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Abstract 
Unstructured cyber threat intelligence (CTI) reports present major challenges for systematic analysis, 

particularly when accuracy and reliability are critical. This paper introduces a formal, four-stage 

mathematical model for constructing canonical knowledge graphs from sensitive textual data. The 

model integrates the advanced extraction and reasoning capabilities of GPT-5 with deterministic rule-

based inference and network analysis to bridge the “formalization gap” between probabilistic large 

language model (LLM) outputs and verifiable analytical structures. Using a corpus of 204 official 

CERT-UA incident reports as a test case, the methodology successfully normalized thousands of raw 

entities, identified central threat actors and high-value targets, and revealed distinct operational 

ecosystems within Ukraine’s cyber threat landscape. Theoretically, the study contributes a replicable 

and mathematically defined framework for integrating next-generation LLMs into formalized 

knowledge graph pipelines. Practically, it provides a scalable and reliable tool for analysts in 

cybersecurity, national security, and related fields, enabling the transformation of unstructured reports 

into actionable intelligence. 
 

Keywords: Large Language Models (LLM), Cyber Threat Intelligence (CTI), Sensitive Data Analysis, 

Network Analysis, Entity Resolution, CERT-UA. 
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1. Introduction 
 

Large amounts of unstructured text in 

important fields like national security, law, and 

finance present a major challenge for 

automatically finding and managing sensitive 

information. The manual analysis of this data is 

often intractable, creating a demand for 

automated solutions to extract actionable 

intelligence, particularly in domains like Cyber 

Threat Intelligence (CTI) [1]. Large Language 

Models (LLMs) are powerful tools for 

understanding text, but they are not always 

reliable. Their outputs can be random and 

difficult to verify, which is a significant risk in 

areas where accuracy is essential. The main 

problem, known as the "formalization gap," is 

the lack of a structured method to turn the 

probabilistic outputs of LLMs into a reliable 

model that can be formally analyzed. Without 

this, it is hard to check, combine, or 

systematically study the information LLMs 

provide, which limits their use in critical 

applications. 

To solve this problem, a four-stage 

mathematical model is proposed for the 

automated construction and analysis of a 

canonical knowledge graph [2]. This model 

formalizes the entire intelligence pipeline: (i) raw 

entity extraction from each document is 

performed using GPT-5 to identify entities and 

assign their categories and roles; (ii) a global, 

GPT-5 powered normalization stage is applied to 

resolve synonyms and create unique, canonical 

entity representations; (iii) a deterministic, rule-

based engine is used to infer semantic 

relationships (e.g., attacks, is_attributed_to) 

between entities based on their attributes; and 

(iv) a formalized analysis is conducted using 

targeted graph metrics, such as filtered weighted 

degree and ego network profiling, to generate 

quantitative insights. 

The efficacy of this model was validated 

using a complete corpus of 204 official cyber 

incident reports published by the Computer 

Emergency Response Team of Ukraine (CERT-

UA) since the 2022 full-scale invasion. This real-

world dataset, rich with sensitive and 

strategically important information, serves as a 

robust test case. The primary contribution of this 

work is the formal, hybrid model itself, which 

provides a replicable methodology for combining 

the advanced reasoning of GPT-5 with the 
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logical consistency of a rule-based system to 

create a high-fidelity knowledge graph. This 

paper details the mathematical framework, 

presents the empirical results and specific 

insights derived from the CERT-UA dataset, and 

discusses the broader implications of the 

methodology for sensitive data analysis. 

2. Related Work 
 

This section reviews the evolution of relevant 

research in three key areas: information 

extraction using language models, the 

methodologies for knowledge graph 

construction, and the automated analysis of 

Cyber Threat Intelligence (CTI). 

2.1. The Evolution of Language Models for 
Information Extraction 

 

Information Extraction has been significantly 

advanced by progress in neural network 

architectures. Early benchmarks in Named Entity 

Recognition (NER) were established by models 

such as BiLSTM-CRF, though these required 

large, manually labeled datasets for training [3]. 

The introduction of the Transformer architecture 

[4] and large-scale pre-trained models like BERT 

[5] marked a paradigm shift, enabling high 

performance through fine-tuning on smaller 

datasets. 

