
UDC 681.3.06 

 

Proof of Data Possession Protocol with Hash-based Deterministic  
Challenges and Privately Verifiable Payments 

 

 

 

__________________________________________________________________________________________ 

Abstract  
The research presents a novel protocol for remote verification of data outsourced to third-party 

storage. The protocol aims to verify the possession of data in potentially untrusted storage without 

downloading. We identified challenges in existing proof-of-possession protocols (PDP) by conducting 

a comprehensive literature review. We stated the optimal threshold for the minimal communication 

cost needed in existing PDP protocols to ensure the validity of the target percentage of data blocks 

while maintaining high confidence. Building on these findings, we propose our own PDP requires a 

fixed amount of communication and offers practically deterministic validity guarantees based on the 

security of cryptographic hash functions. We show a scenario for monetization in both cloud-native 

and blockchain environments to incentivize storage providers. A rigorous security analysis 

demonstrates resilience against forgery attacks aimed to falsify integrity checks or compromise 

verifiability assumptions. Our protocol significantly reduces communication overhead compared to 

existing solutions while eliminating the cheating probability to negligible levels. 
 

Keywords: proof of data possession, data storage outsourcing, verifiable storage, remote integrity 

check, cryptographic hash. 
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Introduction 

Proof of Data Possession (PDP) protocols, a 

specialized class of cryptographic schemes, have 

been developed since the early 2000s to enable 

verifiable integrity of remotely stored data 

without requiring full data retrieval. The 

foundational work by Golle et al. (Golle, Jarecki, 

and Mironov 2002) introduced the use of RSA-

based signatures for remote integrity checks [1], 

establishing the cryptographic basis for ensuring 

data integrity in outsourced storage. This 

approach was formalized into a comprehensive 

PDP framework by Ateniese et al. (Ateniese et 

al. 2007), who proposed a protocol relying on the 

RSA-based digital signatures with knowledge-of-

exponent assumption, enabling probabilistic 

verification of data possession [3]. RSA-based 

signature was replaced by a specially designed 

symmetric authenticated encryption scheme at 

(Ateniese et al. 2008) to achieve computational 

improvements [6]. Concurrently, Juels and 

Kaliski at (Juels and Jr. 2007) introduced a PDP 

variant using HMAC for data blocks 

authentication [5]. Xu and Chang at (Xu, Chang, 

and Zhou 2012) integrated coding techniques 

with zero-knowledge proofs (ZKPs) based on the 

knowledge-of-exponent assumption, allowing 

verification even in the presence of partial data 

corruption [8]. The incorporation of error-

correcting codes was advanced by Han et al. 

(Han et al. 2013), who utilized Maximum Rank 

Distance (MRD) codes to enable partial 

restoration of corrupted data blocks in PDP 

protocols [9]. More recently, Kaaniche and 

Laurent (Kaaniche, Moustaine, and Laurent 

2014) proposed a PDP protocol leveraging ZKPs 

and bilinear pairings on elliptic curve groups, 

offering enhanced security and flexibility for 

modern cloud storage environments [11]. 

The integration of Merkle trees into PDP 

protocols was introduced by Niaz and Wu (Niaz 

and Saake 2015), leveraging their efficiency in 

verifying large datasets in cloud storage through 

hierarchical hashing, reducing communication 

overhead [13].  

Walker provided an exhaustive overview of 

the multiple PDP protocols in classical client-
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server setting and pointed to their drawbacks in 

(Walker, Hewage, and Jayal 2022) [16]. 

Additionally, Yang et al. (Yang et al. 2024) 

developed PDP scheme to verify cached data in 

cloud and edge computing nodes, introducing a 

rewarding mechanism for verified nodes with 

applications in web security [19]. 

