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Abstract
This paper investigates the post-quantum cryptographic primitive AJPS-2 based on arithmetic modulo
Mersenne numbers. We describe modified versions of this cryptosystem that utilize generalized
Mersenne numbers and Crandall numbers as moduli. We conduct a comparative analysis of ciphertext
pseudorandomness for the original cryptosystem and its modifications using the NIST SP 800-22
pseudorandomness test suite. The results show that the use of alternative moduli increases the overall
stability and parameters variability of the AJPS-2 cryptosystem.
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Introduction 1. Terms and Notation

• 𝑀𝑛 — Mersenne number of the form
2𝑛 − 1, where 𝑛 ∈ N;

• 𝑀𝑛,𝑐 — Crandall number of the form
2𝑛 − 𝑐, where 𝑛 and 𝑐 are positive integers
and log2 𝑐 ≤ 𝑛

2 ;
• 𝑀𝑛,𝑚 — generalized Mersenne number of

the form 2𝑛 − 2𝑚 − 1, where 𝑛,𝑚 are pos-
itive integers and 𝑚 < 𝑛;

• The Hamming weight of a number 𝑥 is de-
fined as the number of 1’s in its binary rep-
resentation.

2. The AJPS-2 Cryptosystem

The security of the AJPS-2 cryptosystem is
based on the Mersenne Low Hamming Combina-
tion Search Problem (MLHCSP).

Definition 1. (MLHCSP) Let the following be
given: a Mersenne number 𝑀𝑛, an integer ℎ < 𝑛,
and a pair of numbers (𝑅, 𝑇 ), where 𝑅 is a ran-
domly chosen residue modulo 𝑀𝑛, and 𝑇 is com-
puted as

𝑇 = 𝐹 ·𝑅+𝐺 mod 𝑀𝑛,

where 𝐹 and 𝐺 are residues modulo 𝑀𝑛 with Ham-
ming weight ℎ. The problem is to find such 𝐹 and
𝐺 given 𝑀𝑛, ℎ, 𝑅, and 𝑇 .

Yurii Doroshenko1, Dariya Yadukha1

The advent of scalable quantum comput-
ers, which may compromise modern asymmetric
cryptosystems, creates an urgent need for new
cryptographic primitives that can ensure security
in the presence of quantum computing. Post-
quantum cryptography is a field that develops
primitives resistant to attacks using both classical
and quantum computers.

In 2017, the U.S. National Institute of
Standards and Technology (NIST) launched an
open competition on post-quantum cryptographic
primitives, aiming to identify secure quantum-
resistant schemes and establish the first standards
for post-quantum cryptography [1].

Among the early research efforts in this area
was the cryptosystem AJPS-2, designed around
modular arithmetic with Mersenne numbers [2].
This paper focuses on the AJPS-2 cryptosystem
and its modifications.

The AJPS family of cryptosystems is built
on arithmetic modulo Mersenne numbers, which
is advantageous as it provides numerous opti-
mizations for computationally intensive modular
operations [3].
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The AJPS-2 cryptosystem encrypts a message
block of length 𝜆, where 𝜆 is the security pa-
rameter. In practice, it is reasonable to choose
the block length equal to the security parameter.
Thus, below we describe a scheme for encrypt-
ing a message block 𝑀 ∈ {0, 1}𝜆.

The public parameters of the cryptosystem
are:

• the Mersenne number 𝑀𝑛 = 2𝑛 − 1;
• an integer ℎ ∈ N satisfying ℎ = 𝜆,
10ℎ2 < 𝑛 ≤ 16ℎ2;

• the encoding and decoding algorithms of an
error correcting code:

ℰ : {0, 1}𝜆 → {0, 1}𝑛;

𝒟 : {0, 1}𝑛 → {0, 1}𝜆.
For the cryptosystem to be (1− 𝛿)-correct,
where 𝛿 is the error probability, it must hold
that

∀𝑀 ∈ {0, 1}𝜆 :

Pr (𝒟((𝐶1 · 𝐹 mod 𝑀𝑛)⊕ 𝐶2) = 𝑀) ≥ 1− 𝛿.