The subsequent generation of auto-regressive 

models, such as the GPT series, introduced the 

concept of in-context learning, which reduced 

the need for fine-tuning altogether [6]. However, 

while models in the GPT-3 and GPT-4 class 

demonstrated impressive zero-shot capabilities, 

their application in high-stakes domains was 

often hampered by issues of factual consistency 

and "hallucinations" [7]. The development of 

GPT-5 represents the current state of the art, 

engineered for enhanced multi-step reasoning, 

higher factuality, and a more robust adherence to 

complex instructions. This study is among the 

first to leverage these next-generation 

capabilities to address the specific challenges of 

extracting sensitive, highly contextual 

information from specialized texts. 

2.2. Knowledge Graph Construction from 
Unstructured Text 

 

The construction of Knowledge Graphs 

(KGs) from text is a well-established research 

area, with early work focusing on Open 

Information Extraction (OpenIE) from web-scale 

corpora (Banko et al., 2007). These traditional 

methods typically relied on complex, multi-stage 

NLP pipelines. More recently, LLMs have been 

utilized to create end-to-end KG construction 

pipelines [8]. 

However, a persistent bottleneck in these 

LLM-based approaches has been the quality of 

entity resolution and canonicalization. Previous 

models often struggled to consistently group 

different aliases for the same entity, leading to 

fragmented and noisy graphs. The advanced 

reasoning and vast internal knowledge base of 

GPT-5 provide a new opportunity to overcome 

this challenge. Our methodology was designed to 

specifically test the hypothesis that a state-of-the-

art model like GPT-5 can perform high-accuracy 

entity normalization as an integral and 

formalized step of the KG construction process. 

2.3. Automated Analysis of Cyber Threat 
Intelligence 

 

The CTI domain presents unique challenges 

due to its specialized vocabulary and the 

dynamic nature of threats. While standards like 

STIX/TAXII exist for structured intelligence, a 

majority of CTI is disseminated in unstructured 

reports. Prior research has successfully applied 

NLP to this area, for example, in the extraction 

of adversary Tactics, Techniques, and 

Procedures (TTPs) [9] and in the construction of 

attack graphs to model threat scenarios. 

These foundational works, however, were 

constrained by the capabilities of earlier NLP 

technologies, often requiring extensive feature 

engineering or fine-tuning. They could extract 

explicit indicators but often struggled with 

inferring the nuanced, implicit relationships that 

define strategic context. The advent of GPT-5 

provides an opportunity to revisit these 

challenges with a significantly more powerful 

analytical engine, capable of understanding 

deeper context from raw text. 

2.4. Research Gap and Contribution 
 

The existing literature demonstrates a clear 

trajectory towards more powerful language 

models for data analysis. However, there remains 

a gap in research that formally applies a next-

generation model like GPT-5 within a structured, 

replicable, and mathematically defined 

framework for CTI analysis. 
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This paper addresses this gap directly. Our 

primary contributions are: 

The first (to our knowledge) empirical 

application of GPT-5 within a formal model for 

constructing a canonical knowledge graph from 

sensitive CTI reports. 

A demonstration that the advanced 

capabilities of GPT-5, particularly in zero-shot 

extraction and entity resolution, can significantly 

improve the fidelity and completeness of the 

resulting graph compared to previous 

approaches. 

A robust, hybrid methodology that combines 

the power of GPT-5 with a deterministic rule-

based engine, providing a benchmark for future 

research into the use of state-of-the-art LLMs for 

sensitive data analysis. 

3. Formal Mathematical Model and 
Methodology 

 

The proposed model formalizes a four-stage 

process for transforming a corpus of unstructured 

text documents into a unified, consistent, and 

structured knowledge graph. The model's 

objective is to ensure that nodes in the graph 

represent unique, real-world entities by resolving 

duplicates and synonyms that inevitably arise 

from the automated processing of text. 

The process is initiated with stage 1 “Raw 

Entity Extraction”, where each document is 

parsed by a LLM to identify key entities and 

their contextual roles. In stage 2 “Canonical 

Normalization”, all extracted entities from the 

entire corpus are aggregated, and synonyms are 

resolved to create a unified, canonical set of 

nodes. Subsequently, in stage 3 “Graph 

Construction”, a deterministic, rule-based engine 

is used to infer the semantic relationships 

between co-occurring entities, resulting in the 

creation of a weighted, directed graph. The final 

stage, stage 4 “Graph Analysis”, is where the 

constructed graph is subjected to a suite of 

network science metrics to identify key structural 

patterns and quantify the importance of each 

entity. To demonstrate our model, a full 

implementation was developed and applied to the 

dataset 
1
. 

