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Abstract
This paper examines a new theoretical differential attack on the IDEA block cipher and several related
ciphers from the same design family, such as PES and MESH. We present an analysis of the most
probable differentials, which characterise the ciphers’ security against the proposed attack. We also
propose a design modification targeting the cipher’s key-adding function to enhance its security against
the attack.
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Introduction based on weak-key assumptions. These assume
that some subkeys have a value of 0 or 1. In
other words, their fifteen most significant bits are
zero. Under these assumptions, attacks can be
launched against the full 8.5-round IDEA [10],
as well as against MESH [3], R-IDEA [8] and
other ciphers from this family. It has been
demonstrated that IDEA contains a large num-
ber of weak keys (almost 235 out of all possible
keys) and enables the identification of cyclic dif-
ferential characteristics that are certain to pass
through the encryption rounds.

The mentioned attacks are built using dif-
ferential characteristics with XOR as the differ-
ence operator. However, IDEA is not a Markov
cipher under this difference operator. The au-
thors of IDEA presented a cryptoanalysis of mini
versions of IDEA based on modular multiplica-
tion [5]. In this paper, we wish to further utilize
the concept of non-XOR key-adding operators.

This paper presents a new attack on the
IDEA block cipher based on its key-adding func-
tion. This attack can be applied to all block ci-
phers in the IDEA family. We provide the high-
est probabilities for the differentials, which char-
acterize the complexity of the proposed attack.
We also propose a modification to IDEA’s key-
adding function to improve its security against
the aforementioned attack.

The results obtained were partially presented
at the 2nd Theoretical and Applied Cybersecurity

Oleksandr Parshyn1, Mykola Khmelnytskyi1

One of the most famous ciphers based on the
Lai-Massey scheme is IDEA (International Data
Encryption Algorithm), which was proposed by
X. Lai and J. Massey in 1991 [1]. It is a
word-oriented, iterative block cipher that oper-
ates on 64-bit blocks, which are divided into 16-
bit subwords. The family of IDEA-based ciphers
later expanded with the creation of the following
block ciphers: FOX [2], which incorporated 8-
bit S-boxes and MDS codes; MESH [3], which
allowed the block size of IDEA to be enlarged
beyond 64 bits; R-IDEA [4], which proposed
changing the multiplication-addition box (MA-
box) of the original IDEA to improve the non-
linearity of the transformation, as well as some
others.

Several methods of differential cryptanalysis
were developed for IDEA, resulting in success-
ful attacks on reduced numbers of rounds. These
methods include standard differential cryptanaly-
sis based on weak-key assumptions [5]; truncated
differential cryptanalysis [6]; impossible differ-
ential cryptanalysis [7]; slide attacks [8]; and
boomerang attacks [9]. J. Hakahara-jr. provides
a detailed description of these methods in [8].

As differential cryptoanalysis is the most de-
veloped method of cryptoanalysis for block ci-
phers from the IDEA family, most attacks are
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(TACS-2024) Scientific and Practical Conference,
held in Kyiv, Ukraine on 30 May 2024.

The rest of this paper is organized as follows.
Section 1 recalls the main design features and
structural elements of the Lai-Massey scheme.
Section 2 provides an overview of the IDEA
block cipher structure (key schedule, encryption
and decryption algorithms). Section 3 provides
details of a differential attack on IDEA, along
with the corresponding differences for the PES
and MESH block ciphers. Section 4 introduces
a new modification to the IDEA block cipher’s
key-addition function to increase its security with
regard to the proposed attack.

Preliminaries

Let 𝑉𝑛 = {0, 1}𝑛 be a binary vector space.
Any vector 𝑋 in 𝑉𝑛, 𝑋 = (𝑥𝑛−1, . . . , 𝑥0)

can be considered a natural representation of an
integer:

𝑋 = 𝑥𝑛−12
𝑛−1 + · · ·+ 𝑥12 + 𝑥0.

From this representation we can also denote
the vector (0, 0, . . . , 0) as the number 0 and the
vector (1, 1, . . . , 1) (which corresponds to the
number 2𝑛 − 1) as the number −1.

We will also consider the following algebraic
operations, as these are the only ones used in
the IDEA block cipher family:

1) ⊞ – addition modulo 2𝑛;
2) ⊟ – subtraction modulo 2𝑛;
3) ⊙ – multiplication modulo 2𝑛 + 1, where 0

(zero vector) denotes a number 2𝑛;
4) ⊡ – division modulo 2𝑛 + 1 (inverse opera-

tion for ⊙);
5) ⊕ – bitwise addition (logical operator

XOR).
We emphasize a general-known fact that

𝑥 = 𝑥⊕ (−1) ≡ (−1− 𝑥) mod 2𝑛.