Key Generation. Randomly choose 𝐹
and 𝐺 – residues modulo 𝑀𝑛 with Hamming
weight ℎ. Randomly select 𝑅 modulo 𝑀𝑛 and
compute

𝑇 = 𝐹 ·𝑅+𝐺 mod 𝑀𝑛.

The public key is the pair (𝑅, 𝑇 ); the secret key
is 𝐹 .

Encryption. To encrypt a message 𝑀 , in-
dependently and uniformly choose 𝐴,𝐵1, 𝐵2 –
residues modulo 𝑀𝑛 with Hamming weight ℎ,
and compute

𝐶1 = 𝐴 ·𝑅+𝐵1 mod 𝑀𝑛,

𝐶2 = (𝐴 · 𝑇 +𝐵2 mod 𝑀𝑛)⊕ ℰ(𝑀).

The ciphertext is the pair (𝐶1, 𝐶2).
Decryption. Recover the message as

𝑀 = 𝒟
(︀
(𝐶1 · 𝐹 mod 𝑀𝑛)⊕ 𝐶2

)︀
.

The choice of the error-correcting code (ℰ ,𝒟)
plays a crucial role in ensuring the reliability and
correctness of the AJPS-2 cryptosystem.

Claim 1. [2] The AJPS-2 cryptosystem is
(1− 𝛿)-correct if the error correction code (ℰ ,𝒟)
corrects up to

(4ℎ2 + 2ℎ)(1 + 𝜀)

errors for some value 𝜀, 0 < 𝜀 < 1, which satisfies
the following condition:

2−
(2ℎ2−1)𝜀2

6 < 𝛿.

3. Modifications of the AJPS-2 Cryptosys-
tem

As noted earlier, arithmetic modulo a
Mersenne number can be efficiently implemented
using specialized algorithms for computationally
expensive operations such as inversion, multipli-
cation, and others. However, Mersenne numbers
are not the only class of numbers for which effi-
cient modular algorithms exist. In fact, many al-
gorithms originally developed for Mersenne num-
bers can also be adapted to Crandall numbers
and generalized Mersenne numbers [3].

In cryptography, the use of prime moduli is
not only advantageous but often also a strict
requirement, since composite moduli introduce
zero divisors that can be exploited in attacks.
A prime modulus ensures that the residue ring
forms a field, guaranteeing uniform value dis-
tribution and the existence of multiplicative in-
verses for all nonzero elements.

However, the set of available Mersenne
primes is limited: currently only 52 are known,
with the most recent (the 52nd) discovered at
the end of 2024 [4]. Most of these primes are
either too large for efficient use in cryptographic
primitives or too small to satisfy modern security
requirements. To address this limitation, alterna-
tive number classes can be employed.

For practical validation, the implementation
of AJPS-2 with alternative moduli was developed
and tested. The code, including algorithms for
parameter search and modular arithmetic with
generalized Mersenne and Crandall numbers, is
publicly available in the accompanying reposi-
tory [5].

3.1. AJPS-2 Modifications Based on Alter-
native Moduli

The AJPS-2 cryptosystem can be adapted to
work with alternative moduli, namely generalized
Mersenne numbers 𝑀𝑛,𝑚 and Crandall numbers
𝑀𝑛,𝑐. In both cases, the security of the scheme
is based on the hardness of a corresponding low
Hamming weight combination problem.
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Definition 2 (GMLHCSP). Let a generalized
Mersenne number 𝑀𝑛,𝑚, an integer ℎ, and a pair
(𝑅, 𝑇 ) be given, where 𝑅 is a random residue mod-
ulo 𝑀𝑛,𝑚 and

𝑇 = 𝐹 ·𝑅+𝐺 mod 𝑀𝑛,𝑚,

with 𝐹,𝐺 residues modulo 𝑀𝑛,𝑚 of Hamming
weight ℎ. The problem is to recover 𝐹 and 𝐺 given
𝑀𝑛,𝑚, ℎ,𝑅, and 𝑇 .