3.1. Stage 0: Initial Definitions 
 

•                 a corpus of   text 

documents. 

                                                                 
1The source code for the model and the analysis pipeline is publicly 
available at: https://github.com/koorchik/llm-analysis-of-text-data 

•                             a 

finite set of predefined entity categories. 

•                             a finite 

set of predefined entity roles. 

3.2. Stage 1: Raw Entity Extraction 
 

In this stage, each document is processed 

independently by an extractor function         , 

implemented using LLM. The extractor function, 

        , was implemented using the state-of-

the-art GPT-5 large language model. This model 

was specifically chosen for the initial data 

extraction task due to several key advantages 

over previous generations of models. Firstly, 

GPT-5 exhibits superior zero-shot performance, 

allowing it to accurately adhere to the complex, 

multi-part schema (10 entity categories and 3 

roles) presented in the prompt without any task-

specific fine-tuning. Secondly, it has been 

engineered for higher factual accuracy and a 

reduced rate of "hallucination," which is a 

critical requirement when processing sensitive 

data. Finally, its advanced multilingual 

capabilities were essential for effectively parsing 

the source reports written in Ukrainian. For this 

study, the “gpt-5-2025-08-07” version was 

utilized via its official API. 

To ensure consistency and accuracy, a 

detailed, structured prompt was designed. The 

LLM was instructed to act as an expert 

cybersecurity analyst and to return its findings in 

a strict JSON format. The prompt provided a 

closed set of possible entity categories (e.g., 

HackerGroup, Software, Government Body) and 

contextual roles (Attacker, Target, Neutral), 

which the model was required to assign to each 

identified entity. 

             , where    , and    is the 

set of "raw" entities extracted from document  . 

Each raw entity       is a tuple of three 

elements: 

             
where: 

•   Strings is the textual representation 

(surface form) of the entity as it appeared 

in the document (e.g., "Fancy Bear", 

"SBU"). 

•     is the entity's category. 

•     is the entity's role within the context 

of the given document. 

The result of this stage is a collection of sets 

of raw entities for each document: 

                 , where                 . 

These entities are considered "raw" because they 
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have not yet been de-duplicated or canonicalized 

across the entire corpus, a process which is 

addressed in the next stage of the model. 

3.3. Stage 2: Global Aggregation and 
Canonical Normalization 

This stage is critical for ensuring data 

consistency across the entire corpus. 

1. Aggregation: First, all raw entities from 

all documents are aggregated into a single global 

set,      

                     

     contains all unique tuples         found 

in the corpus. 

2. LLM-based Normalization: An entity 

resolution function,      , is introduced. This 

function uses an LLM to identify and group 

synonymous entity names. It takes the set of all 

unique textual names, 

                             
as input. 

                            
where        

  is a partition of the set        

into   disjoint clusters. Each cluster    contains 

surface forms that refer to the same real-world 

entity(e.g.,      A T2     ancy  ear   ). 

3. Canonical Representative Selection: For 

each cluster   , a single canonical name   
  is 

selected. 

  
  select canonical     

The “select canonical” function can be 

designed to choose the most frequent, shortest, or 

another representative name from the cluster. 

4. Canonical Map Creation: The output of 

this stage is a mapping function, canon      , 
which, for any raw name     , returns its 

canonical representative   
 . Upon completion of 

this stage, a definitive mapping from any raw 

entity name to its unique, canonical identity is 

established, ensuring that the subsequent graph 

construction is based on a clean and consistent 

set of entities. 

3.4. Stage 3: Canonical Graph Construction 

Following the normalization of entities, the 

third stage of the model is focused on the 

construction of the final canonical knowledge 

graph, denoted as        . In this stage, the 

per-document sets of raw entities and the global 

canonical map, produced in the previous stages, 

are transformed into a single, unified graph 

structure. This process involves three key steps: 

defining the canonical nodes, inferring 

relationships between them, and aggregating 

these relationships into a final set of weighted 

edges. 

3.4.1. Node Definition and Population 

The nodes in the graph   are defined to 

represent the unique, canonical entities identified 

in Stage 2. To avoid ambiguity between entities 

with the same name but different categories (e.g., 

a country versus an organization with the same 

name), a node     is formally represented by a 

tuple containing its canonical name and its 

category. 

