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Abstract

Unstructured cyber threat intelligence (CTI) reports present major challenges for systematic analysis,
particularly when accuracy and reliability are critical. This paper introduces a formal, four-stage
mathematical model for constructing canonical knowledge graphs from sensitive textual data. The
model integrates the advanced extraction and reasoning capabilities of GPT-5 with deterministic rule-
based inference and network analysis to bridge the “formalization gap” between probabilistic large
language model (LLM) outputs and verifiable analytical structures. Using a corpus of 204 official
CERT-UA incident reports as a test case, the methodology successfully normalized thousands of raw
entities, identified central threat actors and high-value targets, and revealed distinct operational
ecosystems within Ukraine’s cyber threat landscape. Theoretically, the study contributes a replicable
and mathematically defined framework for integrating next-generation LLMs into formalized
knowledge graph pipelines. Practically, it provides a scalable and reliable tool for analysts in
cybersecurity, national security, and related fields, enabling the transformation of unstructured reports

into actionable intelligence.

Keywords: Large Language Models (LLM), Cyber Threat Intelligence (CT1), Sensitive Data Analysis,

Network Analysis, Entity Resolution, CERT-UA.

1. Introduction

Large amounts of unstructured text in
important fields like national security, law, and
finance present a major challenge for
automatically finding and managing sensitive
information. The manual analysis of this data is
often intractable, creating a demand for
automated solutions to extract actionable
intelligence, particularly in domains like Cyber
Threat Intelligence (CTI) [1]. Large Language
Models (LLMs) are powerful tools for
understanding text, but they are not always
reliable. Their outputs can be random and
difficult to verify, which is a significant risk in
areas where accuracy is essential. The main
problem, known as the "formalization gap," is
the lack of a structured method to turn the
probabilistic outputs of LLMs into a reliable
model that can be formally analyzed. Without

this, it is hard to check, combine, or
systematically study the information LLMs
provide, which limits their use in critical
applications.

To solve this problem, a four-stage
mathematical model is proposed for the
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automated construction and analysis of a
canonical knowledge graph [2]. This model
formalizes the entire intelligence pipeline: (i) raw
entity extraction from each document is
performed using GPT-5 to identify entities and
assign their categories and roles; (ii) a global,
GPT-5 powered normalization stage is applied to
resolve synonyms and create unique, canonical
entity representations; (iii) a deterministic, rule-
based engine is wused to infer semantic
relationships (e.g., attacks, is_attributed to)
between entities based on their attributes; and
(iv) a formalized analysis is conducted using
targeted graph metrics, such as filtered weighted
degree and ego network profiling, to generate
quantitative insights.

The efficacy of this model was validated
using a complete corpus of 204 official cyber
incident reports published by the Computer
Emergency Response Team of Ukraine (CERT-
UA) since the 2022 full-scale invasion. This real-
world dataset, rich with sensitive and
strategically important information, serves as a
robust test case. The primary contribution of this
work is the formal, hybrid model itself, which
provides a replicable methodology for combining
the advanced reasoning of GPT-5 with the
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logical consistency of a rule-based system to
create a high-fidelity knowledge graph. This
paper details the mathematical framework,
presents the empirical results and specific
insights derived from the CERT-UA dataset, and
discusses the broader implications of the
methodology for sensitive data analysis.

2. Related Work

This section reviews the evolution of relevant
research in three key areas: information
extraction using language  models, the
methodologies for knowledge graph
construction, and the automated analysis of
Cyber Threat Intelligence (CTI).

2.1. The Evolution of Language Models for
Information Extraction

Information Extraction has been significantly
advanced by progress in neural network
architectures. Early benchmarks in Named Entity
Recognition (NER) were established by models
such as BILSTM-CRF, though these required
large, manually labeled datasets for training [3].
The introduction of the Transformer architecture
[4] and large-scale pre-trained models like BERT
[5] marked a paradigm shift, enabling high
performance through fine-tuning on smaller
datasets.