Definition 3 (CLHCSP). Let a Crandall num-
ber 𝑀𝑛,𝑐, an integer ℎ, and a pair (𝑅, 𝑇 ) be given,
where 𝑅 is a random residue modulo 𝑀𝑛,𝑐 and

𝑇 = 𝐹 ·𝑅+𝐺 mod 𝑀𝑛,𝑐,

with 𝐹,𝐺 residues modulo 𝑀𝑛,𝑐 of Hamming
weight ℎ. The problem is to recover 𝐹 and 𝐺 given
𝑀𝑛,𝑐, ℎ,𝑅, and 𝑇 .

Note (Notation 𝑀𝑛,𝑚/𝑐): In what follows,
the notation 𝑀𝑛,𝑚/𝑐 is used as a shorthand
to indicate that the described operation or
construction can be applied with either a gener-
alized Mersenne modulus 𝑀𝑛,𝑚 or a Crandall
modulus 𝑀𝑛,𝑐, depending on the chosen variant
of the cryptosystem.

Key Generation. Randomly select 𝐹,𝐺 with
Hamming weight ℎ modulo the chosen modulus
𝑀𝑛,𝑚/𝑐. Randomly choose 𝑅 modulo the same
modulus, and compute

𝑇 = 𝐹 ·𝑅+𝐺 mod 𝑀𝑛,𝑚/𝑐.

The public key is (𝑅, 𝑇 ); the secret key is 𝐹 .
Encryption. To encrypt 𝑀 , select 𝐴,𝐵1, 𝐵2

uniformly at random with Hamming weight ℎ
modulo 𝑀 , and compute

𝐶1 = 𝐴 ·𝑅+𝐵1 mod 𝑀𝑛,𝑚/𝑐,

𝐶2 = (𝐴 · 𝑇 +𝐵2 mod 𝑀𝑛,𝑚/𝑐)⊕ ℰ(𝑀).

Decryption. Decrypt the message as

𝑀 = 𝒟((𝐶1 · 𝐹 mod 𝑀𝑛,𝑚/𝑐)⊕ 𝐶2).

Building on the original AJPS-2 construction,
further modifications were proposed by adapting
the scheme to alternative moduli, such as gener-
alized Mersenne numbers. These variants inherit
the same design principles but require adjusted
correctness conditions, as established in [6].

Claim 2. A modification of the AJPS-2 cryp-
tosystem using arithmetic modulo generalized
Mersenne number 𝑀𝑛,𝑚 is (1 − 𝛿)-correct if the

error correction code (ℰ ,𝒟) corrects up to

(4ℎ2 + 4𝑚ℎ− 2ℎ)(1 + 𝜀)

errors for some value 𝜀, 0 < 𝜀 < 1, which satisfies
the following condition:

2−2(ℎ2+(𝑚−1)ℎ) 𝜀
2

3

(︂
1 + 2−

2ℎ𝜀2

3

)︂
< 𝛿.

Similarly, when the AJPS-2 cryptosystem is
modified to operate modulo a Crandall number,
the correctness guarantee depends on more com-
plex parameter interactions. The corresponding
result, proven in [6], is stated below.

Claim 3. A modification of the AJPS-2 cryp-
tosystem using arithmetic modulo Crandall number
𝑀𝑛,𝑐 is (1− 𝛿)-correct if the error correction code
(ℰ ,𝒟) corrects up to

(4(𝑐− 2𝑚)ℎ2 + 2ℎ(2𝑚+ 2𝑐+ 2𝑚+1 − 3)

+ 2(𝑐− 2𝑚 − 1))(1 + 𝜀)

errors, where 𝑐 = 2𝑚 + 1 + 𝑘, 𝑚, 𝑘 ∈ N, and 𝜀,
0 < 𝜀 < 1, which satisfies the following condition:

2−2((𝑐−2𝑚)ℎ2+(𝑚+𝑐−2𝑚−2)ℎ) 𝜀2

3 ×

×
(︂
1 + 2−(ℎ+𝑐−2𝑚−1) 𝜀

2

3

)︂
< 𝛿.