Let      be the global set of all raw entity 

tuples         extracted from the corpus, and let 

canon       be the canonical mapping 

function. The final set of unique nodes   is 

defined as: 

   canon                       
For practical implementation, each unique 

node     is assigned a unique integer ID. 

Attributes such as a human-readable `label` (the 

canonical name) and the `category` are stored 

with each node. 

3.4.2. Rule-Based Relational Inference 

In this model, relationships between entities 

are not extracted directly from the text but are 

inferred programmatically. This is done to ensure 

consistency and to create a fully connected graph 

for all co-occurring entities within a document, 

as per the project requirements. This process is 

formalized by a relational inference function, 

denoted as        

The function takes a pair of raw entity tuples 

that co-occur within the same document as its 

input. Based on the attributes of these entities 

(such as their assigned `role` and `category`), a 

relationship between them is inferred. The output 

of this function is a "raw relation tuple" that 

specifies the source, target, and type of the 

relationship. 

Formally, for any pair of raw entities 

          from a single document's entity set    : 
                

      source     target     type   
 

where                   defines the 

directionality, and   is the inferred edge type 
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from a predefined set of relations   . In the 

context of this study, the function        

implements a set of deterministic rules to infer 

edge types such as “attacks”, “is attributed to”, 

or “uses infrastructure”. 

3.4.3. Edge Aggregation and Weighting 
 

 

The final step in the graph construction stage 

is the aggregation of all inferred relationships 

from across the corpus into a single, final set of 

weighted edges, denoted as  . This process 

ensures that the frequency and prevalence of 

each relationship are quantitatively captured. 

First, the raw relation tuples (    ) inferred 

for each document are canonicalized. The source 

and target entities within each tuple are mapped 

to their canonical representations using the 

      function established in Stage 2. This 

produces a set of "canonical edge tuples" for 

each document. 

Next, all these canonical edge tuples from all 

documents are collected into a single global list, 

which can be denoted as       . This list 

contains every instance of every relationship 

inferred across the entire corpus, allowing for 

duplicates. 

The final edge set   is then formed by 

creating one unique, directed edge   for each 

unique canonical tuple found in the list       . 

The attributes of this edge are then defined. Most 

importantly, the edge weight,     , is defined as 

its frequency, or total number of occurrences, 

within the global list       . This can be 

expressed as: 

       requency            

where    is the unique canonical tuple 

corresponding to the edge  . In essence, the 

weight represents the number of separate times a 

specific relationship was observed in the source 

documents. Other attributes, such as the earliest 

date the relationship was observed, are also 

finalized during this aggregation step. This 

results in a comprehensive, weighted knowledge 

graph ready for formal analysis. 

3.5. Stage 4: Formalized Graph Analysis 
 

 

The final stage of the model is the 

quantitative analysis of the constructed canonical 

knowledge graph,        . This stage is 

focused on applying a series of formalized 

aggregations and ranking functions to the graph's 

nodes and edges. The objective is to transform 

the static topological structure into a set of 

interpretable metrics that reveal significant 

entities and dominant relational patterns. 

3.5.1. Node Centrality and Ranking 
 

 

To quantitatively assess the importance of 

each node, a set of adapted network centrality 

metrics was utilized. The foundation for this 

analysis is Degree Centrality. For a directed 

graph, this is separated into: 

• In-Degree: The count of incoming edges 

to a node. 

• Out-Degree: The count of outgoing 

edges from a node. 

A more nuanced version, Weighted Degree, 

considers the Weight of each edge rather than 

just the count. 

For the specific analytical goals of this study, 

a Filtered Weighted Degree was calculated. This 

approach adapts the standard Weighted Degree 

by limiting the calculation to only include edges 

of specific, predefined types. This allows for a 

more context-aware ranking of nodes based on 

their specific roles in the network. 

Formally, for a given node   and a subset of 

edge types of interest           , the Filtered 

Weighted Degree scores are defined as: 

Filtered Weighted In-Degree: This score 

measures the total weighted interaction a node 

receives from a specific class of relationships. 

 

 in   R       

  
           where  R      

     

 

This score was used for the Target 

Prioritization analysis, where the ranking was 

based on  in with the subset        defined as 

           . 
Filtered Weighted Out-Degree: This score 

measures the total weighted activity of a node for 

a specific class of outgoing relationships. 