The symbol
∑︀
𝑥

denotes an average sum

1
2𝑛

∑︀
𝑥

, where 𝑥 ∈ Z2𝑛 .

We will also require the definitions of differ-
ential probabilities and differentials, as these are
central to the differential cryptanalysis of block
ciphers. Differential (𝛼 → 𝛽) of boolean function
𝑓 w.r.t operation ∘ is an arbitrary pair of vectors
𝛼, 𝛽 ∈ 𝑉𝑛. For each differential, we identify an
event 𝑓(𝑥 ∘ 𝛼) ∘ (𝑓(𝑥))−1 = 𝛽, where 𝑥 is se-

lected randomly from 𝑉𝑛 and 𝑧−1 denotes the
inverse of 𝑧 w.r.t operation ∘.

The probability of the differential (𝛼, 𝛽) w.r.t
operation ∘ is the value:

𝐷𝑃 𝑓
∘ (𝛼 → 𝛽) =

∑︁
𝑥

[𝑓(𝑥 ∘ 𝛼) ∘ (𝑓(𝑥))−1 = 𝛽],

where [.] denotes Iverson’s bracket (the indicator
function).

For binary operation ⊠ : 𝑉𝑛 × 𝑉𝑛 → 𝑉𝑛 the
definitions change slightly: the differential be-
comes a triple of vectors (𝛼, 𝛽 → 𝛾), and the
probability of differential becomes

𝐷𝑃⊠
∘ (𝛼, 𝛽 → 𝛾) =

=
∑︁
𝑥,𝑦

[(𝑥 ∘ 𝛼)⊠ (𝑦 ∘ 𝛽) = (𝑥⊠ 𝑦) ∘ 𝛾].

The algebraic properties of non-XOR differen-
tials have been studied in [11, 12].

1. Lai-Massey Scheme Design and the
IDEA Family of Block Ciphers

The design of Lai-Massey ciphers is dis-
tinct from that of Feistel Network ciphers, such
as DES, and Substitution-Permutation Network
(SPN) ciphers, such as AES. Lai-Massey ciphers
have unique features, such as:

• complete text diffusion in a single round;
• a rather strong round function with a small

number of rounds;
• usage of only three group operations as

building blocks, such as bitwise exclusive-
or, modular addition and modular multipli-
cation (in a finite field);

• absence of S-boxes or MDS codes.
In the Lai-Massey scheme, encryption is an

iterative function, where each iteration takes the
form of the following transformation:

𝐿𝑀(𝑥, 𝑦) = (𝑥+ 𝐹 (𝑥− 𝑦), 𝑦 + 𝐹 (𝑥− 𝑦)).

Here 𝐹 (𝑥, 𝑦) is a round function, defined for
each block cipher separately, as are the adding
functions +,−, which depend on the algebraic
group, built on the vector space 𝑉𝑛 of the text
entries.

However, it has one problematic property: if
𝐿𝑀(𝑥, 𝑦) = (𝑧, 𝑡) then

𝑧 − 𝑡 = 𝑥− 𝑦.

This symmetry significantly decreases the secu-
rity of Lai-Massey ciphers schemes for common

39

___________________________________________________________________________________Theoretical and cryptographic problems of cybersecurity



cryptanalysis methods, so two approaches have
been proposed before to eliminate it:

1) use a key-adding function with differ-
ent algebraic operations, which destroys XOR-
differentials between rounds. This approach was
utilized in all ciphers from IDEA family;

2) use orthomorphic transformation 𝜎:

𝐿𝑀 ′(𝑥, 𝑦) = (𝜎(𝑥+ 𝐹 (𝑥− 𝑦)), 𝑦+ 𝐹 (𝑥− 𝑦)),

which disrupts the aforementioned internal sym-
metry [13].

This paper will focus on the first approach,
since all block ciphers in the IDEA family are
based on it.

2. The Structure of IDEA Block Cipher

Let us begin with the IDEA key schedule of
IDEA [14]. It transforms a 128-bit user key 𝐾
into 52 16-bit subkeys for either the encryption
or the decryption processes. In total, 832 bits of
subkey material are required across 8.5 rounds.