The application of Merkle tree was extended 

in decentralized systems with the use of Merkle 

Directed Acyclic Graphs (DAGs)in the 

InterPlanetary File System (IPFS) (Benet 2014) 

[10], which forms the core storage layer of 

Filecoin (Protocol Labs 2017) [14]. Filecoin 

enhances data retrievability and replication using 

succinct non-interactive arguments of knowledge 

(SNARKs), ensuring verifiable storage in peer-

to-peer networks. Verifiability mechanisms in 

IPFS were further explored by Azizi et al. (Azizi, 

Azizi, and Elboukhari 2022), focusing on manual 

rechecking of verifiability and security 

guarantees stated in IPFS [15]. Nalina et al. 

(Nalina et al. 2024) investigated extensions of 

IPFS for blockchain-integrated storage, 

addressing scalability and trust challenges [18]. 

Hall-Andersen and Simkin in (Hall-Andersen, 

Simkin, and Wagner 2025) examined data 

integrity and availability in blockchain-based 

storage, highlighting challenges in decentralized 

trust models [20]. Dumas et al. (Dumas et al. 

2023) proposed a PDP scheme using 

homomorphic encryption and bilinear pairings to 

verify evaluations of secret polynomials, offering 

robust security for distributed storage [17]. 

Let us examine the structure of the most 

representative PDP protocols. We propose to 

have a close look (Ateniese et al. 2008), [6] 

which was the basis for subsequent works. First, 

introduce the protocol parties. They are OWN for 

data owner and storage server SRV. Before 

outsourcing data D, OWN precomputes a certain 

number of short possession verification tokens vi, 

each token covering some set of data blocks. The 

actual data is then handed over to SRV. 

Subsequently, when OWN wants to obtain a 

proof of data possession, it challenges SRV with 

a set of randomly appeared block indices. In turn, 

SRV must compute a short integrity check over 

the specified blocks (corresponding to the 

indices) and return it to OWN. The proposed 

scheme is based entirely on symmetric key 

cryptography including authenticated encryption 

AEK on symmetric key K, and two pseudorandom 

functions (PRFs) fW and fZ on symmetric keys W 

and Z respectively. The protocol consists of the 

setup and verification phase. During the setup 

phase, the owner OWN generates in advance 

number of possible random challenges and the 

corresponding answers. These answers are called 

tokens. To produce the i-th token, the owner 

generates a set of r indices as follows: 

1. Generate a permutation key ki
= f

W(i) and a 

challenge nonce ci
= fZ(i) 

2. Compute the set of indices       

                       , where Ij=gk(j) 

and gk(j) is the permutation function 

based on AES (or other symmetric 

encryption) with secret key ki 
3. Compute the token as    

                       , using hash 

function H 

Basically, each token vi is the answer we 

expect to receive from the storage server 

whenever we challenge it on the randomly 

selected data blocks                 . The 

challenge nonce ci is needed to prevent potential 

precomputations performed by the storage 

server. Notice that each token is the output of a 

cryptographic hash function so its size is small. 

Once all tokens are computed, the owner 

outsources the entire set to the server, along with 

the file D, by encrypting each token with an 

authenticated encryption function AEK. The setup 

phase algorithm is shown in Figure 1. 

Figure 1: Setup phase 

To verify the i-th proof of possession, OWN 

generates the i-th token key ki as in step 1 of the 

setup algorithm on Figure 1. Note that OWN only 

needs to store the master keys W, Z, and K, and 

the current token index i. He also recomputes ci. 

Then, OWN sends to SRV both ki and ci as 

showed on the step 2 of algorithm (Figure 1). 

Having received the message from OWN, SRV 

computes: 

                               (1) 
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Then SRV retrieves vi and returns (z, vi) to 

OWN who, in turn, computes       
       and 

checks whether         . If the check succeeds, 

OWN assumes that SRV is storing all of D with a 

certain probability. The verification algorithm 

shown in Figure 2. 

 

Figure 2: verification algorithm 

 

The authors don’t state any requirements for 

the implementation of the algorithm AEK. 

According to definition of authenticated 

encryption, it implies that information is 

symmetrically encrypted aside with some 

padding data PAD. 