 

       R       

  
           where  R      

     

 

 

 

This was used for the Actor Activity 

Analysis, where “HackerGroup” nodes were 

ranked based on      with the subset         

defined as   attacks   uses infrastructure   
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3.5.2. Relational Pattern and Profile 
Analysis 

Analysis was also performed at the edge and 

local network level to understand relationship 

patterns and create detailed entity profiles. 

Relationship Strength Analysis: To identify 

the most prevalent individual relationships, the 

entire set of edges   was ranked in descending 

order based on the weight function     . This 

ranking was performed on both the global edge 

set and on subsets of edges,     , where all 

edges in the subset share the same type  . 

Ego Network Profiling: To generate a 

detailed profile for a specific node of interest,   , 

its 1-hop ego network,    
, was analyzed. The 

ego network is defined as the subgraph 

consisting of the central node   , the set of all its 

adjacent nodes (its neighborhood,      ), and all 

edges connecting these nodes. A profile was then 

constructed by aggregating and summarizing the 

attributes of the nodes and edges within this local 

network. This method was used to generate the 

detailed "Active Hacker Groups" and "Software 

Under Attack" reports. 

4. Results 

The four-stage model was applied to the 

corpus of 204 official CERT-UA reports. The 

process culminated in the creation of a canonical 

knowledge graph, which was then subjected to a 

series of quantitative analyses. This section 

presents the empirical results, starting with the 

overall structure of the graph, followed by 

detailed findings on key actors, targets, and 

operational patterns. 

4.1. The Constructed Knowledge Graph 

The execution of the data processing pipeline 

resulted in the construction of a comprehensive, 

canonical knowledge graph. A key step in this 

process was the GPT-5 powered normalization, 

which consolidated raw entity mentions into 

unique, canonical nodes. This normalization was 

critical for data accuracy, reducing the number of 

Government Body entities by 38.5% and 

HackerGroup entities by 18.3% by merging 

aliases and synonyms. The performance of this 

normalization stage is detailed in Table 1. 

 

 

Table 1 
Entities normalization effectiveness 

Entity type Original count Reduction rate 

Government 
Body 

96 38.5% 

Country 32 25.0% 
Domain 1929 24.5% 
Sector 121 22.3% 

Hacker Group 93 18.3% 
Software 882 15.4% 

Infrastructure 15 13.3% 
Individual 19 10.5% 

Organization 174 8.6% 
Device 31 3.2% 

 

The final graph was constructed from 2,674 

canonical nodes and 81,755 aggregated, directed 

edges. The graph's composition showed a high 

density of infrastructural elements, with Domain 

and Software nodes being the most numerous. 

The analysis of edge types revealed that the 

graph contains 8 unique relationship types, with 

a maximum edge weight of 12, indicating that 

the most frequent relationship was observed 

across 12 separate incidents. 

4.2. Key Actor and Target Identification 

The quantitative analysis of network graph 

centrality and attack relationships reveals a 

highly structured and persistent pattern of 

targeting against Ukrainian state and civil society 

entities. The analysis processed a total of 2,674 

nodes and 4,528 attack relationships, identifying 

the most frequent and heavily weighted targets 

across eight distinct entity types. The findings 

underscore a multi-pronged cyber campaign 

focused on government, military, critical 

infrastructure, and the public information sphere. 

The broadest targets were national and 

societal sectors. As detailed in the source data, 

"Ukrainian citizens" was the most frequently 

attacked sector (aggregated weight: 205.0), 

followed closely by "Government bodies of 

Ukraine" (aggregated weight: 118.0). This 

indicates a widespread campaign aimed at both 

the general populace and the state apparatus. 

Reinforcing this, when analyzed by country, 

Ukraine was the overwhelmingly primary target, 

with an aggregated attack weight of 496.0, an 

order of magnitude greater than any other nation. 

A more granular analysis of specific entities 

highlights the campaign's strategic priorities. 

Table 2 summarizes the top-targeted entity 

within the most significant categories. The 
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 Сили оборони України  (Defense  orces of 

Ukraine) was identified as the single most 

critical target, absorbing an aggregated attack 

weight of 129.0. This focus on the unified 

defense command structure points to 

sophisticated intelligence-gathering and 

disruption efforts aimed at military operations. In 

the private sector, the national email service 

"UKR.NET" was the most prominent target 

(aggregated weight: 149.0), alongside a clear 

pattern of attacks against major media 

organizations such as  Україна 24  (32.0), 

"TSN" (30.0), and "Ukrinform" (20.0). This 

demonstrates a parallel effort to compromise 

civilian communications and disrupt the national 

information space. 
Table 2 
Top Targeted Entities by Category 

Category Most Targeted 
Entity 

Aggregated 
Attack Weight 

Government 
Body  

Defense Forces of 
Ukraine 

129.0 

Organization UKR.NET (National 
Email Service) 

