
UDC 681.3.06

Proof of Data Possession Protocol with Hash-based Deterministic
Challenges and Privately Verifiable Payments

__

Abstract
The research presents a novel protocol for remote verification of data outsourced to third-party

storage. The protocol aims to verify the possession of data in potentially untrusted storage without

downloading. We identified challenges in existing proof-of-possession protocols (PDP) by conducting

a comprehensive literature review. We stated the optimal threshold for the minimal communication

cost needed in existing PDP protocols to ensure the validity of the target percentage of data blocks

while maintaining high confidence. Building on these findings, we propose our own PDP requires a

fixed amount of communication and offers practically deterministic validity guarantees based on the

security of cryptographic hash functions. We show a scenario for monetization in both cloud-native

and blockchain environments to incentivize storage providers. A rigorous security analysis

demonstrates resilience against forgery attacks aimed to falsify integrity checks or compromise

verifiability assumptions. Our protocol significantly reduces communication overhead compared to

existing solutions while eliminating the cheating probability to negligible levels.

Keywords: proof of data possession, data storage outsourcing, verifiable storage, remote integrity

check, cryptographic hash.

Introduction

Proof of Data Possession (PDP) protocols, a

specialized class of cryptographic schemes, have

been developed since the early 2000s to enable

verifiable integrity of remotely stored data

without requiring full data retrieval. The

foundational work by Golle et al. (Golle, Jarecki,

and Mironov 2002) introduced the use of RSA-

based signatures for remote integrity checks [1],

establishing the cryptographic basis for ensuring

data integrity in outsourced storage. This

approach was formalized into a comprehensive

PDP framework by Ateniese et al. (Ateniese et

al. 2007), who proposed a protocol relying on the

RSA-based digital signatures with knowledge-of-

exponent assumption, enabling probabilistic

verification of data possession [3]. RSA-based

signature was replaced by a specially designed

symmetric authenticated encryption scheme at

(Ateniese et al. 2008) to achieve computational

improvements [6]. Concurrently, Juels and

Kaliski at (Juels and Jr. 2007) introduced a PDP

variant using HMAC for data blocks

authentication [5]. Xu and Chang at (Xu, Chang,

and Zhou 2012) integrated coding techniques

with zero-knowledge proofs (ZKPs) based on the

knowledge-of-exponent assumption, allowing

verification even in the presence of partial data

corruption [8]. The incorporation of error-

correcting codes was advanced by Han et al.

(Han et al. 2013), who utilized Maximum Rank

Distance (MRD) codes to enable partial

restoration of corrupted data blocks in PDP

protocols [9]. More recently, Kaaniche and

Laurent (Kaaniche, Moustaine, and Laurent

2014) proposed a PDP protocol leveraging ZKPs

and bilinear pairings on elliptic curve groups,

offering enhanced security and flexibility for

modern cloud storage environments [11].

The integration of Merkle trees into PDP

protocols was introduced by Niaz and Wu (Niaz

and Saake 2015), leveraging their efficiency in

verifying large datasets in cloud storage through

hierarchical hashing, reducing communication

overhead [13].

Walker provided an exhaustive overview of

the multiple PDP protocols in classical client-

Maksym Strielnikov
1
, Liudmyla Kovalchuk

1

1 National Technical University of Ukraine 'Kyiv Polytechnic Institute', Ukraine

13

___Theoretical and cryptographic problems of cybersecurity

server setting and pointed to their drawbacks in

(Walker, Hewage, and Jayal 2022) [16].

Additionally, Yang et al. (Yang et al. 2024)

developed PDP scheme to verify cached data in

cloud and edge computing nodes, introducing a

rewarding mechanism for verified nodes with

applications in web security [19].

The application of Merkle tree was extended

in decentralized systems with the use of Merkle

Directed Acyclic Graphs (DAGs)in the

InterPlanetary File System (IPFS) (Benet 2014)

[10], which forms the core storage layer of

Filecoin (Protocol Labs 2017) [14]. Filecoin

enhances data retrievability and replication using

succinct non-interactive arguments of knowledge

(SNARKs), ensuring verifiable storage in peer-

to-peer networks. Verifiability mechanisms in

IPFS were further explored by Azizi et al. (Azizi,

Azizi, and Elboukhari 2022), focusing on manual

rechecking of verifiability and security

guarantees stated in IPFS [15]. Nalina et al.

