increased responsibility
for application-layer security. Practices such as
secure API management, access control
enforcement, and encryption standards are
essential for ensuring robust cloud-native
application security [14].

An increasingly critical component in this
domain is the Software Bill of Materials (SBOM),
which improves supply chain transparency. As
Nicolaysen notes in [16], SBOMs are essential for
tracking third-party component vulnerabilities,
particularly considering recent attacks like
SolarWinds and Log4Shell. Integration of SBOM
generation into build pipelines ensures real-time
visibility but poses challenges in version tracking
and component licensing. The obvious benefit of
SBOMs is the transparency of included software
components. The components include build or

27

__Theoretical and cryptographic problems of cybersecurity

runtime dependencies, which can be presented as
a graph, shown in Figure 2.

Figure 2: SBOM representation of a typical
Spring Boot microservice

2.5. Critical evaluation of existing
approaches

Still the limitations remain, despite the

progress enabled by frameworks like NIST SSDF
and OWASP SAMM. This boils down to
approaches being fundamentally similar; distinct
parallels can be drawn between the two
frameworks, as outlined by Figure 3.

Figure 3: Structural comparison between
OWASP SAMM and NIST SSDF

One major limitation is the absence of

standardized security metrics to measure the
effectiveness of implemented controls [15].
Without these metrics, organizations struggle to
evaluate the maturity of their secure development
practices.

Furthermore, resource and expertise
constraints limit the practical application of these
frameworks, especially in small and medium-
sized enterprises (SMEs). Jones and Rastogi [11]
observe that many secure development guidelines

assume a baseline of cybersecurity knowledge
that is not always present in Agile teams.
Continuous education and awareness campaigns
are necessary to mitigate these gaps.

3. Results and discussion

The review of literature on information

security challenges in the enterprise-grade SDLC
reveals a coherent progression of research focus
and practical guidance. Across these bodies of
work, a few clear results emerge.

First, embedding security at every phase of the
SDLC demonstrably reduces both the frequency
and severity of post-deployment vulnerabilities.
Studies consistently report lower remediation
costs and fewer high-risk defects when threat
modeling, secure coding standards, and
automated scans are performed continuously
rather than in isolated stages [12], [15].

Second, frameworks such as NIST’s SSDF and
OWASP’s SAMM, while differing in structure
and scope, converge on key practices—talent
enablement, process integration, and continuous
feedback—that underpin any robust SSDLC.
Their differences suggest that there is no silver
bullet; instead, organizations must tailor these
models to match their risk profiles, resource
constraints, and cultural readiness.

Third, automation is indispensable. Tools that
enforce security checks at commit time, integrated
within CI/CD pipelines, relieve security teams of
repetitive reviews and cultivate a “security-first”
mindset among engineers. Yet tool adoption alone
is insufficient without complementary training,
incentives, and leadership support.

Reflecting on these results, it becomes evident
that the technical solutions – frameworks, tools,
scans – act as necessary, but not sufficient
enablers. The real differentiator is organizational
maturity: leadership commitment to secure
development, investment in human capital, and
willingness to measure security outcomes as
rigorously as functional metrics. This observation
opens a path for further inquiry: How can
enterprises quantify security maturity in a
standardized way that is both meaningful and
actionable? What incentives and governance
mechanisms best sustain cross-functional
collaboration over time? Moreover, as cloud-
native and microservices architectures proliferate,
we must ask whether existing SDLC models can
adapt quickly enough, or whether new paradigms
are required, such as policy-as-code and real-time
risk telemetry.

28

__Information Security Challenges in an Enterprise-Grade Software Development Lifecycle

These questions, which emerge from the
synthesis of analyzed literature, highlight that the
challenges of secure SDLC are less about
technical insufficiency and more about
organizational maturity. While frameworks
provide valuable scaffolding, they often assume
resources and expertise unavailable to many
enterprises. The lack of standardized metrics
further obstructs adoption, leaving organizations
unable to measure return on investment or
compare maturity levels.

This newfound perspective enables us to
propose a three-pillar conceptual model,
visualized on Figure 4, to guide future SSDLC
evolution. Each pillar can be described as follows:

1. Automation – Continuous integration of
SAST, DAST, and SBOM tools in CI/CD
pipelines.

2. Framework Integration – Flexible
adoption of SDL, SAMM, or SSDF
tailored to organizational risk profiles.

3. Organizational Maturity – Leadership
buy-in, continuous training, and cultural
incentives ensuring sustained adoption.

Figure 4: The three pillars of SSDLC

This model reframes SSDLC not as a checklist

of practices, but as a balanced system where
technical tools and human enablers reinforce one
another.

Conclusions and future work

The landscape of securing enterprise-grade

software through the SDLC has matured from ad
hoc, end-of-cycle patching to structured,
continuous integration of security controls. Key
takeaways from our review include the criticality
of weaving security requirements into every phase
of development, the utility of flexible yet
prescriptive frameworks (such as NIST’s SSDF
and OWASP’s SAMM), and the transformative
potential of DevSecOps practices and SBOM-
driven supply-chain transparency. Notably,

successful programs marry technical automation
with organizational enablers—leadership buy-in,
targeted training, and metrics that elevate security
as a first-class development criterion.