149.0 

Sector Ukrainian citizens 205.0 
Country Ukraine 496.0 

 

Furthermore, an analysis of the software 

targeted by adversaries reveals the specific 

vectors used in these campaigns (Table 3). The 

attackers prioritized both ubiquitous 

communication platforms and specialized 

military systems. Public messaging applications 

like “Telegram” (110.0), “WhatsApp” ( 7.0), 

and “Signal” (65.0) were heavily targeted. These 

platforms were not typically attacked by 

exploiting software vulnerabilities, but were 

rather used as a vector for social engineering and 

phishing campaigns, where attackers leverage the 

public's trust in these applications to deliver 

malware or steal credentials. This pattern 

highlights a strategic focus on compromising 

trusted communication channels as a primary 

means of initial access. Concurrently, highly 

specialized Ukrainian military “C4ISR” 

(Command, Control, Communications, 

Computers, Intelligence, Surveillance, and 

Reconnaissance) software, such as “DELTA”, 

“ТЕНЕТА”, and “Кропива” (each with a weight 

of 54.0), were targeted with equal intensity. This 

dual focus indicates a sophisticated adversary 

capable of running both large-scale phishing and 

social engineering campaigns against the general 

public and highly tailored technical operations 

against hardened military targets. 

Table 3 
Prominent Software Targets by Type 

Software 
Category 

Examples Aggregated 
Attack Weight 

Communication Telegram, 
WhatsApp, 
Signal  

110.0, 87.0, 
65.0 

Military C4ISR DELTA, ТЕНЕТА, 
Кропива 

54.0 (each) 

Corporate / 
Email Systems
  

Microsoft 
Outlook, 

Roundcube 

33.0, 29.0 

 

The analysis of attacker activity, presented in 

Table 4, revealed that a small number of highly 

active groups are responsible for a large portion 

of the observed attacks. The top three most 

active actors by aggregated attack weight were 

identified as APT28 (Attack Weight: 31), 

Sandworm (Attack Weight: 25), and 

Armageddon (Attack Weight: 17). The data 

confirms that these key actors are consistently 

attributed to the "Russian Federation" and 

primarily target Ukraine and its governmental 

and defense sectors. 
Table 4 
Hacker Groups Attack Weight 

HackerGroup Attack weight 
APT28 31 

Sandworm 25 
Armageddon 17 

UAC-0050 15 
UAC-0133 14 
UAC-0002 14 
 UAC-0063 10 

Turla 9 
UNC4221 9 

Seashell Blizzard 9 

4.3. Threat Ecosystems and Tooling 

The dense relationships within the graph 

allow for the clear identification of distinct threat 

ecosystems based on actor-tool-target 

connections. The analysis of the most frequently 

used tools, detailed in Table 5, shows that 

general-purpose software like PowerShell is the 

most widely adopted tool, used by at least 29 

distinct hacker groups. However, more 

specialized malware is often closely associated 

with specific actors, forming clear operational 

ecosystems. For example, the Remcos Remote 

Access Trojan (RAT) was predominantly used 

by the group UAC-0050 (usage weight of 8), 

while the SmokeLoader malware was 

104

___________________________________________________________________________________A Formal Model for Constructing Sensitive Data Graphs from Cyber Reports using Large ...



exclusively linked to UAC-0006 in this dataset. 

Similarly, the GammaLoad malware is a key 

component in the arsenal of the Armageddon 

group. 
Table 5 
Tools Used by Hacker Groups 

Tool Usage Users 
PowerShell 38 29 

Remcos 18 10 
MSHTA 17 12 

Windows Script Host 14 11 
Cobalt Strike Beacon 14 8 

Remote Utilities 13 7 
Lumma Stealer 10 8 

Python 9 7 
ngrok 7 7 

KAZUAR 7 6 
Quasar RAT 7 6 

SmokeLoader 6 1 
Venom RAT 6 6 
PEAKLIGHT 6 6 

DarkCrystal RAT 6 5 
 

The geopolitical dimension of these 

ecosystems is revealed by the “is attributed to” 

relationships. Key threat actors like 

Armageddon, APT28, Sandworm, and Turla 

were all formally linked to the "Russian 

Federation", with specific connections to 

government bodies such as the Federal Security 

Service (FSB) and the Main Directorate of the 

General Staff (GRU). This confirms the state-

sponsored nature of the primary threat 

ecosystems operating against Ukraine. 