4. NIST SP 800-22 Tests

NIST SP 800-22 is a suite of 15 statistical
tests developed by the U.S. National Institute
of Standards and Technology (NIST) to evalu-
ate the randomness of bit sequences, particularly
those used in cryptography. The standard pro-
vides methods for detecting deviations from truly
random behavior. A detailed description of each
test can be found on the NIST website [7].

The 𝑝-value represents the probability that,
for a truly random sequence, the test result
would be at least as extreme as that obtained
for the sequence under investigation. Within the
NIST SP 800-22 framework, the minimum ac-
ceptable 𝑝-value for all tests is 0.01.

For all subsequent evaluations of each cryp-
tosystem variant, files containing 16 million bits
were generated. To obtain statistically signifi-
cant results, each file was divided into blocks of
length 1,000,000 bits, producing 16 independent
blocks. This approach increases the reliability
of the results by enabling the analysis of sta-
tistical characteristics over a larger number of
independent samples.
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Overview of NIST SP 800-22 Statistical Tests
• Frequency (Monobit) Test: Evaluates

whether the total number of ones and ze-
ros in the entire sequence is approximately
equal, as expected for a random sequence.

• Frequency Within a Block Test: Checks
whether each fixed-size block contains
roughly 𝑀

2 ones. This test detects local
deviations from uniformity.

• Runs Test: Counts runs of consecutive iden-
tical bits. It verifies whether the sequence
switches between zeros and ones too fre-
quently or too rarely.

• Longest Run of Ones in a Block Test: Exam-
ines the longest run of ones in each 𝑀 -bit
block and compares it with the distribution
expected for a random sequence.

• Random Binary Matrix Rank Test: An-
alyzes ranks of fixed-size binary matrices
formed from the sequence to detect linear
dependencies among substrings.

• Discrete Fourier Transform (Spectral) Test:
Uses FFT peak analysis to detect periodici-
ties or repeating patterns that would indicate
non-random structure.

• Non-Overlapping Template Matching Test:
Counts occurrences of a given non-
overlapping 𝑚-bit pattern. An excessive
number of matches suggests structural bias.

• Overlapping Template Matching Test: Sim-
ilar to the previous test, but windows over-
lap. It evaluates whether the number of
overlapping occurrences of a pattern is con-
sistent with randomness.

• Maurer’s Universal Statistical Test: Mea-
sures sequence compressibility. Highly com-
pressible sequences contain patterns incon-
sistent with randomness.

• Linear Complexity Test: Checks whether
the sequence requires a sufficiently long lin-
ear feedback shift register (LFSR) for gen-
eration. A short LFSR indicates low com-
plexity.

• Serial Test: Counts occurrences of all pos-
sible overlapping 𝑚-bit patterns and verifies
whether frequencies match the expected dis-
tribution.

• Approximate Entropy Test: Compares the
frequency of overlapping patterns of lengths
𝑚 and 𝑚+ 1, evaluating predictability and
local structural regularity.

• Cumulative Sums (Cusum) Test: Ana-
lyzes the maximal deviation in the random
walk defined by mapping bits to {−1,+1}.
Large excursions from zero indicate non-
random behavior.

• Random Excursions Test: Counts how
many times a cumulative-sum random walk
completes cycles visiting a given state ex-
actly 𝐾 times. Deviations suggest irregular-
ity in walk behavior.

• Random Excursions Variant Test: Counts
the total number of visits to each state in
the cumulative-sum random walk. It detects
finer trajectory-level irregularities than the
standard excursions test.

4.1. Search of suitable parameters

During the testing of AJPS-2, it was neces-
sary to find prime generalized Mersenne and
Crandall numbers of the recommended length
(𝑛 = 756839). Primality testing with the Miller-
Rabin algorithm proved too slow, requiring at
least 20 minutes per candidate number.

To overcome this, the parameter size was
reduced to: 𝑛 = 11213, ℎ = 33, 𝜆 = 33,
𝑐 = 7713, 𝑚 = 9953.

Under these conditions, suitable parameters
were found in under an hour, but the maximum
encrypted block length was decreased to 33 bits
instead of the original 264 bits.