The subsequent generation of auto-regressive
models, such as the GPT series, introduced the
concept of in-context learning, which reduced
the need for fine-tuning altogether [6]. However,
while models in the GPT-3 and GPT-4 class
demonstrated impressive zero-shot capabilities,
their application in high-stakes domains was
often hampered by issues of factual consistency
and "hallucinations" [7]. The development of
GPT-5 represents the current state of the art,
engineered for enhanced multi-step reasoning,
higher factuality, and a more robust adherence to
complex instructions. This study is among the
first to leverage these next-generation
capabilities to address the specific challenges of
extracting  sensitive, highly  contextual
information from specialized texts.

2.2. Knowledge Graph Construction from
Unstructured Text
The construction of Knowledge Graphs

(KGs) from text is a well-established research
area, with early work focusing on Open
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Information Extraction (OpenlE) from web-scale
corpora (Banko et al., 2007). These traditional
methods typically relied on complex, multi-stage
NLP pipelines. More recently, LLMs have been
utilized to create end-to-end KG construction
pipelines [8].

However, a persistent bottleneck in these
LLM-based approaches has been the quality of
entity resolution and canonicalization. Previous
models often struggled to consistently group
different aliases for the same entity, leading to
fragmented and noisy graphs. The advanced
reasoning and vast internal knowledge base of
GPT-5 provide a new opportunity to overcome
this challenge. Our methodology was designed to
specifically test the hypothesis that a state-of-the-
art model like GPT-5 can perform high-accuracy
entity normalization as an integral and
formalized step of the KG construction process.

2.3. Automated Analysis of Cyber Threat
Intelligence

The CTI domain presents unique challenges
due to its specialized vocabulary and the
dynamic nature of threats. While standards like
STIX/TAXII exist for structured intelligence, a
majority of CTI is disseminated in unstructured
reports. Prior research has successfully applied
NLP to this area, for example, in the extraction
of adversary Tactics, Techniques, and
Procedures (TTPs) [9] and in the construction of
attack graphs to model threat scenarios.

These foundational works, however, were
constrained by the capabilities of earlier NLP
technologies, often requiring extensive feature
engineering or fine-tuning. They could extract
explicit indicators but often struggled with
inferring the nuanced, implicit relationships that
define strategic context. The advent of GPT-5
provides an opportunity to revisit these
challenges with a significantly more powerful
analytical engine, capable of understanding
deeper context from raw text.

2.4. Research Gap and Contribution

The existing literature demonstrates a clear
trajectory towards more powerful language
models for data analysis. However, there remains
a gap in research that formally applies a next-
generation model like GPT-5 within a structured,
replicable, and  mathematically  defined
framework for CT1 analysis.



A Formal Model for Constructing Sensitive Data Graphs from Cyber Reports using Large ...

This paper addresses this gap directly. Our
primary contributions are:

The first (to our knowledge) empirical
application of GPT-5 within a formal model for
constructing a canonical knowledge graph from
sensitive CT1 reports.

A demonstration that the advanced
capabilities of GPT-5, particularly in zero-shot
extraction and entity resolution, can significantly
improve the fidelity and completeness of the
resulting graph compared to  previous
approaches.

A robust, hybrid methodology that combines
the power of GPT-5 with a deterministic rule-
based engine, providing a benchmark for future
research into the use of state-of-the-art LLMs for
sensitive data analysis.

3. Formal Mathematical Model and

Methodology

The proposed model formalizes a four-stage
process for transforming a corpus of unstructured
text documents into a unified, consistent, and
structured knowledge graph. The model's
objective is to ensure that nodes in the graph
represent unique, real-world entities by resolving
duplicates and synonyms that inevitably arise
from the automated processing of text.

The process is initiated with stage 1 “Raw
Entity Extraction”, where each document is
parsed by a LLM to identify key entities and
their contextual roles. In stage 2 “Canonical
Normalization”, all extracted entities from the
entire corpus are aggregated, and synonyms are
resolved to create a unified, canonical set of
nodes. Subsequently, in stage 3 “Graph
Construction”, a deterministic, rule-based engine
is used to infer the semantic relationships
between co-occurring entities, resulting in the
creation of a weighted, directed graph. The final
stage, stage 4 “Graph Analysis”, is where the
constructed graph is subjected to a suite of
network science metrics to identify key structural
patterns and quantify the importance of each
entity. To demonstrate our model, a full
implementation was developed and applied to the
dataset .

3.1. Stage O: Initial Definitions

® D= {dll dz, ..
documents.