5. Discussion 

The results presented in the previous section 

serve as an empirical validation of the proposed 

formal model. This section is intended to discuss 

the broader analytical capabilities that the model 

enables, the general implications of this 

methodology for the field of sensitive data 

analysis, and the inherent limitations of the 

approach. 

5.1. Interpretation of the Model's 
Analytical Capabilities 

The application of the model to the CERT-

UA corpus demonstrates its capacity to transform 

a large volume of unstructured text into a 

structured, interpretable map of a complex 

domain. Several key analytical capabilities were 

revealed. 

First, the model excels at identifying the 

central actors and structural cornerstones within 

a complex system. Through the use of network 

centrality metrics, the model moves beyond 

simple frequency counts to quantify the 

topological importance of each entity. In the case 

study, this allowed for the immediate 

identification of the most influential threat actors 

and the most critical targets, demonstrating the 

model's utility in prioritizing focus within any 

large-scale dataset. 

Second, the methodology allows for the 

automated discovery of latent thematic 

ecosystems. The community detection analysis 

showed that the model can automatically cluster 

entities into coherent groups based on the density 

of their inferred relationships. These clusters 

represent meaningful, real-world structures—in 

the CTI case study, they corresponded to distinct 

"theaters of operation." This capability is generic 

and could be applied to uncover hidden 

communities in other domains, such as 

identifying research clusters from academic 

papers or interconnected corporate networks 

from financial reports. 

Finally, the model enables the analysis of 

complex, multi-faceted relational patterns. The 

results highlighted the dual role of software as 

both a weapon and a target. This type of nuanced 

insight is made possible by the rich, typed-edge 

graph structure, which allows analysts to move 

beyond simple co-occurrence analysis and 

explore the specific nature of interactions 

between entities. 

5.2. Broader Implications for Sensitive 
Data Analysis 

The implications of this work extend beyond 

the specific domain of cybersecurity. From an 

academic perspective, the primary contribution is 

the formalized framework for making LLM 

outputs more reliable and analytically useful. By 

integrating a state-of-the-art LLM (GPT-5) into a 

structured pipeline with deterministic 

normalization and inference stages, this model 

offers a replicable blueprint for conducting 

rigorous research with unstructured text. This 

addresses the "formalization gap" and provides a 

path for applying LLMs in other sensitive fields 

like legal text analysis, intelligence reporting, 

and financial compliance monitoring. 

From a practical standpoint, the methodology 

offers a significant acceleration of the knowledge 
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discovery process. For domain experts and 

analysts in any field, the model can automate the 

laborious task of processing and structuring vast 

quantities of documents. This creates a queryable 

knowledge base from what was previously an 

inert archive of text, freeing human experts to 

focus on high-level strategic interpretation. The 

ability to generate a data-driven, macroscopic 

view of a domain and then drill down into 

specific entities provides a powerful tool for any 

intelligence-driven workflow. 

6. General Model Limitations 
 

Despite the capabilities of the proposed 

model, several inherent limitations should be 

considered. These limitations help to 

contextualize the findings and identify areas for 

future research. 

Dependency on the Input Corpus. A primary 

limitation is that the model's output is 

fundamentally a reflection of its input corpus. 

The insights derived from the analysis represent 

the world as described in the source documents, 

not necessarily the absolute ground truth. 

Consequently, the model is subject to any biases, 

gaps, or specific perspectives present in the data 

it processes. 

Dependency on Component Performance. 

The overall accuracy of the model is dependent 

on the performance of its core components: the 

LLM and the rule-based inference engine. While 

GPT-5 represents the state of the art, it is not 

infallible. Errors made during the initial 

extraction or normalization stages can be 

propagated through the system. Similarly, the 

inference rules, while deterministic, are based on 

a specific logical model of the domain and may 

not capture all relational nuances. 

Static and Aggregated Representation. The 

methodology produces a static, aggregated 

representation of what are often dynamic events. 

By collapsing temporal information into a single 

graph, the sequencing and evolution of 

relationships over time are lost. While this 

aggregated view is powerful for identifying the 

overall structure of the threat landscape, a 

temporal analysis is required to understand the 

dynamics of the system. This remains a key area 

for future work. 

