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Abstract

The integration of Large Language Models (LLMSs) into critical infrastructure (SIEM, SOAR) has
introduced new attack vectors, specifically prompt injection and jailbreaking. Traditional defense
mechanisms, such as input sanitization and Reinforcement Learning from Human Feedback (RLHF),
often fail against semantic obfuscation and indirect injections due to their inability to distinguish
between control instructions and data context. This paper proposes a novel method for detecting
manipulative prompts based on a Multi-Head DistilBERT architecture. Unlike standard binary
classifiers, the proposed model decomposes the detection task into four semantic vectors: malicious
intent, instruction override, persona adoption, and high-risk action. To address the scarcity of labeled
adversarial datasets, we implemented a hybrid data generation strategy using Knowledge Distillation,
employing a superior model (Teacher) to label synthetic attacks for the compact Student model.
Experimental results on both synthetic and real-world datasets demonstrate that the proposed system
achieves a Recall of 0.99, significantly outperforming traditional TF-IDF and keyword-based
baselines. The solution operates effectively as a middleware layer, ensuring real-time protection with
low computational latency suitable for deployment on edge devices.

Keywords: Large Language Models, Prompt Injection, Jailbreaking, NLP Security, DistilBERT,
Adversarial Machine Learning.

Introduction

The rapid integration of Large Language
Models (LLMs), such as GPT-5, Claude, and
Llama, into critical information systems has
fundamentally transformed the cyber threat
landscape. These models are no longer passive
text generators but serve as the backbone for
corporate assistants, Security Information and
Event Management (SIEM) copilots, and
autonomous agents capable of executing API
calls. However, this utility comes with a
significant architectural vulnerability inherent to
the Transformer architecture: the mechanism of
Self-Attention does not natively distinguish
between system instructions (control plane) and
user input (data plane) [1].

This lack of context isolation has given rise to
a new class of attacks known as Prompt Injection
and Jailbreaking, where adversaries manipulate
the model's output by injecting malicious
instructions that override safety guardrails. While
direct injections via user interfaces are well-
documented, the emergence of Retrieval-
Augmented Generation (RAG) systems has

exacerbated the risk through Indirect Prompt
Injection. In this scenario, an LLM processing
external data (e.g., email logs or websites)
ingests a hidden payload that forces the model to
execute unauthorized actions, effectively turning
the LLM into a confused deputy [2, 4, 16].

Current  defense  mechanisms  remain
insufficient against these semantic threats.
Traditional input sanitization and keyword

filtering are fundamentally brittle; they operate
on a lexical level and are easily bypassed by
obfuscation  techniques, such as token
fragmentation or base64 encoding, which rely on
the "tokenization mismatch” between the filter
and the LLM [5, 6]. Furthermore, safety
measures embedded during training, such as
Reinforcement Learning from Human Feedback
(RLHF), are reactive by nature. They defend
only against attack patterns present in the
training distribution, leaving models vulnerable
to zero-day semantic manipulations and complex
social engineering vectors.

To address these limitations, this paper
presents a proactive method for detecting
manipulative prompts using a Multi-Head
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DistilBERT architecture. Unlike standard binary
classifiers, our approach decomposes the
detection task into specific structural violations:
malicious intent, instruction override, persona
adoption, and high-risk actions. By analyzing the
semantic structure rather than mere keywords,
the system acts as a middleware layer capable of

identifying obfuscated attacks in real-time.
Furthermore, we introduce a hybrid data
generation strategy using Knowledge

Distillation, leveraging a superior model (GPT-5)
to automatically label complex attack vectors for
the compact student model, ensuring robustness
against evolving threats.

1. Proposed Method

The analysis of existing models [9, 11, 12,
13] showed their low effectiveness in detecting
manipulative prompts.

To address the limitations of reactive defense
mechanisms, we propose a proactive middleware
architecture designed to detect manipulative
prompts in real-time. Unlike traditional
approaches that rely on keyword filtering or
generic binary classification, our method utilizes
deep semantic analysis to decompose the
structure of a prompt. This approach allows for
the differentiation between legitimate data
context and malicious control instructions, even
when obfuscation techniques are employed.

1.1. Multi-head
Architecture

Classification

The core of the proposed system is built upon
the DistilBERT model [3]. This architecture was
selected to balance the need for deep semantic
understanding (via the Transformer self-attention
mechanism) with the low-latency requirements
of real-time cybersecurity systems, making it
suitable for deployment on resource-constrained
hardware.

