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Abstract

In this paper, we consider RX-analysis for the NORX mixing operation, a logic-only surrogate for mod-
ular addition used in ARX/LRX designs. Given established closed-form RX-probability expressions and
feasibility conditions, we characterize the distribution of RX-probabilities over random RX-differentials,
provide a constructive algorithm that, for fixed input differences and rotation value, enumerates the
admissible output differences and simultaneously yields their cardinality, together with a maximization

method for identical-input cases.
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Introduction

Cryptosystems of the ARX class
(Add—Rotation—-XOR) rely on a small set

of elementary operations — addition modulo 27,
bitwise exclusive-or (XOR), and cyclic rotations
— and are therefore attractive for highly efficient,
lightweight implementations on constrained
platforms. In a number of modern designs,
modular addition is reduced or replaced alto-
gether by purely logical composition in order
to further streamline hardware or constant-time
software. We use the umbrella term LRX for
such logic-centric patterns. Representative
examples often discussed in this context include
Simon [1], NORX [2], and Ascon [3].
Rotational cryptanalysis, introduced by
D. Khovratovich and I. Nikoli¢ [4, 5], studies
the evolution of rotational pairs — inputs related
by a fixed cyclic rotation — through ARX round
functions. It is well understood that injecting
round or key-dependent constants typically
destroys rotational symmetry and thus defeats
plain rotational distinguishers [4, 5]. To address
this barrier, Ashur and Liu proposed differential-
rotational cryptanalysis (RX-analysis) [6], which
augments rotational pairs with XOR differentials.
RX-differentials restore analytical traction in
the presence of constants and enable nontrivial
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propagation analyses across modular addition. In
particular, [6] derived a closed-form expression
for RX-probabilities at a single-bit rotation
(r = 1) for modular addition and demonstrated
a 7-round RX-distinguisher on Speck32/64 [1].
Since then, RX-style analyses have been adapted
to several families, including Simon/Simeck via
AND-RX modeling [7], Alzette and CHAM [8],
and SipHash [9]. More recently, exact probabil-
ity formulas for modular addition at all rotations
have been obtained [10], and RX-probabilities
for both modular addition and certain logical
surrogates have been further systematized [11].
This paper investigates the RX-differential
properties of the logic-only operation that ap-
proximates modular addition, proposed by the
designers of the NORX cipher [2]. The dis-
tribution of RX-probabilities over random RX-
differentials is characterized. Building on the
closed-form RX-probability formula and the fea-
sibility criterion from [11], an efficient algorithm
is presented that, for fixed inputs and rotation,
enumerates all admissible output differences and,
as a by-product, yields the cardinality of the ad-
missible set. A maximization method tailored
to identical-input cases is introduced, selecting
outputs that attain the maximum RX-probability
for a fixed rotation. Finally, several structured
families of RX-differentials are analyzed, with
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compact closed-form characterizations that clar-
ify boundary cases.

1. Notation and Definitions

Throughout, we follow the notation and defi-
nitions of [11]:

Vo, — the set of all binary vectors of
length n: V,, = {0,1}"™;

z € V;, — an arbitrary n-bit binary vector:

T = (l‘n_l,l?n_Q, cee ,ﬂfl,l’o), x; € {07 1}a

x[i] — the i-th bit of the vector x € V,, (thus
z[i] = z;);

@ — the addition modulo 2 (XOR);

z" or x << r — the rotation (cyclic shift) of
the vector x by r bits to the left:

o) xn—r)?
x~" or & > r denotes a cyclic right rotation
of x by r bits; note that ™" =2"";
r < r — a non-cyclic left shift of z by r
bits:

r
r = (mn_r_l, ey Oy Tp—1, - -

rLr= (xn—r—la“-vxmof"’o);

x V y — the bitwise logical OR;

x Ay or xy — the bitwise logical AND;

T — the inversion of all bits of x;

wt(z) — the (Hamming) weight of x (the
number of ones);

[in, — an n-bit vector having zeros at posi-
tions ¢ = 0 and ¢ = r and ones elsewhere; it is
given by pip, , = 2" — 2" — 2.

bi(N,p) — the binomial probability mass
function:

be(N. p) = <JZ> P —pN .

Consider the mapping f: V,, xV, — V,,. The
differential w = («, 8 — 7y) of f is any triple of
vectors «, 3,7 € V,, describing the differences
between two input (or output) values of f with
respect to @.