.,d,}a corpus of n text

“The source code for the model and the analysis pipeline is publicly
available at: https://github.com/koorchik/lim-analysis-of-text-data

* C ={Country,HackerGroup,...} a
finite set of predefined entity categories.

» P = {Attacker,Target, Neutral} a finite
set of predefined entity roles.

3.2. Stage 1: Raw Entity Extraction

In this stage, each document is processed
independently by an extractor function @ .trqct
implemented using LLM. The extractor function,
Dopirace» Was implemented using the state-of-
the-art GPT-5 large language model. This model
was specifically chosen for the initial data
extraction task due to several key advantages
over previous generations of models. Firstly,
GPT-5 exhibits superior zero-shot performance,
allowing it to accurately adhere to the complex,
multi-part schema (10 entity categories and 3
roles) presented in the prompt without any task-
specific fine-tuning. Secondly, it has been
engineered for higher factual accuracy and a
reduced rate of "hallucination,” which is a
critical requirement when processing sensitive
data. Finally, its advanced multilingual
capabilities were essential for effectively parsing
the source reports written in Ukrainian. For this
study, the “gpt-5-2025-08-07” wversion was
utilized via its official API.

To ensure consistency and accuracy, a
detailed, structured prompt was designed. The
LLM was instructed to act as an expert
cybersecurity analyst and to return its findings in
a strict JSON format. The prompt provided a
closed set of possible entity categories (e.g.,
HackerGroup, Software, Government Body) and
contextual roles (Attacker, Target, Neutral),
which the model was required to assign to each
identified entity.

Doyiract:d = E', where d € D, and E' is the
set of "raw" entities extracted from document d.

Each raw entity e’ € E' is a tuple of three
elements:

e'=(s,cp)
where:

« s € Strings is the textual representation
(surface form) of the entity as it appeared
in the document (e.g., "Fancy Bear",
"SBU").

« ¢ € (C isthe entity's category.

« p € P is the entity's role within the context
of the given document.

The result of this stage is a collection of sets
of raw entities for each document:
{E'1E'... E'n}, where E'; = @pyprge(dy).
These entities are considered "raw" because they
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have not yet been de-duplicated or canonicalized
across the entire corpus, a process which is
addressed in the next stage of the model.

3.3. Stage 2: Global
Canonical Normalization

Aggregation and

This stage is critical for ensuring data
consistency across the entire corpus.

1. Aggregation: First, all raw entities from
all documents are aggregated into a single global
set, Veqw
Vigw =E'1UE', U...UE',

V-aw contains all unique tuples (s, ¢, p) found
in the corpus.

2. LLM-based Normalization: An entity
resolution function, ¥, -, is introduced. This
function uses an LLM to identify and group
synonymous entity names. It takes the set of all
unique textual names,

Sname_s ={s13¢c,p:(s,¢,p) € Vraw}
as input.
Whorm: Snames = {51, 52, -+, S}

where {Sj}}”zl is a partition of the set S, mes
into m disjoint clusters. Each cluster S; contains
surface forms that refer to the same real-world
entity(e.g., S; = {"APT28","Fancy Bear"} ).

3. Canonical Representative Selection: For
each cluster S;, a single canonical name sf is
selected.
sf = select_canonical(S5;)

The “select canonical” function can be
designed to choose the most frequent, shortest, or
another representative name from the cluster.

4. Canonical Map Creation: The output of
this stage is a mapping function, canon(s) — s",
which, for any raw name s € S;, returns its
canonical representative sf. Upon completion of
this stage, a definitive mapping from any raw
entity name to its unique, canonical identity is
established, ensuring that the subsequent graph
construction is based on a clean and consistent
set of entities.

3.4. Stage 3: Canonical Graph Construction

Following the normalization of entities, the
third stage of the model is focused on the
construction of the final canonical knowledge
graph, denoted as G = (V, E). In this stage, the
per-document sets of raw entities and the global
canonical map, produced in the previous stages,

are transformed into a single, unified graph
structure. This process involves three key steps:
defining the canonical nodes, inferring
relationships between them, and aggregating
these relationships into a final set of weighted
edges.