(Nalina et al. 2024) investigated extensions of

IPFS for blockchain-integrated storage,

addressing scalability and trust challenges [18].

Hall-Andersen and Simkin in (Hall-Andersen,

Simkin, and Wagner 2025) examined data

integrity and availability in blockchain-based

storage, highlighting challenges in decentralized

trust models [20]. Dumas et al. (Dumas et al.

2023) proposed a PDP scheme using

homomorphic encryption and bilinear pairings to

verify evaluations of secret polynomials, offering

robust security for distributed storage [17].

Let us examine the structure of the most

representative PDP protocols. We propose to

have a close look (Ateniese et al. 2008), [6]

which was the basis for subsequent works. First,

introduce the protocol parties. They are OWN for

data owner and storage server SRV. Before

outsourcing data D, OWN precomputes a certain

number of short possession verification tokens vi,

each token covering some set of data blocks. The

actual data is then handed over to SRV.

Subsequently, when OWN wants to obtain a

proof of data possession, it challenges SRV with

a set of randomly appeared block indices. In turn,

SRV must compute a short integrity check over

the specified blocks (corresponding to the

indices) and return it to OWN. The proposed

scheme is based entirely on symmetric key

cryptography including authenticated encryption

AEK on symmetric key K, and two pseudorandom

functions (PRFs) fW and fZ on symmetric keys W

and Z respectively. The protocol consists of the

setup and verification phase. During the setup

phase, the owner OWN generates in advance

number of possible random challenges and the

corresponding answers. These answers are called

tokens. To produce the i-th token, the owner

generates a set of r indices as follows:

1. Generate a permutation key ki
= f

W(i) and a

challenge nonce ci
= fZ(i)

2. Compute the set of indices

 , where Ij=gk(j)

and gk(j) is the permutation function

based on AES (or other symmetric

encryption) with secret key ki
3. Compute the token as

 , using hash

function H

Basically, each token vi is the answer we

expect to receive from the storage server

whenever we challenge it on the randomly

selected data blocks . The

challenge nonce ci is needed to prevent potential

precomputations performed by the storage

server. Notice that each token is the output of a

cryptographic hash function so its size is small.

Once all tokens are computed, the owner

outsources the entire set to the server, along with

the file D, by encrypting each token with an

authenticated encryption function AEK. The setup

phase algorithm is shown in Figure 1.

Figure 1: Setup phase

To verify the i-th proof of possession, OWN

generates the i-th token key ki as in step 1 of the

setup algorithm on Figure 1. Note that OWN only

needs to store the master keys W, Z, and K, and

the current token index i. He also recomputes ci.

Then, OWN sends to SRV both ki and ci as

showed on the step 2 of algorithm (Figure 1).

Having received the message from OWN, SRV

computes:

 (1)

14

___Proof of Data Possession Protocol with Hash-based Deterministic Challenges and Privately ...

Then SRV retrieves vi and returns (z, vi) to

OWN who, in turn, computes
 and

checks whether . If the check succeeds,

OWN assumes that SRV is storing all of D with a

certain probability. The verification algorithm

shown in Figure 2.

Figure 2: verification algorithm

The authors don’t state any requirements for

the implementation of the algorithm AEK.

According to definition of authenticated

encryption, it implies that information is

symmetrically encrypted aside with some

padding data PAD.

OWN required to remember PAD he used to

perform AEK. On each verification attempt, he

can decrypt vi by AEK
-1 yielding PAD' then

checking . Decryption is

considered failed if the condition doesn’t hold.

The AEK works as a symmetric replacement for a

digital signature.

A similar protocol was stated in (Juels and Jr.

2007) [5], which also relies on a number of

randomly chosen blocks to authenticate, but it

employs HMACK with secret key K instead of

AEK. The other similar construction based

exclusively on pseudo-random functions stated

in (Shacham and Waters 2008) [7].