The  probability of the
w= (a, — ) for f is defined as

differential

zdp! (w) = zdp! (o, B — ) =
=Pro {flzda,yep) = f(z,y) &~}

The concept of rotational-differential (RX)
analysis was introduced in [6]. We denote an
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RX-differential by

0=(r;a,B—7),
which arises by composing the rotation
(z,y) — (2",y") with the differential (o, 5 — ).
The probability of an RX-differential of f is
defined as

zrp! (0) = arp! (r;0, 8 — ) =
=Pr,{ f(e"®a,y" ®B) = (f(z,y)) @7}

We refer to the ordinary differential
(o, B — ~y) and the RX-differential (r;c, 8 — )
as corresponding differentials.

The probabilities zdp/ characterize the secu-
rity against differential cryptanalysis, and zrpf —
against differential-rotational cryptanalysis.

In [2], the designers of NORX proposed the
operation

h(zy)=zdy® ((xAy) < 1),

which approximates addition modulo 2". This
approximation is based on the well-known iden-
tity relating modular addition and logical opera-
tions [12]:

z+y=@oy + ((zAy) <1),

where the addition on the right-hand side is re-
placed by XOR.

The following theorem states the closed-form
expression for the RX-differential probabilities
of the operation h(z,y) as established in prior
work.

Theorem 1 ([11]). For any fixed rotation
value v, 1 <r <n—1, and arbitrary vectors
a, B,v € Vy, the probability of the RX-differential
(r; o, B — 7y) for the function h(z,y) can be eval-
uated as follows:

1) arph(r;e, 8 — ) # 0 iff

(Vv B) K1) ASGA pnyr = 0; (D
2) ifxrp™(r; o, B — y) # 0, then
arp”(r;o, B — ) =
_ <3 _ 5[0]><3 _ M) 2—16; )
4 2 4 2
where  k=wt(((aVp) <1)Apn,) and
d=ad®Bdn.
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2. RX-Differential Probability Distribu-
tion for the Function h(z,y)

We now examine uniformly random RX-
differentials: how often the probability is
nonzero and, when it is, how it is distributed.
The following theorem states the result.

Theorem 2. Let r, 1 <r <n—1, be fixed.
An RX-differential 0 = (r; o, B — =) is called ran-
dom when «, 3, € V,, are chosen independently
and uniformly at random. Then the following re-
sults hold:

1) Pro{arp"(0) #0} = ( )n72 .

2) Denote

7
8

Pr(a) = Prg { arp"(0) = a | zrp"(0) #0}.
Then
Pr($27%) = dbu(n - 2.%)
Pr(f527%) = fbi(n - 2.9)
Pr(#27*) = fbu(n—2,9)
where k € {0,1,...,n — 2}.

Proof. According to (1), an RX-differential
xrp™(0) has nonzero probability if and only if

((aVB) <1)AGA pin, =0,

For each index i # 0, i # r the only forbidden
conjunction is

;1 — ,31'_1 =0 and 5, =1.
Since
Pr{a;1 = i1 =0} = g, Pr{é; =1} = 3,

and §; depends only on (v, 3;,7;) (hence is in-
dependent of «;_1,5;—1), the per-position accep-
tance probability equals 1 — i . % = %. Indepen-
dence across the n — 2 non-edge positions then
yields

Pro{arp"(8) #0} = (D))" 2.

Assume that arp’(d) # 0. Then,
by (2), we have arp(0) =s-27F, where
ke {0,1,...,n—2}. The factor s depends
only on 0[0] and d[r] and takes values from
{1%, 13—6, %6} with corresponding probabilities
{1,113}, independently of k.

For every index ¢ # 0, ¢ # r, define the
event A; by o;_1V f;_1 = 1. By the proof of
Theorem 1 (see [11]), for each index ¢ where
the condition A; holds, the probability zrp™(6)
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acquires an additional multiplicative factor of
1/2. Consequently, the overall factor contributed
by the positions i # 0, i # r equals 27%, where
k is the number of successful events A;.

Let E denote the event that xzrp"(f) # 0.
We now evaluate the conditional probability
Pr{A; | E}. Since this probability depends only
on the triple (a;_1,58i_1,%_1), there are 23 = 8
possible assignments. Exactly one of them is
ruled out by E; among the remaining seven, six
satisfy A;. Therefore,

Pr{4; | E} = ¢

The events A; are pairwise independent (each
depends on different bits of o and ) and are
identically distributed with Pr{4; | E} = &
Hence, across the indices ¢ ¢ {0,7} we ob-
tain a sequence of independent Bernoulli tri-
als. Therefore, the probability that there are
exactly k successful events (which yields the
overall factor 27%) is given by the binomial law
br(n —2,9).