OWN required to remember PAD he used to 

perform AEK. On each verification attempt, he 

can decrypt vi by AEK
-1 yielding PAD' then 

checking          . Decryption is 

considered failed if the condition doesn’t hold. 

The AEK works as a symmetric replacement for a 

digital signature.  

A similar protocol was stated in (Juels and Jr. 

2007) [5], which also relies on a number of 

randomly chosen blocks to authenticate, but it 

employs HMACK with secret key K instead of 

AEK. The other similar construction based 

exclusively on pseudo-random functions stated 

in (Shacham and Waters 2008) [7]. 

We can observe the same drawbacks in PDP 

protocols according to mentioned works: 

1. Protocols run challenges on certain 

subset of data blocks which implies 

cheating probability by avoiding checks 

on corrupted blocks shown above 

2. The number of data blocks to check 

depends on the size of the entire data and 

requires balancing between target 

confidence level and amount of 

communication to ensure it on 

verification step 

3. Some protocols may involve complex 

setups that require data owners to keep 

their private parameters in secret, 

especially those based on symmetric 

encryption or SNARKs 

1. Estimation of cheating probability                    

in PDP 

If the PDP protocol requires querying of k 

blocks of data                    , then 

there exists a non-negligible cheating probability 

Pcheat for the data storage provider to evade 

checking of potentially corrupted blocks.   
  is 

the number of ways to choose k blocks from all 

blocks n. If m is the number of missing blocks, 

then the combination of ways to choose the 

correct blocks and avoid the corrupted ones is 

  
   . Then Pcheat is the probability of avoiding 

integrity checking for corrupted blocks is defined 

according to Ateniese et al. 2008 [6] as: 

       
  

   

  
  (2) 

 

Expand   
    and   

  according to definition 

of factorial and we got the same intermediate 

result for Pcheat shown in Ateniese et al. 2007 [3]: 

         
       

   

 

   

     
 

   
  

 

   

    
 

   
 
  

  

(3) 

 

We can approximate Pcheat by assuming the 

entire file is large and n ≫ k. Observe that 
 

 
          it is the fraction of corrupted 

blocks is a percentage. Assume that the optimal 

data owner wants to cover as many blocks as 

possible with his remote check to ensure a low 

number of unverified blocks     . Then the 

probability of detecting cheating P for small    
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approximated further using Bernoulli inequality 

for exponent: 

                           

          
(4) 

In practice, reasonable values for    are 

around 10
-2

..10
-4

 to allow at most 1%..0.001% 

unchecked blocks. We can see that PDP 

protocols we surveyed are probabilistic, since a 

non-negligible probability Pcheat of check evasion 

exists for blocks. 

2. The optimal number of data blocks to 

verify 

Let’s find the optimal value of data blocks 

        to query by maintaining the cheating 

detection probability       for the targeted 

fraction    of the data blocks. The condition of 

maximization P implies minimization of the 

cheating probability by keeping           , 

where      is the maximum allowed cheating 

probability threshold or verification error with 

the following bound: 

                     (5) 

then the optimal k is expressed as a 

dependence on    and   : 

              
    

 
 (6) 

Reasonable values for    are around 10
-2

..10
-4

 

to tolerate targeted cheating probability       

on        of all data blocks for the single 

challenge round of PDP. Such a small percentage 

of potentially allowed corrupted blocks can be 

restored with the application of error correction 

codes as proposed in Han et al. 2013 [9]. We got 

the estimate of the optimal k to ensure the 

probability of cheating bounded by at most    

with high confidence     . Then optimal 

communication complexity O for probabilistic 

PDP is also proportional to optimal k, but 

restricts k to be integer rounded up: 

       
     

 
  (7) 

Note that optimal solution for k requires to 

keep both    and    as small as possible values 

within similar range of 10
-2

..10
-4
 or smaller. Then 

we can express optimal communication 

complexity O as a dependency on the number of 

data blocks       using approximation     : 

        
     

 
  

             

   
 

 
  

 

 
   

(8) 

We can see that the optimal number of data 

blocks k to query from the remote storage 

depends on the target ratio of available data 

blocks    we want to ensure as               . 