We can observe the same drawbacks in PDP

protocols according to mentioned works:

1. Protocols run challenges on certain

subset of data blocks which implies

cheating probability by avoiding checks

on corrupted blocks shown above

2. The number of data blocks to check

depends on the size of the entire data and

requires balancing between target

confidence level and amount of

communication to ensure it on

verification step

3. Some protocols may involve complex

setups that require data owners to keep

their private parameters in secret,

especially those based on symmetric

encryption or SNARKs

1. Estimation of cheating probability

in PDP

If the PDP protocol requires querying of k

blocks of data , then

there exists a non-negligible cheating probability

Pcheat for the data storage provider to evade

checking of potentially corrupted blocks.
 is

the number of ways to choose k blocks from all

blocks n. If m is the number of missing blocks,

then the combination of ways to choose the

correct blocks and avoid the corrupted ones is

 . Then Pcheat is the probability of avoiding

integrity checking for corrupted blocks is defined

according to Ateniese et al. 2008 [6] as:

 (2)

Expand
 and

 according to definition

of factorial and we got the same intermediate

result for Pcheat shown in Ateniese et al. 2007 [3]:

(3)

We can approximate Pcheat by assuming the

entire file is large and n ≫ k. Observe that

 it is the fraction of corrupted

blocks is a percentage. Assume that the optimal

data owner wants to cover as many blocks as

possible with his remote check to ensure a low

number of unverified blocks . Then the

probability of detecting cheating P for small

15

___Theoretical and cryptographic problems of cybersecurity

approximated further using Bernoulli inequality

for exponent:

(4)

In practice, reasonable values for are

around 10
-2

..10
-4

 to allow at most 1%..0.001%

unchecked blocks. We can see that PDP

protocols we surveyed are probabilistic, since a

non-negligible probability Pcheat of check evasion

exists for blocks.

2. The optimal number of data blocks to

verify

Let’s find the optimal value of data blocks

 to query by maintaining the cheating

detection probability for the targeted

fraction of the data blocks. The condition of

maximization P implies minimization of the

cheating probability by keeping ,

where is the maximum allowed cheating

probability threshold or verification error with

the following bound:

 (5)

then the optimal k is expressed as a

dependence on and :

 (6)

Reasonable values for are around 10
-2

..10
-4

to tolerate targeted cheating probability

on of all data blocks for the single

challenge round of PDP. Such a small percentage

of potentially allowed corrupted blocks can be

restored with the application of error correction

codes as proposed in Han et al. 2013 [9]. We got

the estimate of the optimal k to ensure the

probability of cheating bounded by at most

with high confidence . Then optimal

communication complexity O for probabilistic

PDP is also proportional to optimal k, but

restricts k to be integer rounded up:

 (7)

Note that optimal solution for k requires to

keep both and as small as possible values

within similar range of 10
-2

..10
-4
 or smaller. Then

we can express optimal communication

complexity O as a dependency on the number of

data blocks using approximation :

(8)

We can see that the optimal number of data

blocks k to query from the remote storage

depends on the target ratio of available data

blocks we want to ensure as .

3. Our approach

In this section we present our own PDP with

challenges based on hashes. This approach not

limited to authentication of subset of data blocks,

but can be applied on the whole data volume D.

The protocol parties are data owner Alice (A)

who outsources the data to the storage provider

Bob (B). The PDP protocol consists of two

phases. The first phase involves setting the

private and public parameters. The second phase

is a sequence of integrity checks f performed on

the outsourced data D within an agreed number

of rounds r and compared with precomputed

challenge answers vi for . Define

challenge as:

 (9)

where ti in a one-time nonce. The result of the

challenge per round vi is computationally bound

to D and one-time parameter ti because of

computational binding property of cryptographic

hash function. B should find a preimage of the

cryptographic hash function to forge the proof vi

without D. A must provide one-time parameters ti

for the function f to prevent B from cheating

related to precomputing of vi or brute forcing

them. To get a simple PDP with a precomputed

16

___Proof of Data Possession Protocol with Hash-based Deterministic Challenges and Privately ...

number of rounds r, we can simulate the

following game:

1. Setup phase:

a. A agree on a number of

challenges (rounds) r with B

b. A generates a set of random

nonces for per-round challenge

 , with

bit security of

c. A computes answers {vi} to each

challenge before any information

exchange with B as:

d. A signs D with

Sign(D,sk)=(Sig,pk) using a

private key sk yielding a pair of

signature Sig and public key pk

e. A publishes (Sig,pk) and transfers

data D to B by finishing setup

2. Setup phase A performs r challenge

rounds for B on data D. On each i-th

round while :

a. A sends ti to B and asks him to

compute

b. B presents vi’ to A

c. A checks
 by comparing

with precomputed answer for the

index i

d. If
 , then A consider B is

cheating and aborts the protocol

3. If all r challenges completed successfully,

then A requests back copy D’ of the data

D from B
4. On retrieval, A verifies the signature by

Verify(D’,pk) to ensure the authenticity of

the data implying D=D'

5. If verification is evaluated to True, both

sides conclude the end of the protocol

The protocol we got achieves private

verifiability through the independent

computation of a hash function by parties over

data D with an additional one-time parameter ti.