Combining the two parts, we obtain the
claimed distribution:

Pr(27) = oe(n—2.9),
Pr(527%) = So(n-2,9),
Pr(27%) = foe(n—28),

which concludes the proof. [J

As the word size n grows, the share of
triples (r; o, 3—y) with nonzero RX-probability
falls like gn—Z. Such triples still exist for ev-
ery n, but they are rare. Given the probabil-
ity is nonzero, it has the form s27*. Here
k €{0,...,n—2} follows the binomial distribu-
tion by(n—2, %), and s € {%, =, 1} with prob-
abilities %, %, %. In typical cases, the nonzero
RX-probability is about 2_2("_2), so large prob-
abilities are rare.

3. Searching for Nonzero-Probability
RX-Differentials of the Function

h(zx,y)

By equation (1), an RX-differential
xrp™(r; o, B—7) is feasible iff
((aVB) << 1) ANSA piny =0.

The algorithm below lists exactly all « satisfy-
ing this constraint: it leaves the positions 0 and
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r unconstrained, and for each ¢ ¢ {0,r} fixes
v[i] = a[i]® B]i] whenever afi—1]V3[i—1] = 0;
otherwise ~y[i] may be chosen freely (all indices
modulo n).

Algorithm 1 (Enumerating all vectors ~ with
zrp”(r;a, B — v) # 0).
Input: o, €V, r€Zwithl <r<n-—1
Output: the set of vectors v € V,,.
1) Foralli >0, set Ali] = afi — 1] V B[i — 1].
2) Initialize the bits singled out by condition (1):

V0]« {0.1},  A[r]+ {0,1}.
3) Foreachi € {1,...,n—1}\ {r} set
(i) If Ali] = 1, then ~[i] € {0,1} (free
choice);

(i) If Ali] = 0, then v[i] + afi] @ Bli].

Claim 1. For the fixed inputs o, 8 € V,, and ro-
tation r, algorithm (1) correctly enumerates the set
of all output differences ~ for which xrp"(#) # 0.

Proof. By equation (1), xrp”(6) is nonzero
exactly when

((aVB) K NIA pin, =0,

where § = a®S®y and Afi] = a[i—1]VA[i—1].
The mask fi,» has i, ,[0] = pin,[r] = 0 and
fnr[i] =1 for all other positions.

At positions 0 and r the mask is 0, so
the condition holds regardless of v[0] and ~[r];
the algorithm therefore leaves these two bits
free. For any other index ¢, we must satisfy
Afi] A6[i] = 0. If Afi] = 0, then d[i] = 0, i.e.,
~[i] = ali]® B[i]. If Ali] =1, there is no restric-
tion on ~y[i]. This is exactly what the algorithm
enforces, so every output «y satisfies equation (1).

Conversely, take any ~ that satisfies equa-
tion (1). For each i ¢ {0,r} with A[{] = 0
it must hold that y[i] = «fi] ® B[], and for
i € {0,r} or A[i] =1 the bit v[i] may be cho-
sen freely. The algorithm enumerates exactly
these choices, so every feasible + appears in its
output.

Therefore Algorithm 1 correctly lists precisely
all v with zrp(0) £ 0. O

Corollary 1. The cardinality of the set of vec-
tors v € V, for which the RX-probability of the
differential (r; o, f—y) is nonzero equals

(v s arp(r;0, B—=7) # 0}] =
_ 4. owi{((aVA<D)An,r)
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Proof. By equation (1) and Algorithm 1, the
bits v[0] and 7[r| are unconstrained, contributing
a factor 22 = 4.

For every other index i # 0,7 # r, the bit
v[i] is free exactly when ((aV f) < 1)[i] =1
and fup.[i] = 1; otherwise ~[i] is forced to
aft] @ B[i]. The number of free positions among
i ¢ {0,r} is therefore

wt(((aV B) < 1) A piny),

and each such position contributes a factor 2.
Multiplying the independent choices gives

{7 : arp"(rya, B—7) # 0}] =
—4. gwt(((aVB)<<1)Aun,r).

Thus we obtain the claimed count. [

Note that in view of the closed-form expres-
sion for xrp, it is natural to focus the search
for maximum-probability RX-differentials on the
subclass of vectors satisfying

0[0] = d[r] =0, d=a®Bdr.