These are obtained as follows:
1) the 128-bit user key K is stored in

a register, which is initially parti-
tioned into eight 16-bit words. These
words become the first eight subkeys:
𝑍

(1)
1 , 𝑍

(2)
1 , 𝑍

(3)
1 , 𝑍

(4)
1 , 𝑍

(5)
1 , 𝑍

(6)
1 , 𝑍

(1)
2 , 𝑍

(2)
2 ;

2) the register is then left rotated by 25
bits and is partitioned into eight 16-bit
words, which become the next eight round
subkeys. The next pack of subkeys will be
𝑍

(3)
2 , 𝑍

(4)
2 , 𝑍

(5)
2 , 𝑍

(6)
2 , 𝑍

(1)
3 , 𝑍

(2)
3 , 𝑍

(3)
3 , 𝑍

(4)
3

— and so on;
3) the previous step is repeated until 52 sub-

keys are obtained.
Next comes the encryption phase, as shown

on Fig.1.

Figure 1: Computational graph of the IDEA cipher:
(a) encryption and (b) decryption

Let 𝑋(𝑖) = (𝑋
(𝑖)
1 , 𝑋

(𝑖)
2 , 𝑋

(𝑖)
3 , 𝑋

(𝑖)
4 ) be the

input word of the 𝑖-th round, where 𝑋
(𝑖)
𝑗 ∈

Z16
2 , 1 ≤ 𝑗 ≤ 4. Here 𝑋(1) is the open text.

One round of encryption can be divided
into three stages: a key-addition function, a
multiplication-addition box (MA), and an output
block.

The key-adding function looks like this:

𝑌 (𝑖) = (𝑋
(𝑖)
1 ⊙𝑍

(𝑖)
1 , 𝑋

(𝑖)
2 ⊞𝑍

(𝑖)
2 , 𝑋

(𝑖)
3 ⊞𝑍

(𝑖)
3 , 𝑋

(𝑖)
4 ⊙𝑍

(𝑖)
4 ).

The result of key-adding function is a pair of
values (𝑛𝑖, 𝑞𝑖) = (𝑌

(𝑖)
1 ⊕𝑌

(𝑖)
3 , 𝑌

(𝑖)
2 ⊕𝑌

(𝑖)
4 ), which

is sent to MA-box.
Result of MA-box is a pair (𝑟𝑖, 𝑠𝑖):

𝑠𝑖 = ((𝑍
(𝑖)
5 ⊙ 𝑛𝑖)⊞ 𝑞𝑖)⊙ 𝑍

(𝑖)
6 ,

𝑟𝑖 = 𝑠𝑖 ⊞ (𝑍
(𝑖)
5 ⊙ 𝑛𝑖).

The output block combines the result of the
multiplication and addition block and rearranges
the words as follows:

𝑋(𝑖+1) =

= (𝑌
(𝑖)
1 ⊕ 𝑠𝑖, 𝑌

(𝑖)
3 ⊕ 𝑠𝑖, 𝑌

(𝑖)
2 ⊕ 𝑟𝑖, 𝑌

(𝑖)
4 ⊕ 𝑟𝑖).

𝑋(𝑖+1) is the input block for the next en-
cryption round. This procedure is repeated eight
times.

After the final round, the modified final trans-
formation is applied:

𝑋(9) = (𝑌
(8)
1 ⊕𝑠8, 𝑌

(8)
2 ⊕𝑟8, 𝑌

(8)
3 ⊕𝑠8, 𝑌

(8)
4 ⊕𝑟8).

The final ciphertext is acquired as follows:

𝐶 = (𝑋
(9)
1 ⊙ 𝑍

(9)
1 , 𝑋

(9)
2 ⊞ 𝑍

(9)
2 ,

𝑋
(9)
3 ⊞ 𝑍

(9)
3 , 𝑋

(9)
4 ⊙ 𝑍

(9)
4 ).

We will also illustrate the similarities in the
key-adding functions and 𝑀𝐴-boxes of the PES
and MESH-64 block ciphers using computational
graphs (see Fig. 2, 3). They share the same
design structure, consisting of a key-adding func-
tion and an 𝑀𝐴-box, with the result XOR’ed.
The differences lie in the operations used in the
key-adding function and the 𝑀𝐴-box itself.