Private verifiability achieved by comparing

results of each party got. Unlike protocols

discussed in the literature overview, our protocol

requires all blocks of data D to be involved in an

integrity check, which prevents evasion of

checks by any of blocks. The computational

complexity to generate a single challenge ti and

response vi is O(1) assuming random oracle

access model for the hash function. We can

observe that A required to keep all r pairs of

challenges and corresponding responses (vi,ti)

during the execution of protocol. Each of vi or ti

has a fixed size O(1), implying that the

complexity of the space depends on the number

of rounds O(r). The amount of communication

needed to send ti and receive vi of fixed size

within the single round is O(1) and does not

depends on the size of data D. The downsides of

the proposed protocol:

1. The protocol has a fixed number of

rounds

2. The honest A required to store r

nonces ti within static number of

rounds

4. PDP for storage service with verifiable

payments

In this section, we apply the PDP scheme we

discovered in the previous section to develop a

protocol for verifiable storage with payments.

We ensure B store data for r rounds by hash-

based challenges for each round. Corresponded

setup algorithm provided on Figure 3.

We will incentivize B to follow the protocol

to the end by rewarding him for successful

challenges. But we need to ensure A committed

to pay full price for all successful challenges. In

blockchain native environments, we can

guarantee the ability of A to pay the price Y by

requiring her to transfer funds to smart contract.

Figure 3: Setup (Algorithm 3)

17

___Theoretical and cryptographic problems of cybersecurity

These funds will be locked and unlocked in

equal portions y=Y/r gradually for each

successful challenge for B. On successful

challenge, a fraction of the funds y will be

transferred to B automatically, achieving full

payment Y for the storage service after r rounds.

In case of failing challenge, A withdraws funds

from the smart-contract and terminates its

execution.

The financial commitment of A can be

ensured without blockchain. In this case, A and B

should agree on the usage of third-party payment

provider that accepts the full payment from A

and pays by fractions of the price y to B after

confirmation of each successful challenge by A.

The blockchain native approach is more

reliable, since the usage of the smart contract,

which is used to account payments and track the

history of challenges, is publicly verifiable and

not profit-biased towards either of sides. The

trust to the third-party payment provider or bank

may require additional verification for each

party.

The complete algorithm with verifiable

payments stated in Figure 4.

Figure 4: Verifiable storage 2-party protocol

We assume payment as verifiable if A ensures

data availability by storage provider B first

before each payment.

5. Adversary models

5.1 Hash guessing attack

Let’s look at the following adversary model.

Assume that B can convince A on i-th round by

guessing a hash preimage for vi without actual

knowledge of data D with certain probability P.

Let n be the bit length of hash value vi. Then the

probability of guessing a random bit string vi is:

 (10)

In practice, the minimal yet secure bit length

of cryptographic hash functions such as SHA-2

or SHA-3 is 224 bits, which gives us the

probability of a successful guess in the worst

case for a single i-th round 1/2224
, which is

negligibly small.

5.2 Hash collision search by lookup table

Put T is a set of precomputed nonce

values by A which she share on i-th

round and r is the number of rounds. It

follows that |T|=r, where r is relatively

small. Suppose A and B agreed on the

number of rounds r, and B got D to store.

Malicious B can improve guessing attack by

generating a lookup table beforehand from

many randomly sampled nonces bj, where

 is big and . Then

 . On this

point, B can discard D entirely. Each time B

receives nonce ti from A, B checks the

presence of ti in the lookup table T and return

the corresponding uj as the challenge

response if such uj is present in lookup table

T. Let’s calculate the probability that

 . B

observes a sequence of r trials with one

outcome from the set {True,False} for each.

18

___Proof of Data Possession Protocol with Hash-based Deterministic Challenges and Privately ...

Since both ti and bj are uniformly distributed

bit strings with length n, then the probability

of single match guessing is 2
-n

. The

probability :

 (11)

then the probability of an opposite event

is:

(12)

Considering there are r trials took place:

(13)

Assuming that :

(14)

Observe that is negligibly

small. In practice, it requires bit size of ti be

equal or greater then 2
80

 to prevent

precomputation attacks.