Under this condition, the multiplicative factor
in (2) attains its largest possible value 9/16,
thereby maximizing the RX-differential proba-
bility.

To describe the set of vectors v for which
the RX-differential (r;c, 3 — <) has nonzero
probability and the factor in (2) equals 9/16, it
suffices to replace Step 2 of Algorithm 1 with

V0] = af0] @ B0, Alr] < alr] @ Blr].

4. Analysis of Forms of

RX-Differentials

Special

Below we study three structured fami-
lies of RX-differentials with clean, closed-
form descriptions that are useful for auto-
mated search: (r;a,a—a), (r;a,a—-y) and
(r;a,B—a @ B).

4.1. RX-differentials with identical argu-
ments (a = 8 = v)

We apply Theorem 1 to identify RX-
differentials of the form (r,a,a¢ — «) with
nonzero probability. The RX-differential has
nonzero probability precisely when the following
condition holds:

(a < 1) ANaA pip, =0.
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Accordingly, the set of admissible vectors «
is defined by the following condition
Apr = { acV, ‘ (<K I) AN iy :O}.

Denote

Lemma 1. For any n and any rotation value r
with1 <r <mn —1, the set A, , equals

Ay = {(23—1)+((2t—1) <r) ‘ (s,t) € M}.

Proof. According to (1), for every ¢ with
1<i<mn-—1 and i # r, the pattern

ali — 1] ANali] =1

is forbidden; that is, a one cannot immediately
follow a zero unless ¢ = r. Consequently, the
only permitted starting positions of runs of con-
secutive ones are 0 and 7.

Partition A,, , by the values of «[0] and ar].
For €, € {0,1} define

AED) ={a e Am | afr] = ¢, af0] = 6}.
Then A, , = An r A(O 1) .A (1.0) A7(117‘1

And these subsets are pairwise dlSJOll’lt.
We describe each subset in turn:

1) a[0] =0, af[r] = 0. No run of ones appears,
hence A,(S}O) contains only the all-zero vec-
tor.

2) a[0] = 1, afr] = 0. A single run 1...1
starts at position 0 and ends at one of the
positions 1,...,r — 1. Thus

= 2k _1, 0<k<r

3) a[0] = 0, a[r] = 1. Here a run of ones
starts at position r and ends at one of the
positions r+1,...,n —1, i.e., it has length
twith 0 <t <n-—r:

a:(2t—1)<<7“, O<t<n-—r.
4) «[0] =1, afr] = 1. This yields two runs of

ones, the first starting at position 0 and the
second at position 7r:

(28 -1) + ((2"-1) <),

where 0 <k <rand 0<t<n-—r.
These cases can be unified as

A = {(2=1)+((2-1) < 1) | (5,0) € M},

as claimed. OJ

a
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Corollary 2. For any fixed r, the number of
vectors o € Vy, satisfying (o« < 1) Aa A pinr =0
equals

|Apr| = +1)(n—r+1).

Proof. With the notation from the proof of
Lemma 1, we have

A = [ALD |+ JADD] + ALY + ALY | =
:l—i-(n—r)—i—v“—l—(n—r)r:
=n+1l+nr—r?=
:n(r—|—1)—(r2—1):
=(r+1)(n—-r+1),

as required. [J

4.2. RX-differentials with identical input
differences

Consider RX-differentials of the form
(r; a,a — 7). We focus on those with the
largest multiplicative factor in (2). Accordingly,
we restrict to differentials satisfying

o[0] =0, d[r] =0, d=r

The set of admissible output vectors for this
RX-differential with «[0] = ~[r] =0 is

Bus(o) = {veVa | @< DAY, =0},

Lemma 2. For any fixed r and any
a € V,, the number of vectors vy satisfying

(a0 K1) AYA pinyr =0 with 4[0] = ~r] = 0
equals
‘Bn T(O‘)’ _ 2wt(a<<1) — a[r—l]'

Proof. Coordinates 0 and r are fixed by
~v[0] = ~[r] = 0. For all other positions,
(o< 1)Ay =0, ie,

_ 0, if (¢ < 1)[i] =0,
il = . :
Oorl, if (a<1)[i]=1.

