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Abstract

The research presents a novel protocol for remote verification of data outsourced to third-party
storage. The protocol aims to verify the possession of data in potentially untrusted storage without
downloading. We identified challenges in existing proof-of-possession protocols (PDP) by conducting
a comprehensive literature review. We stated the optimal threshold for the minimal communication
cost needed in existing PDP protocols to ensure the validity of the target percentage of data blocks
while maintaining high confidence. Building on these findings, we propose our own PDP requires a
fixed amount of communication and offers practically deterministic validity guarantees based on the
security of cryptographic hash functions. We show a scenario for monetization in both cloud-native
and blockchain environments to incentivize storage providers. A rigorous security analysis
demonstrates resilience against forgery attacks aimed to falsify integrity checks or compromise
verifiability assumptions. Our protocol significantly reduces communication overhead compared to
existing solutions while eliminating the cheating probability to negligible levels.

Keywords: proof of data possession, data storage outsourcing, verifiable storage, remote integrity
check, cryptographic hash.

variant using HMAC for data blocks
Introduction authentication [5]. Xu and Chang at (Xu, Chang,
and Zhou 2012) integrated coding techniques
with zero-knowledge proofs (ZKPs) based on the
knowledge-of-exponent assumption, allowing
verification even in the presence of partial data
corruption [8]. The incorporation of error-

Proof of Data Possession (PDP) protocols, a
specialized class of cryptographic schemes, have
been developed since the early 2000s to enable
verifiable integrity of remotely stored data .
without requiring full data retrieval. The COMecting codes was advanced by Han et al.
foundational work by Golle et al. (Golle, Jarecki, ~(Han et al. 2013), who utilized Maximum Rank
and Mironov 2002) introduced the use of RSA- Dlstanc_e (MRD) codes to enable . partial
based signatures for remote integrity checks [1], restoration of corrupted data blocks in PDP

establishing the cryptographic basis for ensuring ~ Protocols [9]. More recently, Kaaniche and
data integrity in outsourced storage. This Laurént (Kaaniche, Moustaine, and Laurent

approach was formalized into a comprehensive 2014) _p_roposed ?_PDP protoc_ol _Ieveraging ZKPs
PDP framework by Ateniese et al. (Ateniese et and bilinear pairings on elliptic curve groups,
al. 2007), who proposed a protocol relying on the offering enhanced security and flexibility for
RSA-based digital signatures with knowledge-of-  Modern cloud storage environments [11].

exponent assumption, enabling probabilistic The integrgtion of Merkle_ trees into PPP
verification of data possession [3]. RSA-based ~Protocols was introduced by Niaz and Wu (Niaz

signature was replaced by a specially designed ~and Saake 2015), leveraging their efficiency in
symmetric authenticated encryption scheme at  Verifying large datasets in cloud storage through
(Ateniese et al. 2008) to achieve computational hierarchical hashing, reducing communication
improvements [6]. Concurrently, Juels and ©verhead [13]

Kaliski at (Juels and Jr. 2007) introduced a PDP Walke_:r provided an exhal_Jstive oyewiev_v of
the multiple PDP protocols in classical client-
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server setting and pointed to their drawbacks in
(Walker, Hewage, and Jayal 2022) [16].
Additionally, Yang et al. (Yang et al. 2024)
developed PDP scheme to verify cached data in
cloud and edge computing nodes, introducing a
rewarding mechanism for verified nodes with
applications in web security [19].