For the comparative analysis of AJPS-2 and
its modular modifications, pseudorandomness
testing was performed on the ciphertexts 𝐶1

and 𝐶2 obtained by encrypting a randomly cho-
sen message.

4.2. AJPS-2 Tests Results

As shown in Tables 1 and 2, all three mod-
ulus variants pass every NIST SP 800-22 test
for both ciphertext components 𝐶1 and 𝐶2 with
comfortably high 𝑝-values (in all cases 𝑝 ≥ 0.15
for significance level 𝛼 = 0.01). Thus, for each
modulus choice and for each component of the
AJPS-2 ciphertext, the null hypothesis of ran-
domness cannot be rejected for any test in the
suite.

A consistent pattern across both tables is that
the generalized Mersenne modulus 𝑀𝑛,𝑚 yields
the most stable and typically the highest 𝑝-values
in the majority of tests.
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Table 1
AJPS-2: Pseudorandomness results for ciphertext 𝐶1

Test 𝑀𝑛 𝑀𝑛,𝑐 𝑀𝑛,𝑚

Frequency (Monobit) 0.2131 0.5025 0.2976

Frequency within Block 0.3467 0.4518 0.6837

Runs Test 0.7941 0.5833 0.4956

Longest Run of Ones 0.7553 0.8010 0.5639

Binary Matrix Rank 0.6121 0.3904 0.7342

Spectral Test 0.4327 0.4486 0.6791

Non-overlapping Temp. 0.8824 0.1531 0.7234

Overlapping Template 0.6180 0.4891 0.6883

Universal Statistical Test 0.1938 0.7657 0.6081

Linear Complexity 0.2012 0.3824 0.7006

Serial Test (1) 0.5825 0.2450 0.8422

Serial Test (2) 0.5373 0.3051 0.8013

Approximate Entropy 0.4696 0.3682 0.8115

Cumulative Sums (F) 0.2741 0.5286 0.4594

Cumulative Sums (B) 0.2968 0.3447 0.4967

Table 2
AJPS-2: Pseudorandomness results for ciphertext 𝐶2

Test 𝑀𝑛 𝑀𝑛,𝑐 𝑀𝑛,𝑚

Frequency (Monobit) 0.2097 0.5376 0.2829

Frequency within Block 0.3094 0.4783 0.6724

Runs Test 0.7515 0.5967 0.4994

Longest Run of Ones 0.7610 0.8179 0.5405

Binary Matrix Rank 0.6075 0.3721 0.7166

Spectral Test 0.4264 0.4616 0.6596

Non-overlapping Temp. 0.8543 0.1514 0.7333

Overlapping Temp. 0.6056 0.4829 0.6867

Universal Statistical Test 0.1870 0.7730 0.6089

Linear Complexity 0.1935 0.3410 0.7142

Serial Test (1) 0.5714 0.2340 0.8488

Serial Test (2) 0.5261 0.2938 0.7920

Approximate Entropy 0.4605 0.3582 0.8026

Cumulative Sums (F) 0.2663 0.5109 0.4516

Cumulative Sums (B) 0.2875 0.3316 0.4802

For 𝐶1, 𝑀𝑛,𝑚 notably improves the block-
oriented and structural statistics, with Frequency
within Block equal to 0.6837, Serial Test (1) equal
to 0.8422, Approximate Entropy equal to 0.8115,
and Linear Complexity equal to 0.7006. A sim-
ilar effect is observed for 𝐶2, where the corre-
sponding values are 0.6724, 0.8488, 0.8026, and

0.7142, respectively. These values are not only
far above the rejection threshold but also well
away from the extremes of the [0, 1] interval,
which is typically interpreted as an indication
of stable, non-pathological behavior of the test
statistics.