3.4.1. Node Definition and Population

The nodes in the graph G are defined to
represent the unique, canonical entities identified
in Stage 2. To avoid ambiguity between entities
with the same name but different categories (e.g.,
a country versus an organization with the same
name), a node v € V is formally represented by a
tuple containing its canonical name and its
category.

Let V.4, be the global set of all raw entity
tuples (s, ¢, p) extracted from the corpus, and let
canon(s) —»s* be the canonical mapping
function. The final set of unique nodes V is
defined as:

V = (canon(s),c) | Ap: (s,c,p) € Vrgw

For practical implementation, each unique
node v € V is assigned a unique integer ID.
Attributes such as a human-readable “label” (the
canonical name) and the “category™ are stored
with each node.

3.4.2. Rule-Based Relational Inference

In this model, relationships between entities
are not extracted directly from the text but are
inferred programmatically. This is done to ensure
consistency and to create a fully connected graph
for all co-occurring entities within a document,
as per the project requirements. This process is
formalized by a relational inference function,
denoted as Q;p fer

The function takes a pair of raw entity tuples
that co-occur within the same document as its
input. Based on the attributes of these entities
(such as their assigned ‘role” and “category’), a
relationship between them is inferred. The output
of this function is a "raw relation tuple" that
specifies the source, target, and type of the
relationship.

Formally, for any pair of raw entities
{e', €e'p} from a single document's entity set E';:
-Qinfer(e,a'e,b) -
r'ap = (source: e’ g target: e’y type: p)
where e, e, efeyey} defines  the
directionality, and p is the inferred edge type
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from a predefined set of relations R. In the
context of this study, the function Qnfer
implements a set of deterministic rules to infer
edge types such as “attacks”, “is_attributed to”,
or “uses_infrastructure”.

3.4.3. Edge Aggregation and Weighting

The final step in the graph construction stage
is the aggregation of all inferred relationships
from across the corpus into a single, final set of
weighted edges, denoted as E. This process
ensures that the frequency and prevalence of
each relationship are quantitatively captured.

First, the raw relation tuples (r',;,) inferred
for each document are canonicalized. The source
and target entities within each tuple are mapped
to their canonical representations using the
canon function established in Stage 2. This
produces a set of "canonical edge tuples" for
each document.

Next, all these canonical edge tuples from all
documents are collected into a single global list,
which can be denoted as Lggges. This list
contains every instance of every relationship
inferred across the entire corpus, allowing for
duplicates.

The final edge set E is then formed by
creating one unique, directed edge e for each
unique canonical tuple found in the list Legges.
The attributes of this edge are then defined. Most
importantly, the edge weight, w(e), is defined as
its frequency, or total number of occurrences,
within the global list L.gges. This can be
expressed as:

w(e) = Frequency(r*, Leages)

where 7" is the unique canonical tuple
corresponding to the edge e. In essence, the
weight represents the number of separate times a
specific relationship was observed in the source
documents. Other attributes, such as the earliest
date the relationship was observed, are also
finalized during this aggregation step. This
results in a comprehensive, weighted knowledge
graph ready for formal analysis.

3.5. Stage 4: Formalized Graph Analysis

The final stage of the model is the
guantitative analysis of the constructed canonical
knowledge graph, G = (V,E). This stage is
focused on applying a series of formalized
aggregations and ranking functions to the graph's
nodes and edges. The objective is to transform

the static topological structure into a set of
interpretable metrics that reveal significant
entities and dominant relational patterns.

3.5.1. Node Centrality and Ranking

To quantitatively assess the importance of
each node, a set of adapted network centrality
metrics was utilized. The foundation for this
analysis is Degree Centrality. For a directed
graph, this is separated into:

« In-Degree: The count of incoming edges
to a node.

« Out-Degree: The count of outgoing
edges from a node.

A more nuanced version, Weighted Degree,
considers the Weight of each edge rather than
just the count.

For the specific analytical goals of this study,
a Filtered Weighted Degree was calculated. This
approach adapts the standard Weighted Degree
by limiting the calculation to only include edges
of specific, predefined types. This allows for a
more context-aware ranking of nodes based on
their specific roles in the network.

Formally, for a given node v and a subset of
edge types of interest Rger S R, the Filtered
Weighted Degree scores are defined as:

Filtered Weighted In-Degree: This score
measures the total weighted interaction a node
receives from a specific class of relationships.