Note that the same parts of the results of the
key-adding functions are being XOR-ed in all
these block ciphers:

(𝑛𝑖, 𝑞𝑖) = (𝑌
(𝑖)
1 ⊕ 𝑌

(𝑖)
3 , 𝑌

(𝑖)
2 ⊕ 𝑌

(𝑖)
4 ), (1)

even though 𝑌 (𝑖) are different by design. This
is the basic of the proposed attack.
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Figure 2: Computational graph of the PES cipher:
(a) encryption and (b) decryption

Figure 3: Computational graph of the MESH-64
cipher: (a) encryption and (b) decryption

3. Attack on IDEA Block Cipher Based on
Key-Adding Function

Our attack on IDEA is based on the fol-
lowing observation: consider differentials in the
form (𝛼, 𝛽, 𝛼, 𝛽). These differentials transform
to (0, 0) on the input of MA-box according
to (1), so the output of MA-box gives also (0, 0),
regardless of the round subkeys. This result is
XORed back with each part of the round mes-
sage, resulting in the same differential, which
is then propagated further. Therefore, the only
structural element that introduces changes during
the round is the key-adding function.

Our attention will be drawn to the two mes-
sages whose bitwise difference is (𝛼, 𝛼, 𝛼, 𝛼).
As will be demonstrated later, these differences
result in higher probability differentials, so our
subsequent research will focus solely on differ-
entials of this form. As mentioned previously,
they pass through the MA-box unchanged; there-
fore, we can only consider the probability of the
difference being preserved when passing through
the key-adding function without change:

P1(𝛼) = 𝐷𝑃⊞
⊕ (𝛼, 0 → 𝛼),

P2(𝛼) = 𝐷𝑃⊙
⊕ (𝛼, 0 → 𝛼),

P(𝛼) = P2
1(𝛼) · P2

2(𝛼).

The probability P characterizes the complex-
ity of a differential attack on the IDEA cipher
for one round of encryption.

Similar attacks based on the same principle
can be performed not only on the IDEA ci-
pher, but also on the PES (IDEA’s predeces-
sor) and the MESH-64, MESH-96 and MESH-
128 ciphers, since they have a similar structure
and also ensure the stability of the Lay-Massey
scheme using a key-addition function. [3]

The attack on the PES and MESH-64 ciphers
is carried out in exactly the same way as the
attack on the IDEA cipher. Given the same
structures of the key-addition function and the
operations involved, all the differential strength
estimates will also be the same.

The MESH-96 and MESH-128 ciphers use
three and four parallel Lay-Massey schemes, re-
spectively, as opposed to two schemes in the
PES, IDEA and MESH-64 ciphers. However,
the operations used in the key-addition function
and the method of combining the results remain
the same:

P𝑀𝐸𝑆𝐻96 = P3
1 · P3

2;

P𝑀𝐸𝑆𝐻128 = P4
1 · P4

2.

The probabilities, P1 and P2, were obtained
through an extensive search of all possible dif-
ferences 𝛼. Highest probabilities are shown in
the table 1. It can be seen that such attacks
are possible for no more than two rounds of
encryption. For 64-bit secure text blocks, we
expect differential probabilities to approach 2−64,
and the proposed attack achieves this with two
rounds of encryption.

Table 1
Probabilities of differentials with the highest
probability of attack

𝛼ℎ𝑒𝑥 P1(𝛼) P2(𝛼) log(P(𝛼))
8080 0.5 0.000045 -30.880
8888 0.125 0.000124 -31.956
FFFD 0.000061 0.25 -31.998
8000 1 0.000015 -32.049
8001 0.5 0.000025 -32.577
8008 0.5 0.000025 -32.577
8010 0.5 0.000025 -32.577
8020 0.5 0.000025 -32.577
8040 0.5 0.000025 -32.577
8100 0.5 0.000025 -32.577
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4. Modifications to the Key-Adding Func-
tion

In this section, we propose an alternative op-
eration that could enhance the security of the
IDEA block cipher, as well as block ciphers
based on the Lai-Massey scheme, against the
proposed attack and other forms of differential
cryptanalysis.

Consider the following operation:

𝑓(𝑥, 𝑦) = 𝑥⊗ 𝑦 = (𝑥+ 1) · (𝑦 + 1)− 1, (2)

where operation · represents usual multiplication
modulo 216 + 1. Considering:

𝑥, 𝑦 ∈ {0, . . . , 2𝑛 − 1},
𝑥+ 1, 𝑦 + 1 ∈ {1, . . . , 2𝑛} = Z*

216 ,

(𝑥+ 1) · (𝑦 + 1) ∈ {1, . . . , 2𝑛},
then, respectively:

𝑥⊗ 𝑦 ∈ {0, . . . , 2𝑛 − 1},
so this operation, unlike modular multiplication
in the original IDEA cipher, is performed on
naturally represented numbers by binary vectors
without additional refinements. In particular, the
neutral element w.r.t. the operation ⊗ is zero
vector 0, as in bitwise or modular addition. How-
ever, the introduced operation is slightly more
computationally complex.