The Crandall modulus 𝑀𝑛,𝑐 exhibits slightly
more variability. In particular, it shows lower but
still acceptable 𝑝-values in the template-based
tests, with Non-overlapping Template equal to
0.1531 for 𝐶1 and 0.1514 for 𝐶2. These values
remain well above the 0.01 cutoff and therefore
do not constitute evidence of a systematic devi-
ation from randomness; however, they indicate
that the template structure is somewhat more
sensitive to this choice of modulus. By contrast,
the original Mersenne modulus 𝑀𝑛 tends to pro-
duce the lowest 𝑝-values in several complexity-
oriented tests, most visibly in the Universal
Statistical Test (0.1938 for 𝐶1 and 0.1870 for
𝐶2) and Linear Complexity (0.2012 for 𝐶1 and
0.1935 for 𝐶2). Even in these cases, the results
remain comfortably above the rejection threshold,
but they highlight that 𝑀𝑛,𝑚 and, to a lesser ex-
tent, 𝑀𝑛,𝑐 lead to a more favorable distribution
of 𝑝-values.

Table 3
AJPS-2: Random Excursions results for 𝐶1

State 𝑀𝑛 𝑀𝑛,𝑐 𝑀𝑛,𝑚

-4 0.2973 0.3485 0.3823

-3 0.3417 0.3252 0.3720

-2 0.3221 0.3287 0.3862

-1 0.3490 0.3462 0.3684

+1 0.3345 0.3114 0.3971

+2 0.3511 0.3637 0.3515

+3 0.3594 0.3321 0.3743

+4 0.3410 0.3209 0.3829

The Random Excursions test results, summa-
rized separately for 𝐶1 and 𝐶2 in Tables 3 and 4,
lie in a relatively tight band (approximately 0.31-
0.40 across all states and all modulus variants).
This behavior is consistent for both ciphertext
components and shows no trajectory-level anoma-
lies in the underlying random walk induced by
the partial sums of the bitstream.
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Table 4
AJPS-2: Random Excursions results for 𝐶2

State 𝑀𝑛 𝑀𝑛,𝑐 𝑀𝑛,𝑚

-4 0.2962 0.3480 0.3881

-3 0.3389 0.3226 0.3680

-2 0.3199 0.3258 0.3826

-1 0.3454 0.3422 0.3653

+1 0.3297 0.3156 0.3933

+2 0.3502 0.3575 0.3536

+3 0.3575 0.3312 0.3674

+4 0.3395 0.3198 0.3750

The generalized Mersenne modulus 𝑀𝑛,𝑚

again tends to produce slightly more concen-
trated and centred 𝑝-values (for example, 0.3515-
0.3971 for 𝐶1 and 0.3536-0.3933 for 𝐶2), while
𝑀𝑛 and 𝑀𝑛,𝑐 track closely behind with compa-
rable stability.