The application of Merkle tree was extended
in decentralized systems with the use of Merkle
Directed Acyclic Graphs (DAGSs)in the
InterPlanetary File System (IPFS) (Benet 2014)
[10], which forms the core storage layer of
Filecoin (Protocol Labs 2017) [14]. Filecoin
enhances data retrievability and replication using
succinct non-interactive arguments of knowledge
(SNARKS), ensuring verifiable storage in peer-
to-peer networks. Verifiability mechanisms in
IPFS were further explored by Azizi et al. (Azizi,
Azizi, and Elboukhari 2022), focusing on manual
rechecking of verifiability and security
guarantees stated in IPFS [15]. Nalina et al.
(Nalina et al. 2024) investigated extensions of
IPFS  for  blockchain-integrated  storage,
addressing scalability and trust challenges [18].
Hall-Andersen and Simkin in (Hall-Andersen,
Simkin, and Wagner 2025) examined data
integrity and availability in blockchain-based
storage, highlighting challenges in decentralized
trust models [20]. Dumas et al. (Dumas et al.
2023) proposed a PDP scheme using
homomorphic encryption and bilinear pairings to
verify evaluations of secret polynomials, offering
robust security for distributed storage [17].

Let us examine the structure of the most
representative PDP protocols. We propose to
have a close look (Ateniese et al. 2008), [6]
which was the basis for subsequent works. First,
introduce the protocol parties. They are OWN for
data owner and storage server SRV. Before
outsourcing data D, OWN precomputes a certain
number of short possession verification tokens V;,
each token covering some set of data blocks. The
actual data is then handed over to SRV.
Subsequently, when OWN wants to obtain a
proof of data possession, it challenges SRV with
a set of randomly appeared block indices. In turn,
SRV must compute a short integrity check over
the specified blocks (corresponding to the
indices) and return it to OWN. The proposed
scheme is based entirely on symmetric key
cryptography including authenticated encryption
AEy on symmetric key K, and two pseudorandom
functions (PRFs) fy and fz on symmetric keys W
and Z respectively. The protocol consists of the
setup and verification phase. During the setup

phase, the owner OWN generates in advance
number of possible random challenges and the
corresponding answers. These answers are called
tokens. To produce the i-th token, the owner
generates a set of r indices as follows:
1. Generate a permutation key ki~ "w(i) and a
challenge nonce c¢;™ fz(i)

2. Compute the set of indices {I; €
[1, .., d]|1 < j < 7|}, where ;=gk(j)
and gk() is the permutation function
based on AES (or other symmetric
encryption) with secret key k;

3. Compute the token as wv; =
H(c;, D[L], ..., D[I]), wusing hash
function H

Basically, each token v; is the answer we
expect to receive from the storage server
whenever we challenge it on the randomly
selected data blocks{D[L;], ..., D[I-]}. The
challenge nonce ¢; is needed to prevent potential
precomputations performed by the storage
server. Notice that each token is the output of a
cryptographic hash function so its size is small.
Once all tokens are computed, the owner
outsources the entire set to the server, along with
the file D, by encrypting each token with an
authenticated encryption function AEx. The setup
phase algorithm is shown in Figure 1.

Algorithm 1: Setup

1 Choose parameters ¢, [, k, L and functions f, g
2 for i+ 1 tor do

3 begin Round ¢

4 senerate k; = fyy (i) and ¢; = fz(i)
5 Compute

6 v, = H(ey, Dgr,(1)], ..., Dlgk, (r)])

[d Compute v; = AEg (i,v;)

8 end

9 end

10 Send to SRV: (D, {[i,v;] for 1 <i <{t})

14

Figure 1: Setup phase

To verify the i-th proof of possession, OWN
generates the i-th token key k; as in step 1 of the
setup algorithm on Figure 1. Note that OWN only
needs to store the master keys W, Z, and K, and
the current token index i. He also recomputes ¢;
Then, OWN sends to SRV both ki and ¢; as
showed on the step 2 of algorithm (Figure 1).
Having received the message from OWN, SRV
computes:

z = H(c;, D[ge(D)], ..., D[g(™]) (1)



Theoretical and cryptographic problems of cybersecurity

Then SRV retrieves v; and returns (z, v;) to
OWN who, in turn, computes v # AE; *(V;) and
checks whether v # (i, z). If the check succeeds,
OWN assumes that SRV is storing all of D with a
certain probability. The verification algorithm
shown in Figure 2.