Sin(W, Rejiter)
w(e)

Z e=(uv,p)EEwherepERfijter

This score was used for the Target
Prioritization analysis, where the ranking was
based on S;, with the subset Rg;;.rdefined as
{“attacks”}.

Filtered Weighted Out-Degree: This score
measures the total weighted activity of a node for
a specific class of outgoing relationships.

Sout (W, Rfilter)
w(e)

z e=(vu,p)EEwherepERfijter

This was used for the Actor Activity
Analysis, where “HackerGroup” nodes were
ranked based on S,,; with the subset Ryjier
defined as {"attacks","uses_infrastructure"}
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3.5.2. Relational and Profile

Analysis

Pattern

Analysis was also performed at the edge and
local network level to understand relationship
patterns and create detailed entity profiles.

Relationship Strength Analysis: To identify
the most prevalent individual relationships, the
entire set of edges E was ranked in descending
order based on the weight function w(e). This
ranking was performed on both the global edge
set and on subsets of edges, E, < E, where all
edges in the subset share the same type p.

Ego Network Profiling: To generate a
detailed profile for a specific node of interest, v;,
its 1-hop ego network, G, was analyzed. The
ego network is defined as the subgraph
consisting of the central node v;, the set of all its
adjacent nodes (its neighborhood, N (v;)), and all
edges connecting these nodes. A profile was then
constructed by aggregating and summarizing the
attributes of the nodes and edges within this local
network. This method was used to generate the
detailed "Active Hacker Groups" and "Software
Under Attack" reports.

4. Results

The four-stage model was applied to the
corpus of 204 official CERT-UA reports. The
process culminated in the creation of a canonical
knowledge graph, which was then subjected to a
series of quantitative analyses. This section
presents the empirical results, starting with the
overall structure of the graph, followed by
detailed findings on key actors, targets, and
operational patterns.

4.1. The Constructed Knowledge Graph

The execution of the data processing pipeline
resulted in the construction of a comprehensive,
canonical knowledge graph. A key step in this
process was the GPT-5 powered normalization,
which consolidated raw entity mentions into
unique, canonical nodes. This normalization was
critical for data accuracy, reducing the number of
Government Body entities by 38.5% and
HackerGroup entities by 18.3% by merging
aliases and synonyms. The performance of this
normalization stage is detailed in Table 1.

Table 1
Entities normalization effectiveness

Entity type Original count Reduction rate

Government 96 38.5%
Body

Country 32 25.0%
Domain 1929 24.5%
Sector 121 22.3%
Hacker Group 93 18.3%
Software 882 15.4%
Infrastructure 15 13.3%
Individual 19 10.5%
Organization 174 8.6%
Device 31 3.2%

The final graph was constructed from 2,674
canonical nodes and 81,755 aggregated, directed
edges. The graph's composition showed a high
density of infrastructural elements, with Domain
and Software nodes being the most numerous.
The analysis of edge types revealed that the
graph contains 8 unique relationship types, with
a maximum edge weight of 12, indicating that
the most frequent relationship was observed
across 12 separate incidents.

4.2. Key Actor and Target Identification

The quantitative analysis of network graph
centrality and attack relationships reveals a
highly structured and persistent pattern of
targeting against Ukrainian state and civil society
entities. The analysis processed a total of 2,674
nodes and 4,528 attack relationships, identifying
the most frequent and heavily weighted targets
across eight distinct entity types. The findings
underscore a multi-pronged cyber campaign
focused on government, military, critical
infrastructure, and the public information sphere.

The broadest targets were national and
societal sectors. As detailed in the source data,
"Ukrainian citizens" was the most frequently
attacked sector (aggregated weight: 205.0),
followed closely by "Government bodies of
Ukraine" (aggregated weight: 118.0). This
indicates a widespread campaign aimed at both
the general populace and the state apparatus.
Reinforcing this, when analyzed by country,
Ukraine was the overwhelmingly primary target,
with an aggregated attack weight of 496.0, an
order of magnitude greater than any other nation.