5.3 Hash length extension attack

The vulnerability affects hash functions with

the Merkle-Damgård structure that are computed

over data concatenated with a string suffix

known to the adversary. The hash length

extension attack exploits the weakness of

Merkle-Damgård construction, following from

the fact that a single block of hash input is

processed at a time while keeping the hash

function’s internal state exposed in memory. It

implies predictability of number of iterations I

within hash function with ability to track and

modify hash function state. In our case, length

extension attack allows malicious B to compute

 without knowing D if the

underlying hash function is derived from Merkle-

Damgård’s construction. Malicious Bob should

know only the bit length |D| of the bit string D

and the block length H of the Merkle-Damgård

hash function employed. Note that |D| should be

multiple of H and H is the power of two. If the

data length |D| is not divided by H, then |D| is

being padded by MD-compliant padding

according to the given cryptographic hash

function standard. The simplified example of

hash padding algorithm provided Figure 5. Then

the padded data is being split into blocks of

length H and processed through a number of

iterations I=|D|/H which is also equal number of

H-length blocks fit into |D|.

Figure 5: MD padding

 We can view Merkle-Damgård construction

as a finite automaton with memory, where

memory is the current state of the hash function

Statei. The state is updated at the end of each

iteration of Merkle-Damgård’s structure with

function UpdateHashState. The next state

Statei+1 is calculated from the current Statei and

block Di of input data D for . The last

state StateI calculated within is the final result of

hash function [2]. The number of iterations

depends on the block length of the hash function

used. Malicious B can determine the number of

blocks I by knowing |D| and H. If |D| is not a

multiple of H, then the adversary fills additional

bits with the MD-compliant padding specified by

the hash function’s standard to extend the

message length |D| to length |D’|, such as H

divide |D’|. At this point, B has everything in

place to perform the attack. The algorithm for

padding the data before hashing is shown below.

19

___Theoretical and cryptographic problems of cybersecurity

Then computation of hash(D) with Merkle-

Damgård construction performed block by block

of input data D. The example of padding

function provided in Figure 6.

Figure 6: Merkle-Damgard hash algorithm

Let us apply the definition of the hash

function to perform the hash length extension

attack. We modified of MerkleDamgardHash to

start calculation not from initial state but for the

given state. The pseudo code of modified hash

function shown on Figure 7 which exploits the

vulnerability described in Figure 6.

As the algorithm in Figure 7 shows, Bob can

fabricate the proof vi to deceive Alice into paying

for the storage even if the data D has been lost.

Figure 7: Hash length extension attack

The scenario of the attack on the protocol

which exploits hash length extension

vulnerability shown on Figure 8.

Figure 8: Scenario of vulnerability exploitation

The most straightforward method to counter

this attack is to utilize XOR instead of

concatenation when producing proofs, leveraging

the formula for hash

functions based on the Merkle-Damgård

framework, such as SHA-2. This approach

mitigates risks linked to length extension attacks.

If the use of SHA-2 hashes is required, truncated

versions such as SHA-384 and SHA-224 with

truncated output state to withstand hash

extension attacks [12]. Alternatively, one can

employ hash functions based on the sponge

functions, such as SHA-3 and Keccak. Such hash

functions use permutations and sponge function

rate adjustment to obfuscate the internal state on

absorption phase and on each update of hash

state [4]. This prevents the internal state from

being explicitly exposed in memory.

Unlike Merkle-Damgård constructions,

sponge-based schemes can be adjusted to

produce a variable output length which prevents

hash state length manipulations further.

Consecutively, an attacker cannot reuse internal

state to extend the hash and compute

 without knowing the full original

input. We can observe that the security of the

proposed protocol directly depends on the

security assumptions of the hash function used to

produce a proof vi. In most of the analyzed

20

___Proof of Data Possession Protocol with Hash-based Deterministic Challenges and Privately ...

works, the security of the underlying hash

functions is overlooked, while the usage of SHA-

256 is widely encouraged.

Conclusions

We have presented a verifiable data retrieval

protocol with practically deterministic guarantees

of retrievability backed by reliability of

cryptographic hash function. The PDP protocol

applicable in both cloud and blockchain native

scenarios. Our approach leverages hash-based

mechanisms to improve communication

efficiency and security. By analyzing adversarial

models, we identified potential attack vectors

and introduced mitigation to maintain high

security. The protocol’s advantages include the

ability to construct fixed-size retriviability

proofs, which is particularly effective when the

amount of information stored is large. This

feature provides efficiency and scalability.