Algorithm 2: Verification phase

1 OWN computes k; = fiy (i) and ¢; = f7(i)

2 OWN sends {k;,;} to SRV

3 SRV computes z = H(e;, Dig, (1)), ... Dlgw,(r)])
4 SRV sends {z,/}to OWN

5 OWN extracts v from v

6 if decryption fails or v; # (i, z) then REJECT.

Figure 2: verification algorithm

The authors don’t state any requirements for

implementation of the algorithm AE.
According to definition of authenticated
encryption, it implies that information is
symmetrically encrypted aside with some
padding data PAD.

the

OWN required to remember PAD he used to
perform AEgx. On each verification attempt, he
can decrypt v; by AEc" yielding PAD' then
checking  PAD = PAD". Decryption  is
considered failed if the condition doesn’t hold.
The AEx works as a symmetric replacement for a
digital signature.

A similar protocol was stated in (Juels and Jr.
2007) [5], which also relies on a number of
randomly chosen blocks to authenticate, but it
employs HMAC with secret key K instead of
AEx. The other similar construction based
exclusively on pseudo-random functions stated
in (Shacham and Waters 2008) [7].

We can observe the same drawbacks in PDP
protocols according to mentioned works:

1. Protocols run challenges on certain
subset of data blocks which implies
cheating probability by avoiding checks
on corrupted blocks shown above
The number of data blocks to check
depends on the size of the entire data and
requires balancing between target
confidence level and amount of
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communication  to it
verification step

Some protocols may involve complex
setups that require data owners to keep
their private parameters in secret,
especially those based on symmetric

encryption or SNARKSs

ensure on

1. Estimation of cheating probability
in PDP

If the PDP protocol requires querying of k
blocks of data {D; < D: i = 1.k, k <n}, then
there exists a non-negligible cheating probability
Peeat for the data storage provider to evade
checking of potentially corrupted blocks. Cf is
the number of ways to choose k blocks from all
blocks n. If m is the number of missing blocks,
then the combination of ways to choose the
correct blocks and avoid the corrupted ones is
CR~™. Then Pgeqy is the probability of avoiding
integrity checking for corrupted blocks is defined
according to Ateniese et al. 2008 [6] as:

g

“k__ (2)
C

Pchear =

Expand C;}~™ and C}} according to definition
of factorial and we got the same intermediate
result for Pcnear Shown in Ateniese et al. 2007 [3]:

k

n—i)—m

Pcneat = HT
i=0

:11(1

i

(

We can approximate P by assuming the
entire file is large and n > k. Observe that

%= € €(0;1) it is the fraction of corrupted

m

(3)

n-—i

)

n-—i

m ~\k
1

Q

blocks is a percentage. Assume that the optimal
data owner wants to cover as many blocks as
possible with his remote check to ensure a low
number of unverified blocks € «< 1. Then the

probability of detecting cheating P for small &
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approximated further using Bernoulli inequality
for exponent:

le_pcheatzl_(l_g)k

~1— e¢k @)

In practice, reasonable values for & are
around 10%.10* to allow at most 1%..0.001%
unchecked blocks. We can see that PDP
protocols we surveyed are probabilistic, since a
non-negligible probability Pcne 0f check evasion
exists for blocks.

2. The optimal number of data blocks to
verify

Let’s find the optimal value of data blocks
k — min to query by maintaining the cheating
detection probability P — 1 for the targeted
fraction ¢ of the data blocks. The condition of
maximization P implies minimization of the
cheating probability by keeping P = 1 — o,
where o «< 1 is the maximum allowed cheating
probability threshold or verification error with
the following bound:

l—e*>1—-0g=2e%<g

k

(5)

then the optimal is expressed as a

dependence on ¢ and €;

—Ino

(6)

—ck < lnc=>k > -

Reasonable values for ¢ are around 102.10™
to tolerate targeted cheating probability o < 1%

on €< 1% of all data blocks for the single
challenge round of PDP. Such a small percentage
of potentially allowed corrupted blocks can be
restored with the application of error correction
codes as proposed in Han et al. 2013 [9]. We got
the estimate of the optimal k to ensure the
probability of cheating bounded by at most o

with high confidence P — 1. Then optimal
communication complexity O for probabilistic
PDP is also proportional to optimal k, but
restricts k to be integer rounded up:
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—Ilno