Table 5
AJPS-2: Random Excursions Variant results for 𝐶1

State 𝑀𝑛 𝑀𝑛,𝑐 𝑀𝑛,𝑚

-9 0.3284 0.2877 0.3674

-8 0.3561 0.3140 0.3799

-7 0.4622 0.3458 0.4057

-6 0.3825 0.4923 0.4271

-5 0.3276 0.3593 0.4435

-4 0.4010 0.2991 0.3827

-3 0.3983 0.3852 0.4411

-2 0.3617 0.3247 0.4539

-1 0.3554 0.3743 0.3497

+1 0.3185 0.3415 0.4276

+2 0.3923 0.3723 0.4098

+3 0.3675 0.3466 0.3784

+4 0.3121 0.3044 0.4035

+5 0.2926 0.3412 0.4263

+6 0.4045 0.3182 0.3891

+7 0.3430 0.3622 0.4055

+8 0.2843 0.3445 0.3437

+9 0.3127 0.3073 0.3468

Table 6
AJPS-2: Random Excursions Variant results for 𝐶2

State 𝑀𝑛 𝑀𝑛,𝑐 𝑀𝑛,𝑚

-9 0.3291 0.2834 0.3628

-8 0.3583 0.3110 0.3745

-7 0.4427 0.3557 0.4001

-6 0.3805 0.4847 0.4215

-5 0.3248 0.3559 0.4380

-4 0.3986 0.2883 0.3795

-3 0.3965 0.3780 0.4386

-2 0.3596 0.3198 0.4521

-1 0.3521 0.3712 0.3541

+1 0.3148 0.3391 0.4237

+2 0.3904 0.3683 0.4043

+3 0.3650 0.3414 0.3753

+4 0.3086 0.3038 0.4009

+5 0.2897 0.3375 0.4258

+6 0.4072 0.3133 0.3875

+7 0.3476 0.3595 0.4040

+8 0.2819 0.3389 0.3412

+9 0.3097 0.3022 0.3444

Random Excursions Variant results are re-
ported in Tables 5 and 6. Here the 𝑝-values span
a somewhat broader but still healthy range of
roughly 0.28-0.49 across states. The 𝑀𝑛,𝑚 vari-
ant remains consistently strong, typically achiev-
ing 𝑝 ≥ 0.34 for both 𝐶1 and 𝐶2, which further
supports the conclusion that this modulus choice
leads to particularly robust trajectory-level be-
havior. The Crandall modulus 𝑀𝑛,𝑐 shows occa-
sional lower values (for instance, 0.2877 for 𝐶1

at state −9 and 0.2834 for 𝐶2 at state −9), but
these remain well above the 0.01 significance
threshold and do not indicate statistically signifi-
cant irregularities.

Overall, the disaggregated analysis of 𝐶1 and
𝐶2 confirms that both ciphertext components ex-
hibit very similar pseudorandomness profiles un-
der all three modulus families. At the same time,
the use of generalized Mersenne moduli 𝑀𝑛,𝑚

systematically improves the centrality and stabil-
ity of the 𝑝-values across the NIST SP 800-22
test suite, suggesting that this choice of modulus
enhances the robustness of the AJPS-2 ciphertext
pseudorandomness without introducing detectable
biases in either component.
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Conclusions

In this paper, we analyzed the AJPS-2 cryp-
tosystem together with its modified versions con-
structed using Crandall numbers and generalized
Mersenne numbers. The primary goal of this re-
search was to investigate how alternative modu-
lus families influence the statistical properties of
ciphertexts, with a particular emphasis on pseu-
dorandomness. To this end, all implementations
were evaluated using the NIST SP 800-22 statis-
tical test suite, which provides a comprehensive
set of benchmarks for assessing the randomness
of binary sequences.

The experimental results demonstrate that
all AJPS-2 variants achieve consistently high
𝑝-values across the entire test suite, signifi-
cantly exceeding the standard rejection threshold
of 0.01. This confirms that neither the choice
of modulus nor the structural modifications in-
troduce detectable statistical weaknesses into the
ciphertexts. Among the examined modulus fam-
ilies, the generalized Mersenne modulus stands
out as the most stable option: it produces the
strongest and most uniform outcomes in the ma-
jority of tests, particularly in those sensitive to
structural regularities, such as the Serial, Approx-
imate Entropy, and Linear Complexity tests. The
Crandall modulus also performs well overall, al-
though occasional minor reductions in template-
based tests suggest slightly increased sensitivity
to local bit-pattern distributions. Nevertheless,
all such outliers remain comfortably above the
rejection threshold and therefore do not indicate
any statistically significant anomalies.

• All tested implementations of AJPS-2
satisfy the requirements of the
NIST SP 800-22 test suite, with no
cases of statistical rejection.

• Variants based on generalized Mersenne
numbers exhibit the most stable behavior,
producing the highest and most uniform
𝑝-values across all examined statistical tests.

• The consistency of results across both
ciphertext components (𝐶1 and 𝐶2)
demonstrates the internal robustness of
the AJPS-2 design and confirms that
modulus substitutions do not disrupt the
cryptosystem’s structural balance.

• The introduction of alternative modulus fam-
ilies (especially generalized Mersenne num-
bers) appears to be a promising direction
for enhancing the flexibility, implementation
efficiency, and statistical resilience of AJPS-
family post-quantum schemes.

Overall, the conducted analysis confirms the
correctness of the AJPS-2 modifications based
on Crandall and generalized Mersenne numbers,
as well as their ability to generate ciphertexts
that exhibit strong and stable pseudorandom-
ness. These findings support the feasibility of
further extending the AJPS framework using non-
standard modulus classes without compromising
its statistical or structural security properties.
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