However, the protocol’s main drawback is the

absence of public verifiability and a fixed

number of rounds which are in common with

existing protocols. These limitations will be

addressed in the following works.

References

[1] Golle, Philippe, Stanislaw Jarecki, and Ilya

Mironov. 2002. “Cryptographic Primitives

Enforcing Communication and Storage

Complexity.” In Financial Cryptography,

6th International Conference, FC 2002,

Southampton, Bermuda, March 11-14,
2002, Revised Papers. Lecture Notes in

Computer Science. Berlin, Heidelberg:

Springer. URL: https://doi.org/10.1007/3-

540-36504-4_9.

[2] Coron, Jean-Sébastien, Yevgeniy Dodis,

Cécile Malinaud, and Prashant Puniya.

2005. “Merkle-Damgård Revisited: How to

Construct a Hash Function.” In Advances in
Cryptology – Crypto 2005, edited by Victor

Shoup, 3621:430–48. Lecture Notes in

Computer Science. Berlin, Heidelberg:

Springer. URL:

https://doi.org/10.1007/11535218_26.

[3] Ateniese, Giuseppe, Randal Burns, Reza

Curtmola, Joseph Herring, Lea Kissner,

Zachary Peterson, and Dawn Song. 2007.

“Provable Data Possession at Untrusted

Stores.” In Proceedings of the 14th Acm
Conference on Computer and

Communications Security. New York, NY,

USA: ACM. URL:

https://archiv.infsec.ethz.ch/education/fs08/s

ecsem/ateniese-ccs07.pdf

[4] Bertoni, Guido, Joan Daemen, Michaël

Peeters, and Gilles Van Assche. 2007.

“Sponge Functions.” STMicroelectronics;

NXP Semiconductors. URL:

https://keccak.team/files/SpongeFunctions.p

df

[5] Juels, Ari, and Burton S. Kaliski Jr. 2007.

“PORs: Proofs of Retrievability for Large

Files.” In Proceedings of the 14th Acm

Conference on Computer and
Communications Security (CCS 2007). New

York, NY, USA: ACM. URL:

https://doi.org/10.1145/1315245.1315317

[6] Ateniese, Giuseppe, Roberto Di Pietro,

Luigi V. Mancini, and Gene Tsudik. 2008.

“Scalable and Efficient Provable Data

Possession.” SecureComm. URL:

https://www.researchgate.net/publication/22

0333081_Scalable_and_Efficient_Provable_

Data_Possession

[7] Shacham, Hovav, and Brent Waters. 2008.

“Compact Proofs of Retrievability.” In

Advances in Cryptology – Asiacrypt 2008,

edited by Josef Pieprzyk, 5350:90–107.

Lecture Notes in Computer Science.

Springer. URL: https://doi.org/10.1007/978-

3-540-89255-7_7

[8] Xu, Jia, Ee-Chien Chang, and Jianying

Zhou. 2012. “Towards Efficient Provable

Data Possession in Cloud Storage.” URL:

https://www.i2r.a-star.edu.sg/

[9] Han, Shuai, Shengli Liu, Kefei Chen, and

Dawu Gu. 2013. “Proofs of Data Possession

and Retrievability Based on MRD Codes.”

URL: https://eprint.iacr.org/2013/789.pdf

[10] Benet, Juan. 2014. “IPFS - Content

Addressed, Versioned, P2p File System.”

URL:

https://doi.org/10.48550/arXiv.1407.356

[11] Kaaniche, Nesrine, Ethmane El Moustaine,

and Maryline Laurent. 2014. “A Novel

Zero-Knowledge Scheme for Proof of Data

Possession in Cloud Storage Applications.”

URL: https://www-public.telecom-

21

___Theoretical and cryptographic problems of cybersecurity

sudparis.eu/~lauren_m/articles/2014-

ZeroKnowPDPScheme.pdf

[12] National Institute of Standards and

Technology. 2015. “Secure Hash Standard

(Shs).” FIPS PUB 180-4 FIPS PUB 180-4.

Gaithersburg, MD: Information Technology

Laboratory, National Institute of Standards;

Technology. URL:

https://doi.org/10.6028/NIST.FIPS.180-4

[13] Niaz, Muhammad Saqib, and Gunter Saake.