(7)

|

Note that optimal solution for k requires to
keep both ¢ and o as small as possible values
within similar range of 10%.10™* or smaller. Then
we can express optimal communication
complexity O as a dependency on the number of
data blocks 0 « n using approximation ¢ ~ ¢ :

0~[k1=[

—Ino
o--fe
~ [¢71In ¢71] (8)
_ [Elnﬁ
m m

We can see that the optimal number of data
blocks k to query from the remote storage
depends on the target ratio of available data

blocks € we want to ensure as 0 ~ [¢ tIne™1].

3. Our approach

In this section we present our own PDP with
challenges based on hashes. This approach not
limited to authentication of subset of data blocks,
but can be applied on the whole data volume D.
The protocol parties are data owner Alice (A)
who outsources the data to the storage provider
Bob (B). The PDP protocol consists of two
phases. The first phase involves setting the
private and public parameters. The second phase
is a sequence of integrity checks f performed on
the outsourced data D within an agreed number
of rounds r and compared with precomputed
challenge answers v; for i €[1,r]. Define
challenge as:

v; = f(D,t;) = hash(D | t;) (9)

where t; in a one-time nonce. The result of the
challenge per round v; is computationally bound
to D and one-time parameter t; because of
computational binding property of cryptographic
hash function. B should find a preimage of the
cryptographic hash function to forge the proof v;
without D. A must provide one-time parameters t;
for the function f to prevent B from cheating
related to precomputing of v; or brute forcing
them. To get a simple PDP with a precomputed
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number of rounds r, we can simulate the

following game:

1. Setup phase:

a. A agree on a number
challenges (rounds) r with B
A generates a set of random
nonces for per-round challenge
{ti} = {ti 1t i= ﬁ}, with
bit security of A
A computes answers {v;} to each
challenge before any information
exchange with B as: {v; =

hash(D |t;), i = 1.7}

of

d A signs D with
Sign(D,sk)=(Sig,pk) using a
private key sk yielding a pair of
signature Sig and public key pk

e. A publishes (Sig,pk) and transfers

data D to B by finishing setup

2. Setup phase A performs r challenge
rounds for B on data D. On each i-th

round while i < r:

a. A sends t; to B and asks him to
compute v; = hash(D |t;)

b. B presentsv;’ to A

c. A checks v; # v; by comparing
with precomputed answer for the
index i

d. If v; # v, then A consider B is

cheating and aborts the protocol

3. Ifall r challenges completed successfully,
then A requests back copy D’ of the data
D from B
On retrieval, A verifies the signature by
Verify(D’,pk) to ensure the authenticity of
the data implying D=D'
If verification is evaluated to True, both
sides conclude the end of the protocol

The protocol we got achieves private
verifiability through the independent
computation of a hash function by parties over
data D with an additional one-time parameter t;.
Private verifiability achieved by comparing
results of each party got. Unlike protocols
discussed in the literature overview, our protocol

requires all blocks of data D to be involved in an

5.
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integrity check, which prevents evasion of
checks by any of blocks. The computational
complexity to generate a single challenge t; and
response Vv; is O(1l) assuming random oracle
access model for the hash function. We can
observe that A required to keep all r pairs of
challenges and corresponding responses (vi,t;)
during the execution of protocol. Each of v; or t;
has a fixed size O(l), implying that the
complexity of the space depends on the number
of rounds O(r). The amount of communication
needed to send t; and receive v; of fixed size
within the single round is O(1) and does not
depends on the size of data D. The downsides of
the proposed protocol:

1. The protocol has a fixed number of
rounds
2. The honest A required to store r

nonces t; within static number of
rounds

4. PDP for storage service with verifiable
payments

In this section, we apply the PDP scheme we
discovered in the previous section to develop a
protocol for verifiable storage with payments.
We ensure B store data for r rounds by hash-
based challenges for each round. Corresponded
setup algorithm provided on Figure 3.