3. Our approach 

In this section we present our own PDP with 

challenges based on hashes. This approach not 

limited to authentication of subset of data blocks, 

but can be applied on the whole data volume D. 

The protocol parties are data owner Alice (A) 

who outsources the data to the storage provider 

Bob (B). The PDP protocol consists of two 

phases. The first phase involves setting the 

private and public parameters. The second phase 

is a sequence of integrity checks f performed on 

the outsourced data D within an agreed number 

of rounds r and compared with precomputed 

challenge answers vi for         . Define 

challenge as: 

                          (9) 

where ti in a one-time nonce. The result of the 

challenge per round vi is computationally bound 

to D and one-time parameter ti because of 

computational binding property of cryptographic 

hash function. B should find a preimage of the 

cryptographic hash function to forge the proof vi 

without D. A must provide one-time parameters ti 

for the function f to prevent B from cheating 

related to precomputing of vi or brute forcing 

them. To get a simple PDP with a precomputed 
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number of rounds r, we can simulate the 

following game: 

1. Setup phase: 

a. A agree on a number of 

challenges (rounds) r with B 

b. A generates a set of random 

nonces for per-round challenge 

                    , with 

bit security of    

c. A computes answers {vi} to each 

challenge before any information 

exchange with B as:     

                      

d. A signs D with 

Sign(D,sk)=(Sig,pk) using a 

private key sk yielding a pair of 

signature Sig and public key pk 

e. A publishes (Sig,pk) and transfers 

data D to B by finishing setup 

 

2. Setup phase A performs r challenge 

rounds for B on data D. On each i-th 

round while       : 

a. A sends ti to B and asks him to 

compute   
                

b. B presents vi’ to A 

c. A checks      
  by comparing 

with precomputed answer for the 

index i 

d. If      
 , then A consider B is 

cheating and aborts the protocol 

3. If all r challenges completed successfully, 

then A requests back copy D’ of the data 

D from B 
4. On   retrieval, A verifies the signature by 

Verify(D’,pk) to ensure the authenticity of 

the data implying D=D' 

5. If verification is evaluated to True, both 

sides conclude the end of the protocol 

The protocol we got achieves private 

verifiability through the independent 

computation of a hash function by parties over 

data D with an additional one-time parameter ti. 

Private verifiability achieved by comparing 

results of each party got. Unlike protocols 

discussed in the literature overview, our protocol 

requires all blocks of data D to be involved in an 

integrity check, which prevents evasion of 

checks by any of blocks. The computational 

complexity to generate a single challenge ti and 

response vi is O(1) assuming random oracle 

access model for the hash function. We can 

observe that A required to keep all r pairs of 

challenges and corresponding responses (vi,ti) 

during the execution of protocol. Each of vi or ti 

has a fixed size O(1), implying that the 

complexity of the space depends on the number 

of rounds O(r). The amount of communication 

needed to send ti and receive vi of fixed size 

within the single round is O(1) and does not 

depends on the size of data D. The downsides of 

the proposed protocol: 

1. The protocol has a fixed number of 

rounds 

2. The honest A required to store r 

nonces ti within static number of 

rounds 

4. PDP for storage service with verifiable 

payments 

In this section, we apply the PDP scheme we 

discovered in the previous section to develop a 

protocol for verifiable storage with payments. 

We ensure B store data for r rounds by hash-

based challenges for each round. Corresponded 

setup algorithm provided on Figure 3. 

We will incentivize B to follow the protocol 

to the end by rewarding him for successful 

challenges. But we need to ensure A committed 

to pay full price for all successful challenges. In 

blockchain native environments, we can 

guarantee the ability of A to pay the price Y by 

requiring her to transfer funds to smart contract.  