2015. “Merkle Hash Tree Based Techniques

for Data Integrity of Outsourced Data.” In

Proceedings of the 10th International
Conference on Evaluation of Novel
Approaches to Software Engineering
(ENASE 2015). Magdeburg, Germany:

CEUR-WS.org. URL: https://ceur-

ws.org/Vol-1366/paper13.pdf

[14] Potocol Labs. 2017. “Filecoin: A

Decentralized Storage Network.” URL:

https://filecoin.io/filecoin.pdf

[15] Azizi, Yassine, Mostafa Azizi, and

Mohamed Elboukhari. 2022. “Log Data

Integrity Solution Based on Blockchain

Technology and Ipfs.” URL:

https://doi.org/10.3991/ijim.v16i15.31713

[16] Walker, Ieuan, Chaminda Hewage, and

Ambikesh Jayal. 2022. “Provable Data

Possession (PDP) and Proofs of

Retrievability (POR) of Current

BigInternational Journal of Interactive
Mobile Technologies (iJIM) 16 (15): 4–15.

User Data.” SN Computer Science 3 (83).

URL: https://doi.org/10.1007/s42979-021-

00968-z

[17] Dumas, Jean-Guillaume, Aude Maignan,

Clément Pernet, and Daniel S. Roche. 2023.

“VESPo: Verified Evaluation of Secret

Polynomials (with Application to Dynamic

Proofs of Retrievability).” Proceedings on
Privacy Enhancing Technologies 2023 (3):

354–74. URL:

https://doi.org/10.56553/popets-2023-0085

[18] Nalina, V., S. Navaneeth, Rahul Anil

Nayak, and Nidhi Prakash. 2024.

“Decentralized File Storage Platform Using

Ipfs and Blockchain.” In Proceedings of the
2024 International Conference on Emerging
Technologies in Computer Science for

Interdisciplinary Applications (Icetcs).
Bengaluru, India: IEEE. URL:

https://doi.org/10.1109/ICETCS61022.2024.

10543705

[19] Yang, Fan, Yi Sun, Qi Gao, and Xingyuan

Chen. 2024. “EDI-C: Reputation-Model-

Based Collaborative Audit Scheme for Edge

Data Integrity.” Electronics 13 (1): 75.

URL:

https://doi.org/10.3390/electronics13010075

[20] Hall-Andersen, Mathias, Mark Simkin, and

Benedikt Wagner. 2025. “Foundations of

Data Availability Sampling.” IACR
Communications in Cryptology 1 (4). URL:

https://doi.org/10.62056/a09qudhdj

22

___Proof of Data Possession Protocol with Hash-based Deterministic Challenges and Privately ...

	Contents_Vol 7_003_2025.pdf
	01_001_Yakovliev.pdf
	1 Terms and Notation
	2 Oblivious S-functions and Their Rotation Probabilities
	3 Rotation Probabilities of NORX-like Functions
	4 Rotation Probabilities of ``Multiplication-by-3'' Analogues
	5 Rotation Probabilities of Specific Types of Oblivious S-functions

	01_002_Strielnikov.pdf
	01_003_Tolmachov.pdf
	1 First Proposed Attack Model
	2 Second Proposed Attack Model
	3 Third Proposed Attack Model
	4 Limit Theorem for Approximating Algorithms That Fix Up To k Errors For Models 2 and 3
	4.1 Theoretical Basis
	4.2 Approximating The Parameter qm

	01_004_Doroshenko.pdf
	1 Terms and Notation
	2 The AJPS-2 Cryptosystem
	3 Modifications of the AJPS-2 Cryptosystem
	3.1 AJPS-2 Modifications Based on Alternative Moduli

	4 NIST SP 800-22 Tests
	4.1 Search of suitable parameters
	4.2 AJPS-2 Tests Results

	01_005_Parshyn.pdf
	1 Lai-Massey Scheme Design and the IDEA Family of Block Ciphers
	2 The Structure of IDEA Block Cipher
	3 Attack on IDEA Block Cipher Based on Key-Adding Function
	4 Modifications to the Key-Adding Function

	01_006_Progonov.pdf
	01_007_Fesenko.pdf
	1 The Lai-Massey Scheme and Its Generalizations
	2 Unified Generalizations
	3 Reductions of Schemes
	4 Quantum Cryptanalysis

	02_001_Stopochkina.pdf
	02_002_Lande.pdf
	02_003_Lytvynenko.pdf
	03_001_Kozlenko.pdf
	03_002_Polutsyhanova.pdf
	04_001_Feher.pdf
	04_002_Kolomytsev.pdf
	contents_vol 7_003_2025.pdf
	013_lande.pdf