We will incentivize B to follow the protocol
to the end by rewarding him for successful
challenges. But we need to ensure A committed
to pay full price for all successful challenges. In
blockchain  native environments, we can
guarantee the ability of A to pay the price Y by
requiring her to transfer funds to smart contract.

Algorithm 3: Setup

Input : D, r
Output: ¢, 7, Sig, pk
1 for i« 1 tor do
2 t; < 1* // where 1* is random bit string of length A

3 | w; « hash(D | t;)

4 end

5 {4+ (t,t2,...,t,) // T is a vector of random tags
6 T ¢ (v1,09,...,0,) // U is a vector of hashed tags
7 sk 1

8 (Sig, pk) + Sign(D, sk)
9 return t, T, Sig, pk

Figure 3: Setup (Algorithm 3)
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These funds will be locked and unlocked in
equal portions y=Y/r gradually for each
successful challenge for B. On successful
challenge, a fraction of the funds y will be
transferred to B automatically, achieving full
payment Y for the storage service after r rounds.
In case of failing challenge, A withdraws funds

from the smart-contract and terminates its
execution.
The financial commitment of A can be

ensured without blockchain. In this case, Aand B
should agree on the usage of third-party payment
provider that accepts the full payment from A
and pays by fractions of the price y to B after
confirmation of each successful challenge by A.

The blockchain native approach is more
reliable, since the usage of the smart contract,
which is used to account payments and track the
history of challenges, is publicly verifiable and
not profit-biased towards either of sides. The
trust to the third-party payment provider or bank
may require additional verification for each
party.

The complete algorithm with verifiable
payments stated in Figure 4.

Algorithm 4: VerifiableStorage

Input : D.r Y

Output: Success € {True, False}

// A performs the setup of parameters

1 1,7, Sig, pk + Setup(D,r)

// A locks the funds and publishes the address of the smart
contract or payment gateway credentials to access the
funds

2 addr + LockFunds(Y)
// Communication: A sends (D,r) to B
// Set reward counter for storage provider B to 0
3 Brt“md «0
4 fori+<1tordo
// Communication: .4 sends f; to B
// B computes hash tag v;
vl + hash(D | t;)
// Communication: B sends v; to A
// A checks the integrity poof
if v; # v! then
// A terminate the process if integrity proof is
false and withdraw her unused funds
Success + False
return False
end
// Communication: .A unlock portion of funds for
successful i-th challenge for B as the reward
y « UnlockFunds(addr)
Breward = Brewara +3
12 end
13 Suecess + True
14 return Success

10
11

Figure 4: Verifiable storage 2-party protocol
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We assume payment as verifiable if A ensures
data availability by storage provider B first
before each payment.

5. Adversary models

5.1 Hash guessing attack

Let’s look at the following adversary model.
Assume that B can convince A on i-th round by
guessing a hash preimage for v; without actual
knowledge of data D with certain probability P.
Let n be the bit length of hash value v;. Then the
probability of guessing a random bit string v; is:

1

P=2_n (10)

In practice, the minimal yet secure bit length
of cryptographic hash functions such as SHA-2
or SHA-3 is 224 bits, which gives us the
probability of a successful guess in the worst
case for a single i-th round 1/2%?*, which is
negligibly small.

5.2 Hash collision search by lookup table

Put T is a set of precomputed nonce
values t; € Tby A which she share on i-th
round and r is the number of rounds. It
follows that |T|=r, where r is relatively
small. Suppose A and B agreed on the
number of rounds r, and B got D to store.
Malicious B can improve guessing attack by
generating a lookup table beforehand from
many randomly sampled nonces bj, where
N >»r is big and 1<j<N. Then T =
{(bj, w = hash(D | b;)).j = T.N}. On this
point, B can discard D entirely. Each time B
receives nonce ti from A, B checks the
presence of t; in the lookup table T and return
the corresponding u; as the challenge
response if such u; is present in lookup table
T. Let’s calculate the probability that
3t; €T, bj€B: t;=b; & P(T n B). B
observes a sequence of r trials with one
outcome from the set {True,False} for each.
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Since both t; and b; are uniformly distributed
bit strings with length n, then the probability

of single match guessing is 2". The
probability 3b; € B: b; = t;:
N

then the probability of an opposite event
is:
P(t; €B) =1 — P(t; € B)
N

=1-o

(12)