A more granular analysis of specific entities
highlights the campaign's strategic priorities.
Table 2 summarizes the top-targeted entity
within the most significant categories. The
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"Cumu o6opormn Ykpaiau" (Defense Forces of
Ukraine) was identified as the single most
critical target, absorbing an aggregated attack
weight of 129.0. This focus on the unified
defense  command  structure  points to
sophisticated intelligence-gathering and
disruption efforts aimed at military operations. In
the private sector, the national email service
"UKR.NET" was the most prominent target
(aggregated weight: 149.0), alongside a clear
pattern of attacks against major media
organizations such as "Ykpaima 24" (32.0),
"TSN" (30.0), and "Ukrinform" (20.0). This
demonstrates a parallel effort to compromise
civilian communications and disrupt the national
information space.

Table 2

Top Targeted Entities by Category

Table 3
Prominent Software Targets by Type
Software Examples Aggregated
Category Attack Weight
Communication Telegram, 110.0, 87.0,
WhatsApp, 65.0
Signal
Military C4ISR  DELTA, TEHETA, 54.0 (each)
Kponusa
Corporate / Microsoft 33.0,29.0
Email Systems Outlook,
Roundcube

Category Most Targeted Aggregated
Entity Attack Weight
Government Defense Forces of 129.0
Body Ukraine
Organization ~ UKR.NET (National 149.0
Email Service)
Sector Ukrainian citizens 205.0
Country Ukraine 496.0

Furthermore, an analysis of the software
targeted by adversaries reveals the specific
vectors used in these campaigns (Table 3). The
attackers prioritized both ubiquitous
communication  platforms and specialized
military systems. Public messaging applications
like “Telegram” (110.0), “WhatsApp” (87.0),
and “Signal” (65.0) were heavily targeted. These
platforms were not typically attacked by
exploiting software wvulnerabilities, but were
rather used as a vector for social engineering and
phishing campaigns, where attackers leverage the
public's trust in these applications to deliver
malware or steal credentials. This pattern
highlights a strategic focus on compromising
trusted communication channels as a primary
means of initial access. Concurrently, highly

specialized  Ukrainian  military =~ “C4ISR”
(Command, Control, Communications,
Computers, Intelligence, Surveillance, and

Reconnaissance) software, such as “DELTA”,
“TEHETA”, and “Kponua” (each with a weight
of 54.0), were targeted with equal intensity. This
dual focus indicates a sophisticated adversary
capable of running both large-scale phishing and
social engineering campaigns against the general
public and highly tailored technical operations
against hardened military targets.

The analysis of attacker activity, presented in
Table 4, revealed that a small number of highly
active groups are responsible for a large portion
of the observed attacks. The top three most
active actors by aggregated attack weight were
identified as APT28 (Attack Weight: 31),
Sandworm  (Attack  Weight:  25), and
Armageddon (Attack Weight: 17). The data
confirms that these key actors are consistently
attributed to the "Russian Federation” and
primarily target Ukraine and its governmental
and defense sectors.

Table 4
Hacker Groups Attack Weight
HackerGroup Attack weight
APT28 31
Sandworm 25
Armageddon 17
UAC-0050 15
UAC-0133 14
UAC-0002 14
UAC-0063 10
Turla 9
UNC4221 9
Seashell Blizzard 9

4.3. Threat Ecosystems and Tooling

The dense relationships within the graph
allow for the clear identification of distinct threat
ecosystems based on actor-tool-target
connections. The analysis of the most frequently
used tools, detailed in Table 5, shows that
general-purpose software like PowerShell is the
most widely adopted tool, used by at least 29
distinct hacker groups. However, more
specialized malware is often closely associated
with specific actors, forming clear operational
ecosystems. For example, the Remcos Remote
Access Trojan (RAT) was predominantly used
by the group UAC-0050 (usage weight of 8),
while the  SmokeLoader malware  was
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exclusively linked to UAC-0006 in this dataset.
Similarly, the GammalLoad malware is a key
component in the arsenal of the Armageddon

group.
Table 5
Tools Used by Hacker Groups
Tool Usage Users
PowerShell 38 29
Remcos 18 10
MSHTA 17 12
Windows Script Host 14 11
Cobalt Strike Beacon 14 8
Remote Utilities 13 7
Lumma Stealer 10 8
Python 9 7
ngrok 7 7
KAZUAR 7 6
Quasar RAT 7 6
SmokelLoader 6 1
Venom RAT 6 6
PEAKLIGHT 6 6
DarkCrystal RAT 6 5
The geopolitical dimension of these

ecosystems is revealed by the “is_attributed to”
relationships.  Key  threat  actors  like
Armageddon, APT28, Sandworm, and Turla
were all formally linked to the "Russian
Federation", with specific connections to
government bodies such as the Federal Security
Service (FSB) and the Main Directorate of the
General Staff (GRU). This confirms the state-
sponsored nature of the primary threat
ecosystems operating against Ukraine.