Looking forward, three primary avenues merit
deeper investigation. First, there is an urgent need
to establish standardized, quantitative metrics for
security maturity that are both lightweight enough
for SMEs and robust enough for large enterprises.
Without a common measurement vocabulary, it
remains difficult to compare, benchmark, or
demonstrate the ROI of secure-SDLC
investments. Second, research should explore
adaptive security frameworks that dynamically
reconfigure controls based on real-time threat
intelligence and deployment context—bridging
the gap between static process models and highly
agile, cloud-native architectures. Third, the
human dimension warrants more empirical
scrutiny: studies of incentive structures, team
dynamics, and cultural interventions can reveal
which organizational levers most effectively
sustain long-term adoption of security practices.

Ultimately, the goal is to converge on security
approaches that are not only scalable (i.e. capable
of spanning monolithic and microservices
ecosystems), but also measurable, so that teams
can track progress and adjust course. Future work
must therefore deliver methods and tools that
integrate seamlessly into modern CI/CD
pipelines, support continuous feedback loops, and
empower practitioners to deliver secure code with
the same velocity and reliability expected in
today’s enterprise software landscape.

References

[1] P. Falcarin, M. Morisio, P. Falcarin, and M.

Morisio, "Developing Secure Software and
Systems," 2004. [PDF]

[2] A. Uzunov, E. Fernandez, and K. Falkner,
"Engineering security into distributed
systems: a survey of methodologies," 2012.

[3] N. Nazir and M. Kashif Nazir, "A Review of
Security Issues in SDLC," 2018. [PDF]

[4] Meng, X., 2018. Static Analysis of Android
Secure Application Development Process
with FindSecurityBugs. [PDF]

[5] C. Weir, I. Becker, J. Noble, L. Blair et al.,
"Interventions for Long Term Software
Security:Creating a Lightweight Program of
Assurance Techniques for Developers,"
2020.

[6] Chin Eian, I., Ka Yong, L., Yeap Xiao Li, M.,
Affan Bin Noor Hasmaddi, N., & Fatima-

29

__Theoretical and cryptographic problems of cybersecurity

tuz-Zahra, undefined, 2020. Integration of
Security Modules in Software Development
Lifecycle Phases. [PDF]

[7] Davaindran Lingham, A., Tang Kwong Kin,
N., Wan Jing, C., Heng Loong, C., & Fatima-
tuz-Zahra, undefined, 2020. Implementation
of Security Features in Software
Development Phases. [PDF]

[8] R. N. Rajapakse, M. Zahedi, M. Ali Babar,
and H. Shen, "Challenges and solutions when
adopting DevSecOps: A systematic review,"
2021. [PDF]

[9] Wen Ping, S., Cheok Jun Wah, J., Wen Jie,
L., Bong Yong Han, J., & Muzafar, S., 2023.
Secure Software Development: Issues and
Challenges. [PDF]

[10] N. Davis, Secure Software Development Life
Cycle Processes, Carnegie Mellon
University: Software Engineering Institute,
CMU/SEI-2013-TN-XX, 2013.

[11] R. L. Jones and A. Rastogi, “Secure coding:
building security into the software
development life cycle,” Information
Security Journal: A Global Perspective, vol.
13, no. 5, pp. 29–39, 2004.

[12] N. Newton, C. Anslow, and A. Drechsler,
“Information security in agile software
development projects: a critical success
factor perspective,” in Proc. 27th European
Conference on Information Systems (ECIS

2019), Stockholm-Uppsala, Sweden, Jun.
2019.

[13] National Institute of Standards and
Technology (NIST), Security Considerations
in the System Development Life Cycle,
NIST SP 800-64 Rev.2, Gaithersburg, MD,
2008.

[14] M. Souppaya, K. Scarfone, and D. Dodson,
Secure Software Development Framework
(SSDF) Version 1.1: Recommendations for
Mitigating the Risk of Software
Vulnerabilities, NIST SP 800-218, National
Institute of Standards and Technology,
Gaithersburg, MD, 2022.

[15] H. Saeed, I. Shafi, J. Ahmad, A. A. Khan, T.
Khurshaid, and I. Ashraf, “Review of
techniques for integrating security in
software development lifecycle,”
Computers, Materials & Continua, vol. 82,
no. 1, pp. 139–172, 2024, doi:
10.32604/cmc.2024.057587.

[16] Nicolaysen, T., Sasson, R., Line, M.B.,
Jaatun, M.G.: Agile software
development:The straight and narrow path to
secure software? International Journal of
SecureSoftware Engineering (IJSSE) 1(3),
71–85 (2010)

[17] G. McGraw, Software security: Building
Security in. Addison-Wesley Professional,
2006.

30

__Information Security Challenges in an Enterprise-Grade Software Development Lifecycle