Considering there are r trials took place:

P

n(tiEB) =P(ANB =0)

isr
_(1-

~ e 2"

ﬁ)r

27’1

(13)

Assuming that N « 2™:

—rN
PANB=@)=e2" == 1
=>P(ANB # Q)
=0

(14)

Observe that P(An B # @) is negligibly
small. In practice, it requires bit size of t; be
equal or greater then 2% to prevent
precomputation attacks.

5.3 Hash length extension attack

The vulnerability affects hash functions with
the Merkle-Damgéard structure that are computed
over data concatenated with a string suffix
known to the adversary. The hash length
extension attack exploits the weakness of
Merkle-Damgard construction, following from
the fact that a single block of hash input is
processed at a time while keeping the hash
function’s internal state exposed in memory. It
implies predictability of number of iterations |
within hash function with ability to track and
modify hash function state. In our case, length
extension attack allows malicious B to compute
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v; = hash(D | t;) without knowing D if the
underlying hash function is derived from Merkle-
Damgard’s construction. Malicious Bob should
know only the bit length |D| of the bit string D
and the block length H of the Merkle-Damgard
hash function employed. Note that |D| should be
multiple of H and H is the power of two. If the
data length |D| is not divided by H, then |D]| is
being padded by MD-compliant padding
according to the given cryptographic hash
function standard. The simplified example of
hash padding algorithm provided Figure 5. Then
the padded data is being split into blocks of
length H and processed through a number of
iterations 1=|D|/H which is also equal number of
H-length blocks fit into |D|.

Algorithm 5: HashMDPadding
Input : D,H
Output: Dp4p
// Check length of the data D is multiple of block length
H of utilized hash function
1 if H{|D| then
// If H don’t divide |D| then complete D by
concatenating of MD-compliant padding PADyp
DPAD = DlPAD),{D return Dp_;D
3 end
4 return D

Figure 5: MD padding

2

We can view Merkle-Damgérd construction
as a finite automaton with memory, where
memory is the current state of the hash function
State;. The state is updated at the end of each
iteration of Merkle-Damgérd’s structure with
function UpdateHashState. The next state
State;,; is calculated from the current State; and
block D; of input data D for i € [1,I]. The last
state State, calculated within is the final result of
hash function [2]. The number of iterations
depends on the block length of the hash function
used. Malicious B can determine the number of
blocks | by knowing |D| and H. If |D| is not a
multiple of H, then the adversary fills additional
bits with the MD-compliant padding specified by
the hash function’s standard to extend the
message length |D| to length |D’|, such as H
divide |D’|. At this point, B has everything in
place to perform the attack. The algorithm for
padding the data before hashing is shown below.
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Then computation of hash(D) with Merkle-
Damgard construction performed block by block
of input data D. The example of padding
function provided in Figure 6.

Algorithm 6: MerkleDamgardHash

Input : D, H

Output: hash(D)

// Pad D to ensure its lemgth |D| is divisible by hash
block length H

D := HashMDPadding(D)

// Calculate number of blocks

1D

"

I«

// Iterate over blocks of data and update the hash state

fori«1tol-1do

| State; 4+, = UpdateHashState(D;, State;)

end

// The last computed state of hash considered as the result
value of the hash function

6 hash(D) + State;

7 return hash(D)

o

o

Figure 6: Merkle-Damgard hash algorithm

Let us apply the definition of the hash
function to perform the hash length extension
attack. We modified of MerkleDamgardHash to
start calculation not from initial state but for the
given state. The pseudo code of modified hash
function shown on Figure 7 which exploits the
vulnerability described in Figure 6.