7. Conclusion 
 

This study has proposed and validated a four-

stage formal mathematical model for 

transforming unstructured cyber incident reports 

into a canonical knowledge graph. By integrating 

the semantic extraction capabilities of GPT-5 

with deterministic rule-based inference and 

graph-theoretic analysis, the model bridges the 

“formalization gap” between probabilistic LLM 

outputs and reliable, analyzable structures. 

Applied to a corpus of 204 CERT-UA reports, 

the approach successfully identified central 

threat actors, critical targets, and distinct 

operational ecosystems, offering a macroscopic 

yet actionable view of Ukraine’s cyber threat 

landscape. 

From a theoretical perspective, the research 

contributes a replicable framework that 

demonstrates how next-generation LLMs can be 

embedded into a mathematically defined 

pipeline. This advances the academic discourse 

on sensitive data analysis by showing that hybrid 

systems where probabilistic reasoning is 

tempered by formal normalization and 

deterministic rules can mitigate risks of 

inconsistency and hallucination. More broadly, 

the model extends knowledge graph construction 

methodologies and provides a basis for future 

exploration of dynamic, temporal, and multi-

source data integration. 

From a practical perspective, the model 

delivers tangible value for analysts and decision-

makers in national security, cybersecurity 

operations, and related fields. By automating the 

structuring of vast archives of text, it reduces 

reliance on manual review and enables faster, 

data-driven insights. The ability to highlight 

high-value actors, reveal latent ecosystems, and 

prioritize targets makes the framework directly 

relevant to threat intelligence workflows, 

incident response, and strategic planning. 

Beyond cybersecurity, the pipeline can be 

adapted to other sensitive domains such as legal 

compliance, financial monitoring, and 

intelligence reporting—anywhere structured 

knowledge must be distilled from unstructured 

narratives. 

In sum, this research demonstrates both the 

scientific significance and the practical utility of 

a formalized, hybrid approach to sensitive data 

processing. It establishes a foundation for 

scalable, explainable, and domain-agnostic 

applications of LLMs, thereby contributing to 

both the academic theory of automated text 

analysis and the operational practice of 

intelligence-driven decision support. 
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8. Future Work 
 

While this study provides a robust foundation, 

several avenues for future research can be 

pursued to extend and generalize the proposed 

model. 

Enhancing Robustness with a Swarm of 

Virtual Experts: The current model's 

dependency on a single LLM instance can be 

mitigated. Future work could implement a 

"Swarm of Virtual Experts" [10] methodology to 

improve the accuracy of the foundational 

extraction and normalization stages. This 

approach involves querying multiple, diverse 

LLM agents for the same task and aggregating 

their outputs via a consensus mechanism, thereby 

reducing the impact of individual model biases 

and leading to a higher-fidelity knowledge graph. 

Multi-Source Data Fusion: The model was 

validated on a homogenous corpus. Future work 

should focus on its application to fusing data 

from a wider variety of text sources, such as 

legal documents, financial filings, intelligence 

briefings, or open-source news reports. This 

would test the model's ability to create a 

comprehensive knowledge graph from diverse 

and potentially conflicting information. 

Development of Advanced Analytical 

Models: The current analysis, based on metrics 

such as Filtered Weighted Degree, proved 

effective for identifying key entities. Future 

research could significantly expand these 

analytical capabilities. One direction is the 

formalization of a Multi-Dimensional Node 

Scoring framework, which would involve 

designing new, domain-specific metrics to create 

richer, more comprehensive profiles of entities 

like threat actors and their tools. Furthermore, to 

synthesize these multi-dimensional profiles into 

a single, actionable ranking, a Composite Node 

Ranking Model could be developed. Future work 

in this area could focus on: (a) creating flexible, 

goal-oriented scoring functions for diverse 

analytical tasks (e.g. ranking malware by threat 

level); and (b) exploring methods for dynamic 

calibration of the model's weights using machine 

learning to adapt to the evolving threat 

landscape. 

Development of an Interactive Analytical 

Dashboard: The model presented in this paper 

can serve as the backend for a powerful, 

interactive tool for analysts in any domain 

dealing with large volumes of text. Future efforts 

could be directed towards developing a user 

interface with capabilities for dynamic filtering, 

drill-down analysis of specific entities, and 

visual exploration of relationships, thereby 

empowering human experts to validate 

hypotheses more efficiently. 
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