Differentials 𝐷𝑃⊗
⊕ under the ⊕ operation pos-

sess the following properties.

Lemma 1. For every 𝑛 ∈ N it holds

𝐷𝑃⊗
⊕ (−1,−1 → 0) = 1.

Proof. By definition we have

𝐷𝑃⊗
⊕ (−1,−1 → 0) =

=
∑︁
𝑥,𝑦

[𝑓(𝑥⊕ (−1), 𝑦⊕ (−1))⊕𝑓(𝑥, 𝑦) = 0].

Here 𝑓(𝑥, 𝑦) = (𝑥+1) ·(𝑦+1)−1 = 𝑥 ·𝑦+𝑥+𝑦.
Meanwhile,

𝑓(𝑥⊕ (−1), 𝑦 ⊕ (−1)) =

= (𝑥⊕ (−1) + 1) · (𝑦 ⊕ (−1) + 1)− 1.

Here equation 𝑥⊕ (−1) = −1− 𝑥 holds as
this operation means invertion of all bits of a
number. Also (2𝑛 − 𝑥) mod 2𝑛 = (2𝑛 − 𝑥) mod
(2𝑛 + 1), because 𝑥 ∈ [0, 2𝑛 − 1]; thus,

𝑓(𝑥⊕(−1), 𝑦⊕(−1)) = (2𝑛−𝑥)·(2𝑛−𝑦)−1 =

= 22𝑛 − 𝑥 · 2𝑛 − 𝑦 · 2𝑛 + 𝑥 · 𝑦 − 1.

Considering each element, we obtain

22𝑛 ≡ (−1)2 mod (2𝑛 + 1) ≡ 1 mod (2𝑛 + 1);

−𝑥 · 2𝑛 ≡ 𝑥 mod (2𝑛 + 1);

−𝑦 · 2𝑛 ≡ 𝑦 mod (2𝑛 + 1).

Then it follows that

𝑓(𝑥⊕ (−1), 𝑦 ⊕ (−1)) = 𝑓(𝑥, 𝑦),

and
∑︀
𝑥,𝑦

[𝑓(𝑥, 𝑦) ⊕ 𝑓(𝑥, 𝑦) = 0] = 1, which con-

cludes the proof. □

Lemma 2. For every 𝑛 ∈ N it holds

𝐷𝑃⊗
⊕ (0,−1 → −1) = 𝐷𝑃⊗

⊕ (−1, 0 → −1) = 1

Proof. Since the operation ⊗ is symmetrical
by definition, it is sufficient to consider only one
of differentials:

𝐷𝑃⊗
⊕ (0,−1 → −1) =

=
∑︁
𝑥,𝑦

[𝑓(𝑥, 𝑦 ⊕ (−1))⊕ 𝑓(𝑥, 𝑦) = −1]

Let us consider the left part of this equation:

𝑓(𝑥, 𝑦) = 𝑥 · 𝑦 + 𝑥+ 𝑦,

by definition. Then:

𝑓(𝑥, 𝑦 ⊕ (−1)) = (𝑥+ 1) · (2𝑛 − 𝑦)− 1 =

= 2𝑛 · 𝑥+ 2𝑛 − 𝑥 · 𝑦 − 𝑦 − 1 =

= −1− (𝑥 · 𝑦 + 𝑥+ 𝑦) =

= −1⊕ (𝑥 · 𝑦 + 𝑥+ 𝑦)

Therefore,

𝐷𝑃⊗
⊕ (0,−1 → −1) =

∑︁
𝑥,𝑦

[−1 = −1] = 1,

which concludes the proof. □
The properties from Lemmas 1 and 2 high-

light that there are special differentials for the ⊗
operation, which must be considered when ana-
lyzing the security of the next proposed modifica-
tions. These special differentials can be seen as
an analogy of those for modular addition, which
have similar property:

𝐷𝑃⊞
⊕ (2𝑛−1, 2𝑛−1 → 0) = 1,

𝐷𝑃⊞
⊕ (2𝑛−1, 0 → 2𝑛−1) = 1.