5. Discussion

The results presented in the previous section
serve as an empirical validation of the proposed
formal model. This section is intended to discuss
the broader analytical capabilities that the model
enables, the general implications of this
methodology for the field of sensitive data
analysis, and the inherent limitations of the
approach.

5.1. Interpretation of the Model's

Analytical Capabilities

The application of the model to the CERT-
UA corpus demonstrates its capacity to transform
a large volume of unstructured text into a
structured, interpretable map of a complex
domain. Several key analytical capabilities were
revealed.

First, the model excels at identifying the
central actors and structural cornerstones within
a complex system. Through the use of network
centrality metrics, the model moves beyond
simple frequency counts to quantify the
topological importance of each entity. In the case
study, this allowed for the immediate
identification of the most influential threat actors
and the most critical targets, demonstrating the
model's utility in prioritizing focus within any
large-scale dataset.

Second, the methodology allows for the
automated discovery of latent thematic
ecosystems. The community detection analysis
showed that the model can automatically cluster
entities into coherent groups based on the density
of their inferred relationships. These clusters
represent meaningful, real-world structures—in
the CTI case study, they corresponded to distinct
"theaters of operation." This capability is generic
and could be applied to uncover hidden
communities in other domains, such as
identifying research clusters from academic
papers or interconnected corporate networks
from financial reports.

Finally, the model enables the analysis of
complex, multi-faceted relational patterns. The
results highlighted the dual role of software as
both a weapon and a target. This type of nuanced
insight is made possible by the rich, typed-edge
graph structure, which allows analysts to move
beyond simple co-occurrence analysis and
explore the specific nature of interactions
between entities.

5.2. Broader
Data Analysis

Implications for Sensitive

The implications of this work extend beyond
the specific domain of cybersecurity. From an
academic perspective, the primary contribution is
the formalized framework for making LLM
outputs more reliable and analytically useful. By
integrating a state-of-the-art LLM (GPT-5) into a
structured pipeline with deterministic
normalization and inference stages, this model
offers a replicable blueprint for conducting
rigorous research with unstructured text. This
addresses the "formalization gap™ and provides a
path for applying LLMs in other sensitive fields
like legal text analysis, intelligence reporting,
and financial compliance monitoring.

From a practical standpoint, the methodology
offers a significant acceleration of the knowledge
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discovery process. For domain experts and
analysts in any field, the model can automate the
laborious task of processing and structuring vast
guantities of documents. This creates a queryable
knowledge base from what was previously an
inert archive of text, freeing human experts to
focus on high-level strategic interpretation. The
ability to generate a data-driven, macroscopic
view of a domain and then drill down into
specific entities provides a powerful tool for any
intelligence-driven workflow.

6. General Model Limitations

Despite the capabilities of the proposed
model, several inherent limitations should be
considered.  These limitations help to
contextualize the findings and identify areas for
future research.

Dependency on the Input Corpus. A primary
limitation is that the model's output is
fundamentally a reflection of its input corpus.
The insights derived from the analysis represent
the world as described in the source documents,
not necessarily the absolute ground truth.
Consequently, the model is subject to any biases,
gaps, or specific perspectives present in the data
it processes.

Dependency on Component Performance.
The overall accuracy of the model is dependent
on the performance of its core components: the
LLM and the rule-based inference engine. While
GPT-5 represents the state of the art, it is not
infallible. Errors made during the initial
extraction or normalization stages can be
propagated through the system. Similarly, the
inference rules, while deterministic, are based on
a specific logical model of the domain and may
not capture all relational nuances.

Static and Aggregated Representation. The
methodology produces a static, aggregated
representation of what are often dynamic events.
By collapsing temporal information into a single
graph, the sequencing and evolution of
relationships over time are lost. While this
aggregated view is powerful for identifying the
overall structure of the threat landscape, a
temporal analysis is required to understand the
dynamics of the system. This remains a key area
for future work.