 

Figure 3: Setup (Algorithm 3) 
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These funds will be locked and unlocked in 

equal portions y=Y/r gradually for each 

successful challenge for B. On successful 

challenge, a fraction of the funds y will be 

transferred to B automatically, achieving full 

payment Y for the storage service after r rounds. 

In case of failing challenge, A withdraws funds 

from the smart-contract and terminates its 

execution.  

The financial commitment of A can be 

ensured without blockchain. In this case, A and B 

should agree on the usage of third-party payment 

provider that accepts the full payment from A 

and pays by fractions of the price y to B after 

confirmation of each successful challenge by A.  

The blockchain native approach is more 

reliable, since the usage of the smart contract, 

which is used to account payments and track the 

history of challenges, is publicly verifiable and 

not profit-biased towards either of sides. The 

trust to the third-party payment provider or bank 

may require additional verification for each 

party.  

The complete algorithm with verifiable 

payments stated in Figure 4. 

Figure 4: Verifiable storage 2-party protocol 

 

We assume payment as verifiable if A ensures 

data availability by storage provider B first 

before each payment. 

5. Adversary models 

5.1 Hash guessing attack 

Let’s look at the following adversary model. 

Assume that B can convince A on i-th round by 

guessing a hash preimage for vi without actual 

knowledge of data D with certain probability P. 

Let n be the bit length of hash value vi. Then the 

probability of guessing a random bit string vi is: 

  
 

   (10) 

In practice, the minimal yet secure bit length 

of cryptographic hash functions such as SHA-2 

or SHA-3 is 224 bits, which gives us the 

probability of a successful guess in the worst 

case for a single i-th round 1/2224
, which is 

negligibly small. 

5.2 Hash collision search by lookup table 

Put T is a set of precomputed nonce 

values     by A which she share on i-th 

round and r is the number of rounds. It 

follows that |T|=r, where r is relatively 

small. Suppose A and B agreed on the 

number of rounds r, and B got D to store. 

Malicious B can improve guessing attack by 

generating a lookup table beforehand from 

many randomly sampled nonces bj, where 

      is big and       . Then   

                            . On this 

point, B can discard D entirely. Each time B 

receives nonce ti from A, B checks the 

presence of ti in the lookup table T and return 

the corresponding uj as the challenge 

response if such uj is present in lookup table 

T. Let’s calculate the probability that 

                             . B 

observes a sequence of r trials with one 

outcome from the set {True,False} for each. 
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Since both ti and bj are uniformly distributed 

bit strings with length n, then the probability 

of single match guessing is 2
-n

. The 

probability             : 

        
 

   (11) 

then the probability of an opposite event 

is: 

                   

    
 

   
(12) 

Considering there are r trials took place: 

       

 

   

         

    
 

   
 

  
   
   

(13) 

Assuming that     : 

          
   
        

          

   

(14) 

 

Observe that           is negligibly 

small. In practice, it requires bit size of ti be 

equal or greater then 2
80

 to prevent 

precomputation attacks. 

5.3 Hash length extension attack 

The vulnerability affects hash functions with 

the Merkle-Damgård structure that are computed 

over data concatenated with a string suffix 

known to the adversary. The hash length 

extension attack exploits the weakness of 

Merkle-Damgård construction, following from 

the fact that a single block of hash input is 

processed at a time while keeping the hash 

function’s internal state exposed in memory. It 

implies predictability of number of iterations I 

within hash function with ability to track and 

modify hash function state. In our case, length 

extension attack allows malicious B to compute 

                without knowing D if the 

underlying hash function is derived from Merkle-

Damgård’s construction. Malicious Bob should 

know only the bit length |D| of the bit string D 

and the block length H of the Merkle-Damgård 

hash function employed. Note that |D| should be 

multiple of H and H is the power of two. If the 

data length |D| is not divided by H, then |D| is 

being padded by MD-compliant padding 

according to the given cryptographic hash 

function standard. The simplified example of 

hash padding algorithm provided Figure 5. Then 

the padded data is being split into blocks of 

length H and processed through a number of 

iterations I=|D|/H which is also equal number of 

H-length blocks fit into |D|. 