Lets us consider two key-adding functions:

𝑌 ′ =

= (𝑋1 ⊗ 𝑍1, 𝑋2 ⊞ 𝑍2, 𝑋 ⊞ 𝑍3, 𝑋4 ⊗ 𝑍4), (3)

𝑌 ′′ =

= (𝑋1 ⊙ 𝑍1, 𝑋2 ⊗ 𝑍2, 𝑋3 ⊗ 𝑍3, 𝑋4 ⊙ 𝑍4). (4)
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As they have the same structure as the orig-
inal key-adding function, the specified differen-
tial attack would work in the same way on the
cipher with the replaced key-adding function.

Introduce additional value:

P3(𝛼) = 𝐷𝑃⊗
⊕ (𝛼, 0 → 𝛼).

Then, for the modifications (3), (4) the differ-
ential probabilities, which are parameters of the
proposed attack, are obtained as

P𝑌 ′(𝛼) = (P1)
2 · (P3)

2;

P𝑌 ′′(𝛼) = (P2)
2 · (P3)

2.

Tables 2 and 3 were obtained through an
exhaustive search of all possible differences 𝛼.
As can be seen, differentials for the difference
𝐹𝐹𝐹𝐹 hold the biggest value because of the
properties mentioned in Lemmas 1 and 2. Mod-
ification 𝑌 ′ did not improve security level of
IDEA cipher against the proposed attack; how-
ever, modification 𝑌 ′′ showed better results. The
mean differentials probabilities are as follows for
the original IDEA and modifications 𝑌 ′ and 𝑌 ′′

respectively:

P = 2−40.47;

P𝑌 ′ = 2−39.17;

P𝑌 ′′ = 2−47.67.

It can be seen that the structural change of
modification (3) slightly decreased the cipher’s
strength, whereas modification (4), on the con-
trary, slightly increased it against the proposed
attack:

P𝑌 ′′ ≈ (P)1.18.

Table 2
Probabilities of differentials with highest probability
of the attack for modification (3)

𝛼ℎ𝑒𝑥 P1 P3 log(P𝑌 ′ )

FFFF 0.000031 1 -29.954
8000 1 0.000031 -29.954
8080 0.5 0.000061 -30.002
8888 0.125 0.000164 -31.148
8001 0.5 0.000041 -31.148
8008 0.5 0.000041 -31.148
8010 0.5 0.000041 -31.148
8020 0.5 0.000041 -31.148
8040 0.5 0.000041 -31.148
8100 0.5 0.000041 -31.148

Table 3
Probabilities of differentials with highest probability
of the attack for modification (4)

𝛼ℎ𝑒𝑥 P2 P3 𝑙𝑜𝑔(P𝑌
′′ )

FFFF 0.000015 1 -32.049
FFFD 0.25 0.000031 -33.953
FFF9 0.062508 0.000041 -37.147
FFF1 0.015642 0.000048 -40.689
FFE1 0.003931 0.000059 -44.079
AAAA 0.00016 0.000549 -46.880
FFC1 0.001011 0.000065 -47.717
CCCC 0.000186 0.00031 -48.097
6666 0.000098 0.00031 -49.944
FF81 0.000286 0.000075 -50.949

These results are achieved by increasing the
number of operations performed. For eight
rounds of encryption, the original IDEA cipher
performed 16 modular additions and multipli-
cations in the key-adding function. The key-
adding function (3) requires 48 modular addi-
tions, 16 modular multiplications and 16 mod-
ular subtractions for eight rounds, while key-
adding function (4) requires 32 modular addi-
tions, 32 modular multiplications and 16 modular
subtractions.

Conclusions

In this work, a new theoretical differential
attack on the IDEA block cipher has been pro-
posed and analyzed. The attack is based on spe-
cific properties of the key-adding function within
the round transformations, particularly its interac-
tion with the modular addition and multiplication
operations that define the cipher’s structure. By
exploiting these properties, the proposed attack
enables the construction of differential character-
istics with non-negligible probabilities.

Based on the derived differential character-
istics, quantitative estimates of the cipher’s se-
curity level with respect to the proposed attack
have been obtained. These estimates provide
an analytical assessment of the computational
complexity of the attack. Although the attack
remains theoretical in nature, the results indi-
cate that the security of IDEA is sensitive to
the precise algebraic design of its key-adding
component.

Finally, a modification of the design of the
key-adding function is proposed with the objec-
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tive of strengthening the cipher against the pre-
sented attack. The suggested change aims to
increase security level against the proposed at-
tack by the cost of slightly increasing the num-
ber of algebraic computations during the round
transformation.
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