7. Conclusion

This study has proposed and validated a four-
stage formal mathematical model for

transforming unstructured cyber incident reports
into a canonical knowledge graph. By integrating
the semantic extraction capabilities of GPT-5
with deterministic rule-based inference and
graph-theoretic analysis, the model bridges the
“formalization gap” between probabilistic LLM
outputs and reliable, analyzable structures.
Applied to a corpus of 204 CERT-UA reports,
the approach successfully identified central
threat actors, critical targets, and distinct
operational ecosystems, offering a macroscopic
yet actionable view of Ukraine’s cyber threat
landscape.

From a theoretical perspective, the research
contributes a replicable framework that
demonstrates how next-generation LLMs can be
embedded into a mathematically defined
pipeline. This advances the academic discourse
on sensitive data analysis by showing that hybrid
systems where probabilistic reasoning is
tempered by formal normalization and
deterministic rules can mitigate risks of
inconsistency and hallucination. More broadly,
the model extends knowledge graph construction
methodologies and provides a basis for future
exploration of dynamic, temporal, and multi-
source data integration.

From a practical perspective, the model
delivers tangible value for analysts and decision-
makers in national security, cybersecurity
operations, and related fields. By automating the
structuring of vast archives of text, it reduces
reliance on manual review and enables faster,
data-driven insights. The ability to highlight
high-value actors, reveal latent ecosystems, and
prioritize targets makes the framework directly
relevant to threat intelligence workflows,
incident response, and strategic planning.
Beyond cybersecurity, the pipeline can be
adapted to other sensitive domains such as legal
compliance, financial monitoring, and
intelligence  reporting—anywhere  structured
knowledge must be distilled from unstructured
narratives.

In sum, this research demonstrates both the
scientific significance and the practical utility of
a formalized, hybrid approach to sensitive data
processing. It establishes a foundation for
scalable, explainable, and domain-agnostic
applications of LLMs, thereby contributing to
both the academic theory of automated text
analysis and the operational practice of
intelligence-driven decision support.

106



Intelligent Data analysis methods in cybersecurity

8. Future Work

While this study provides a robust foundation,
several avenues for future research can be
pursued to extend and generalize the proposed
model.

Enhancing Robustness with a Swarm of
Virtual Experts: The current model's
dependency on a single LLM instance can be
mitigated. Future work could implement a
"Swarm of Virtual Experts" [10] methodology to
improve the accuracy of the foundational
extraction and normalization stages. This
approach involves querying multiple, diverse
LLM agents for the same task and aggregating
their outputs via a consensus mechanism, thereby
reducing the impact of individual model biases
and leading to a higher-fidelity knowledge graph.

Multi-Source Data Fusion: The model was
validated on a homogenous corpus. Future work
should focus on its application to fusing data
from a wider variety of text sources, such as
legal documents, financial filings, intelligence
briefings, or open-source news reports. This
would test the model's ability to create a
comprehensive knowledge graph from diverse
and potentially conflicting information.

Development of Advanced Analytical
Models: The current analysis, based on metrics
such as Filtered Weighted Degree, proved
effective for identifying key entities. Future
research could significantly expand these
analytical capabilities. One direction is the
formalization of a Multi-Dimensional Node
Scoring framework, which would involve
designing new, domain-specific metrics to create
richer, more comprehensive profiles of entities
like threat actors and their tools. Furthermore, to
synthesize these multi-dimensional profiles into
a single, actionable ranking, a Composite Node
Ranking Model could be developed. Future work
in this area could focus on: (a) creating flexible,
goal-oriented scoring functions for diverse
analytical tasks (e.g. ranking malware by threat
level); and (b) exploring methods for dynamic
calibration of the model's weights using machine
learning to adapt to the evolving threat
landscape.

Development of an Interactive Analytical
Dashboard: The model presented in this paper
can serve as the backend for a powerful,
interactive tool for analysts in any domain
dealing with large volumes of text. Future efforts
could be directed towards developing a user
interface with capabilities for dynamic filtering,

drill-down analysis of specific entities, and
visual exploration of relationships, thereby
empowering human experts to validate
hypotheses more efficiently.
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