 

 

 

 

 

 

 

 

Figure 5: MD padding  

 

 We can view Merkle-Damgård construction 

as a finite automaton with memory, where 

memory is the current state of the hash function 

Statei. The state is updated at the end of each 

iteration of Merkle-Damgård’s structure with 

function UpdateHashState. The next state 

Statei+1 is calculated from the current Statei and 

block Di of input data D for         . The last 

state StateI calculated within is the final result of 

hash function [2]. The number of iterations 

depends on the block length of the hash function 

used. Malicious B can determine the number of 

blocks I by knowing |D| and H. If |D| is not a 

multiple of H, then the adversary fills additional 

bits with the MD-compliant padding specified by 

the hash function’s standard to extend the 

message length |D| to length |D’|, such as H 

divide |D’|. At this point, B has everything in 

place to perform the attack. The algorithm for 

padding the data before hashing is shown below. 

19

___________________________________________________________________________________Theoretical and cryptographic problems of cybersecurity



Then computation of hash(D) with Merkle-

Damgård construction performed block by block 

of input data D. The example of padding 

function provided in Figure 6.  

 

 

 

 

 

 

 

 

Figure 6: Merkle-Damgard hash algorithm 

 

Let us apply the definition of the hash 

function to perform the hash length extension 

attack. We modified of MerkleDamgardHash to 

start calculation not from initial state but for the 

given state. The pseudo code of modified hash 

function shown on Figure 7 which exploits the 

vulnerability described in Figure 6.   

As the algorithm in Figure 7 shows, Bob can 

fabricate the proof vi to deceive Alice into paying 

for the storage even if the data D has been lost. 

 

 

Figure 7: Hash length extension attack 

The scenario of the attack on the protocol 

which exploits hash length extension 

vulnerability shown on Figure 8. 

 

Figure 8: Scenario of vulnerability exploitation 

 

The most straightforward method to counter 

this attack is to utilize XOR instead of 

concatenation when producing proofs, leveraging 

the formula                for hash 

functions based on the Merkle-Damgård 

framework, such as SHA-2. This approach 

mitigates risks linked to length extension attacks. 

If the use of SHA-2 hashes is required, truncated 

versions such as SHA-384 and SHA-224 with 

truncated output state to withstand hash 

extension attacks [12]. Alternatively, one can 

employ hash functions based on the sponge 

functions, such as SHA-3 and Keccak. Such hash 

functions use permutations and sponge function 

rate adjustment to obfuscate the internal state on 

absorption phase and on each update of hash 

state [4]. This prevents the internal state from 

being explicitly exposed in memory. 

Unlike Merkle-Damgård constructions, 

sponge-based schemes can be adjusted to 

produce a variable output length which prevents 

hash state length manipulations further. 

Consecutively, an attacker cannot reuse internal 

state to extend the hash and compute    

            without knowing the full original 

input. We can observe that the security of the 

proposed protocol directly depends on the 

security assumptions of the hash function used to 

produce a proof vi. In most of the analyzed 
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works, the security of the underlying hash 

functions is overlooked, while the usage of SHA-

256 is widely encouraged. 

 

Conclusions 

We have presented a verifiable data retrieval 

protocol with practically deterministic guarantees 

of retrievability backed by reliability of 

cryptographic hash function. The PDP protocol 

applicable in both cloud and blockchain native 

scenarios. Our approach leverages hash-based 

mechanisms to improve communication 

efficiency and security. By analyzing adversarial 

models, we identified potential attack vectors 

and introduced mitigation to maintain high 

security. The protocol’s advantages include the 

ability to construct fixed-size retriviability 

proofs, which is particularly effective when the 

amount of information stored is large. This 

feature provides efficiency and scalability. 

However, the protocol’s main drawback is the 

absence of public verifiability and a fixed 

number of rounds which are in common with 

existing protocols. These limitations will be 

addressed in the following works.  
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