Thus the free bits of v occur exactly where
i#0,i# 1 and (o < 1)[i] = 1. Their number
therefore is
wt(a < 1) — afr — 1]
since (@ < 1)[0] =0 and (o < 1)[r] = a[r—1].
Each free bit is chosen independently, giving
|Bn r(a)| -9 wit(akl)—ar—1] )

This completes the proof. [
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Algorithm 2 (Finding ~ that maximize the
probability of (r; a, a — 7)).
Input: o € V,, fixed rotation r with
1<r<n-1.
Output: the set BB, » ().
1) Fix the bits to maximize the factor in (2):

(0] += 0,
2) Foreachi € {1,...,n—1}\{r}do
(i) If afi — 1] = 1, set v[i] € {0,1} (free
choice);
(i) if afi — 1] = 0, set y[i] < 0.

~[r] < 0.

It follows that the cardinality of B, ,(«a), de-
scribing all possible output differences of RX-
differentials of the form (r; a, a0 — 7) under
v[0] = «[r] = 0. The algorithm enumerates the
entire set B,,,(c) in total time O(n 2¥), where

k=wtlak 1) —afr—1],

i.e., 2F vectors with O(n) work per vector. This
yields a provably minimal exhaustive search and
enables exact RX-probability evaluation, substan-
tially narrowing the search space in the analysis
of ARX- and LRX-constructions.

4.3. RX-differentials of the form
(T; a,B—ad B)

We now determine the RX-differential

probabilities of h(z,y) for differentials

(r;a,p - a®pB). From Theorem 1, the
RX-differential (r;c,# — <) has nonzero
probability precisely when

((aVB) <1)AdA pny =0.
Here 6 = a® @ (a® B) =0, so the con-

dition is satisfied trivially and every such RX-
differential has nonzero probability given by

arp(r;o, f—a® B) = L 277,

where k = wt(((a VvV 8) < 1) A pinr). The max-
imum probability is reached when k = 0.

Lemma 3. For fixed r with1 < r < n —1,
there are exactly 16 distinct pairs (v, 3) € V;? that
achieve the maximal RX-probability 9/16 for the
differential (r; o, B — a @ f3).

Proof. Since ¢ = 0, the prefactor in (2)
equals (3/4) - (3/4) = 9/16. Maximization thus
requires wt(((aV B) < 1) A pinr) = 0, where
ln, has zeros at positions 0 and r (and ones
elsewhere). Equivalently, ((aV ) < 1)[i] =0
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for all 4 ¢ {0, r}. Because the shift is non-cyclic,
this forces o V 5 to be zero at every position
except possibly n — 1 (which is discarded by the
shift) and » — 1 (which shifts into position 7).
Hence « and S may independently choose bits
at positions n — 1 and r — 1, and must be zero
elsewhere, giving 2* = 16 admissible pairs. [J

All differentials in this class are captured by
the template

a,f€{%0,...,0,x0,...,0},

where x € {0,1} occupies positions n — 1 and
r — 1. These results provide tight upper bounds
on the computational complexity of RX-based
attacks and a complete description of the ex-
tremal pairs («, ) attaining the maximal RX-
probability. This, in turn, supplies the founda-
tion for formal RX-differential analyses of ARX-
and LRX-cryptosystems and for optimizing asso-
ciated automated search procedures.

Conclusions

This work examined the RX-differential be-
havior of the NORX mixing operation used as a
logical surrogate for modular addition. The main
outcomes are both statistical and algorithmic.

On the statistical side, the distribution of
RX-probabilities over random RX-differentials

was characterized: the share of feasible triples
7

equals (8)’n72, and conditioned on feasibility
the probability takes values s -2~* with bino-
mial distribution probabilities by,(n — 2, %) and
weights i, %,% in correspondence with the re-
spective values of s € 1%, 1%, %. Thus, feasible
RX-differentials become exponentially rare as n
grows, and large probabilities are outliers.

On the algorithmic side, the feasibility con-
dition leads to a constructive enumeration rou-
tine that, for fixed inputs and rotation, out-
puts exactly the set of admissible output differ-
ences and, as a by-product, yields its cardinal-
ity 4. 2wH((eVB)<DAunr) -~ A maximization pro-
cedure tailored to identical-input cases selects
outputs attaining the maximum RX-probability
for a fixed rotation. Several structured fami-
lies were analyzed in closed form, including
(ryo,a = a) with |Ay, | = (r+1)(n —r+1),
(r; e — ) with |B,, . (a)| = 2wta<h)—alr=1]
and (r;a,f—a @ () where the maximum 1% is
achieved by exactly 16 input pairs.
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These results enable principled pruning in
RX-based trail search for LRX/ARX designs that
replace modular addition with logical operations:
enumeration avoids brute-force over 2" outputs,
while the distributional picture highlights the
scarcity of large-probability events and pinpoints
the corner cases where they occur.
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