DistilBERT-based =~ Multi-Task  Learning
Design
We modified the standard DistilBERT

architecture by replacing the single output layer
with a Multi-Task Learning (MTL) configuration
(figure 1). The model features four independent
fully  connected layers ("heads"), each
responsible for detecting a specific structural
aspect of an attack:

e Head 1: Malicious  Intent.
Determines the overall probability
that the prompt contains malicious
content.

e Head 2: Override Instruction.
Specifically detects attempts to
negate or rewrite the system prompt
(e.g., "Ignore previous instructions").

e Head 3: Persona Adoption.
Identifies attempts to force the model
into a specific role that bypasses

safety guidelines (e.g., "Act as
DAN").

e Head 4: High-Risk Action. Detects
semantic  patterns  related to
dangerous execution capabilities,
even if the language is veiled.
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Figure 1. Architecture of the Multi-Head DistilBERT
Classifier

The model is trained by minimizing a
combined loss function, defined as follows:

Liotar = Lmaticious + AZ?E{OVT,peT,TiSk} Li (1)

where 4 = 0.5 is an empirically selected
coefficient used to balance the contribution of
the auxiliary heads to the total loss.

Ensemble Decision Logic and "Paranoid

Mode"

In cybersecurity contexts, a False Negative
(missed attack) typically carries a much higher
cost than a False Positive (blocked legitimate
request). To address this, we implemented an
ensemble decision logic referred to as "Paranoid
Mode" during the inference stage.
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Rather than averaging the outputs, the system
triggers a block if any of the specialized heads
detect an anomaly with high confidence. The
thresholds for the auxiliary heads were set to 0.8
based on ROC curve analysis of the validation
set to minimize false positives on complex but
legitimate prompts.

1.2. Hybrid Data Generation Strategy

A significant challenge in training robust
detectors for Large Language Models (LLMs) is
the scarcity of high-quality, granularly labeled
datasets that distinguish between specific attack
vectors (e.g., persona adoption vs. direct
injection). To overcome this, we developed a
hybrid strategy combining synthetic data
generation with automated labeling (figure 2).

Easy: Direct Intent

Automated Labeling

Soft Labels / Probability

Figure 2. Hybrid Data Generation and Labeling
Pipeline
Synthetic
Obfuscation
We developed a specialized data generator to
create attack samples across three difficulty
levels, ensuring the model learns to recognize
adversarial intent rather than just keywords:

e Easy (Direct Intent): Unobfuscated
malicious requests (e.g., "Write a
phishing email™) used to establish
baseline detection capabilities.

e Medium (Obfuscation): Prompts
modified using algorithmic
obfuscation techniques to bypass
keyword  filters. This includes
splitting words (e.g., "h-a-c-k"),

Data  Augmentation and

leetspeak substitutions (e.g., "h4ck™),
and noise injection (e.g., "h#ack").

e Hard (Semantic Manipulation):
Complex prompts utilizing linguistic
ambiguity and negation to test
context understanding (e.g.,
distinguishing "I do not want to kill
the  process"” from  malicious
commands).

A total of 3,000 synthetic examples were
generated, balanced across these classes.
Automated Labeling via Knowledge
Distillation

To enable the compact DistilBERT model to
recognize complex patterns found in real-world
attacks, we applied a Knowledge Distillation
approach. We utilized existing binary-labeled
datasets (such as deepset/prompt-
injections and jackhhao/jailbreak-
classification) and processed them
through a superior "Teacher" model (GPT-5).

Using a custom system prompt containing the
definitions of specific attack patterns (Instruction
Conflict, Dangerous Persona, etc.), the Teacher
model analyzed each sample and generated
detailed probability scores for the auxiliary
heads. Additionally, to simulate Indirect Prompt
Injection threats in RAG systems, a subset of
malicious prompts was automatically wrapped in
data structures (JSON, XML, logs) to mimic
context contamination scenarios.

2. Experimental Results and Discussion

To validate the effectiveness of the proposed
Multi-Head DistilBERT model, we conducted a
series of comparative experiments against
traditional text classification baselines. The
primary objective was to evaluate the model's
resilience to obfuscation and its ability to
generalize to real-world attack vectors.