As the algorithm in Figure 7 shows, Bob can
fabricate the proof v; to deceive Alice into paying
for the storage even if the data D has been lost.

Algorithm 7: HashLengthExtensionAttack

Input : I, hash(D), H, a;

Output: ;

// Forge random string D' with length [ equal to the length
of original data

1D {01}

// Ensure fake string is padded and it’s divisible by length

of hash block H
2 ' := HashMDPadding(D’)

// Pad a; with MD-compliant padding to emsure it’s multiple

of hash block length H
3 a; := HashMDPadding(a;)
4 D :=Dlg
// Calculate the number of iterations over suffix a; needed
to finish computation of hash(D|a;)
5 1« |ai
// Put hash(D) as a start state
6 State; = hash(D)

// Finish computation of hash(D|a;) without original D but
starting from state of hash(D) and iterate over
remaining suffix a;

7 fori+1toldo
8 | State; ) = UpdateHashState(D', State;)
9 end

// Finish computation of v; =hash(D|a;) without original D
but starting from state of hash(D) and iterating
according to Merkle-Damgard over remaining suffix a;

10 v; + State;
11 return v;

Figure 7: Hash length extension attack
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The scenario of the attack on the protocol
which  exploits  hash length  extension
vulnerability shown on Figure 8.

Algorithm 8: VulnerabilityScenario
Input : hash, k
// Communication: B receives data D from A
// Precompute parameters for length extension attack
// Compute and remember hash(D)
1 h+ hash(D) // Compute and remember length of data D
21+ |D
// Run challenges
3 fori«1tordo
// Malicious B decided to perform hash length extension
attack on round k
if i =k then
// B discards data D
// Forge calculation of f; = hash(D|a;) without D
v; + HashLengthExtensionAttack(l, hash(D), H, a;)
// Communication: B sends forged challenge
response 1; to A
// B succeeded in cheating
end

6

7 end

Figure 8: Scenario of vulnerability exploitation

The most straightforward method to counter
this attack is to utilize XOR instead of
concatenation when producing proofs, leveraging
the formula v; = hash(D @t;) for hash
functions based on the Merkle-Damgard
framework, such as SHA-2. This approach
mitigates risks linked to length extension attacks.
If the use of SHA-2 hashes is required, truncated
versions such as SHA-384 and SHA-224 with
truncated output state to withstand hash
extension attacks [12]. Alternatively, one can
employ hash functions based on the sponge
functions, such as SHA-3 and Keccak. Such hash
functions use permutations and sponge function
rate adjustment to obfuscate the internal state on
absorption phase and on each update of hash
state [4]. This prevents the internal state from
being explicitly exposed in memory.

Unlike Merkle-Damgérd  constructions,
sponge-based schemes can be adjusted to
produce a variable output length which prevents
hash state length manipulations further.
Consecutively, an attacker cannot reuse internal
state to extend the hash and compute v; =
hash(D | t; )without knowing the full original
input. We can observe that the security of the
proposed protocol directly depends on the
security assumptions of the hash function used to
produce a proof vi. In most of the analyzed
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works, the security of the underlying hash
functions is overlooked, while the usage of SHA-
256 is widely encouraged.

Conclusions

We have presented a verifiable data retrieval
protocol with practically deterministic guarantees
of retrievability backed by reliability of
cryptographic hash function. The PDP protocol
applicable in both cloud and blockchain native
scenarios. Our approach leverages hash-based
mechanisms  to  improve  communication
efficiency and security. By analyzing adversarial
models, we identified potential attack vectors
and introduced mitigation to maintain high
security. The protocol’s advantages include the
ability to construct fixed-size retriviability
proofs, which is particularly effective when the
amount of information stored is large. This
feature provides efficiency and scalability.
However, the protocol’s main drawback is the
absence of public verifiability and a fixed
number of rounds which are in common with
existing protocols. These limitations will be
addressed in the following works.
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