2.1. Datasets and Baselines

The experiments utilized the hybrid dataset
described in Section 1.2, comprising 3,000
synthetic samples (balanced across Easy,
Medium, and Hard complexity levels) and a 20%
holdout set from the deepset/prompt-injections
dataset to represent real-world distribution.

We compared our proposed architecture
against two industry-standard baselines:
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o Keyword Matching (RegEx): A
deterministic  filter based on a
blacklist of 200+ common malicious
keywords (e.g., "ignore", "hack",
"payload™).

e TF-IDF + Logistic Regression: A
classic statistical Machine Learning
approach often wused for spam
detection, representing a non-
contextual baseline.

2.2. Evaluation Metrics

While we tracked Accuracy and F1-Score, the
primary metric for evaluation was Recall. In the
context of critical infrastructure protection (e.g.,
preventing Prompt Injection in a SIEM), a False
Negative (missing an attack) poses a catastrophic
risk, whereas a False Positive (blocking a benign
guery) is a manageable inconvenience.
Therefore, our optimization goal was to
maximize Recall.

2.3. Performance Analysis

Robustness Against Semantic Obfuscation

The comparative analysis on synthetic data
revealed significant disparities in handling
obfuscated and semantic attacks (figure 3).

On the Synthetic Medium dataset
(obfuscation via token splitting and leetspeak),
the Keyword Baseline performance collapsed,
achieving an F1-Score of only 0.27. This
confirms that lexical filters are rendered
ineffective by simple tokenization manipulations

(e.g., "b-0-m-b"). In contrast, the proposed
DistilBERT  model, leveraging sub-word
tokenization and contextual —embeddings,

maintained a high F1-Score of 0.98.

On the Synthetic Hard dataset (semantic
ambiguity and negation), the TF-IDF baseline
struggled, achieving an F1-Score of 0.60. The
statistical approach failed to distinguish between
safe contexts (e.g., "kill the process™) and
malicious intents (e.g., "kill the boss") due to its
inability to capture word order and dependencies.
The  proposed  Multi-Head  architecture
successfully  resolved these  ambiguities,
achieving an F1-Score of 0.87.

aset and Model

Figure 3. Comparative Analysis of F1-Scores across
different datasets
Detection Capabilities on
Attacks

The final evaluation on the real-world holdout
dataset demonstrated the efficacy of the
"Paranoid Mode" ensemble logic (figure 4). As
shown in the comparison below, the proposed
method achieved a Recall of 0.99, significantly
outperforming the baselines.

Figure 4. Recall Comparison on Real-World Holdout Dataset

Real-World

4

Recall (Sensitivity)

a

0.0
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Figure 4. Recall Comparison on Real-World Holdout
Dataset

While the TF-IDF model achieved a slightly
higher Precision, it missed approximately 5% of
attacks (Recall ~0.95). The proposed system
missed less than 1% of attacks. The slight
reduction in Precision (0.89 for the proposed
method vs. 0.94 for TF-IDF) is a deliberate
trade-off resulting from the aggressive multi-
head aggregation strategy, ensuring that
ambiguous prompts are blocked rather than
allowed.

Conclusions

This study addresses the critical security gap
in the deployment of Large Language Models
within  corporate infrastructure, specifically
targeting the wvulnerability of Transformer
architectures to semantic manipulation and
indirect prompt injections. Our analysis
confirmed that traditional defense mechanisms,
such as input sanitization and reinforcement
learning alignment (RLHF), are insufficient
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against attacks that exploit the lack of context
isolation between control instructions and data.

To mitigate these risks, we proposed and
validated a novel detection system based on a
Multi-Head  DistilBERT  architecture. By
decomposing the classification task into four
distinct semantic vectors—malicious intent,
instruction override, persona adoption, and high-
risk actions—our model successfully
approximates the structural analysis of prompts.
The integration of an ensemble "Paranoid Mode"
logic ensured a high sensitivity to potential
threats, achieving a Recall rate of 0.99 on real-
world attack datasets.

Furthermore, the introduction of a hybrid data
generation  strategy, utilizing Knowledge
Distillation from a superior teacher model (GPT-
5), proved effective in overcoming the scarcity of
labeled adversarial data. This approach enabled
the compact student model to learn complex,
non-linear attack patterns and resist obfuscation
techniques that bypass standard lexical filters.
The resulting middleware solution offers a
robust, low-latency defense layer suitable for
real-time protection of SIEM and SOAR systems
against emerging adversarial NLP threats
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